1 Introduction

One of the biggest problems faced by businesses, individuals and organizations is the protection of their net-
worked computing system from malicious attacks launched remotely via the Internet. Intrusion detection refers
to a broad range of techniques that have been developed over the past several years to protect against malicious
attacks. Most intrusion detection techniques aimed at preventing intrusion are based on the following observa-
tion about attacks: regardless of the nature of an attack, damage can ultimately be effected only via system
calls made by processes running on the target system. Therefore, if we monitor every system call made by every
process, we may identify (and prevent) damage caused by an attack.

In addition to the preventive approaches, system call interception can significantly enhance the power and
effectiveness of most offline intrusion detection techniques that make use of system audit data. This is because
system audit logs often do not provide all of the information needed for intrusion detection, while system call
interception enables offline techniques to access all the data needed for identifying intrusions, without incurring
the overhead for accessing irrelevant information.

For the reasons mentioned above, we designed and implemented an infrastructure for active interception
and modification of system calls. This report presents our infrastructure, which is a user-level system call
interceptor like [2], where the system call performed by one process are intercepted (and possibly modified) by
another process. Our approach has the following benefits:

e It provided an extensive set of capabilities for extension code;

e it developed an architecture and implementation that is easily ported to different versions of the UNIX
operating system.

The rest of this report is organized as follows. Section 2 describes the design of our interceptor. Section
3 gives details about how to use the interceptor. In Section 5, we discuss the security issues. We show the
performance results in Section 6.

2 Architecture and Program Components

2.1 Architecture

Monitored Process Table Behayior
Monitor
Manager Argument

T T

Architectural Dependent Primitives

!

C Operating System )

Figure 1: The architecture of interceptor (the arrows indicate the direction in which system call related infor-
mation is flowed).

The architecture of the interceptor is shown in figure 1, which consists of five major parts, namely, Ar-
chitectural Dependent Primitives, Manager, Argument, Monitored Process Table and Behavior Monitor. The
Architectural Dependent Primitives (depicted by the gray rectangle in the figure) deal with details of the un-
derlying operating system and interposition mechanism. They provide an easy-to-use interface to the rest of the



ManagerClass
ArchDependent MonitoredProc
SystemCall
LinuxPtracel386 ? Behavior
SysCallArgRep Monitor
Legends
[ ] Class
<4— Inheritance ArgBase Arglype
<>— Composition ; A
—— Association ‘ ‘
SysCallArg PersistArg
BasicType FixSizedPtr Array CString ArgV

\ \
VoidP‘

‘StatP‘ ‘ IntP‘ ‘IntA‘

‘ Int ‘ ‘ Char

Figure 2: The static view of the interceptor

interceptor. Based on that interface, Argument deals with the representation details of system call arguments
and provides a convenient interface to access them, as well as a caching mechanism to speed up accesses to used
arguments. Manager is in charge of setting up the interception and receives all system call events from monitored
programs, such as system call entries or exits. It also manages the states of the monitored processes, which
is recorded in Monitored Process Table. After receiving a system call event, Manager updates the Monitored
Process Table and then delivers the event to Behavior Monitor, which is user defined extensions for processing
intercepted system call events.

As we have mentioned, one of the major goals of this interceptor is to make it easily portable. This is
achieved by the design of Architectural Dependent Primitives, which is a high-level abstraction of the services
that our interceptor needs from the underlying operating system and interposition mechanism. For example,
we need a way to access a process’s memory or register. The rest of the interceptor relies only on this set of
interface, rather than the details of the operating system. Therefore, the only work needs to be done to migrate
the interceptor to a new operating system is to rewrite the Architectural Dependent Primitives, according to
details of the new system.

2.2 Program Components

In this section, we describe the static view of our interceptor, i.e., the classes building the interceptor and the
relationships among them. We first show how the classes cooperate in a typical execution. Then, we examine
the Architectural Dependent Primitives and Behavior Monitor in detail. Finally, to illustrate how the classes
related to system call arguments are designed, we describe the process of system call argument logging.

2.2.1 Overview

Among these classes, ManagerClass is the control center. It controls the startup and termination of monitored
programs, and delivers runtime events to their corresponding BehaviorMonitors. Right after the interceptor



is started, the ManagerClass uses the startTracing method of ArchDependent, the class of Architectural
Dependent Primitives, to put the monitored program under control. It then allocates a MonitoredProc object
for the first process of the monitored program, and initializes required BehaviorMonitors according to its
configuration file.

After the monitored program begins execution, whenever it makes a system call, it will be stopped at both
entry and exit point of the system call, and this system call event is reported to the ManagerClass. The
ManagerClass first checks the type of the system call. If the system call indicates the creation of a new process,
e.g. a fork with positive return value, the ManagerClass will allocate a new MonitoredProc for the new process
and initialize its BehaviorMonitor. Otherwise, if the system call indicates a termination of a process, such as
exit, the ManagerClass will free the MonitoredProc associated with the process. Then, the ManagerClass
will deliver it to the process’s BehaviorMonitors for user processing.

The BehaviorMonitor receives system call notification from the ManagerClass. It can access system call and
process related information, such as system call arguments and process id, through an interface, which we will
describe in more detail in Section 2.2.2. After the processing of BehaviorMonitor is finished, the ManagerClass
resumes the monitored program and waits for next system call event. It repeats this process until the monitored
program exits.

2.2.2 Architectural Dependent Primitives

The Architectural Dependent Primitives are defined by the class ArchDependent. It consists of a set of ab-
stract functions which is sufficient for our interceptor. These functions form a generalized interface, without
dependency on particular operating system and/or interposition mechanism.

In order to make our interceptor work on an operating system, all we need is to implement a subclass of
ArchDependent using mechanisms specific to the new operating system. Currently, as depicted in the figure,
we implemented LinuxPtraceI386, an Architectural Dependent Primitives for Linux system on Intel X86
architecture using ptrace interposition mechanism.

2.2.3 Behavior Monitor

The BehaviorMonitor is an interface to let a user monitor the execution of monitored programs. The entry
point to this interface is a virtual function called deliverEvent. The ManagerClass will call this function
each time the corresponding process has a system call event intercepted. In deliverEvent, the user can access
all information about the current system call and the current process. For example, BehaviorMonitor keeps a
pointer to its MonitoredProc, which in turn can get a pointer to the ArchDependent object. Using the functions
provided by the ArchDependent object, the user can get or change information of current process, such as user
id (read only), effective user id (read only), content of register, contents of memory location, and etc. Through
MonitoredProc’s pointer to SystemCall class, the user can also access and modify system call arguments, which
we will describe in detail in the following section.

2.2.4 System Call Argument Logging

Using the functions provided by ArchDependent, a user can retrieve system arguments as a sequence of bytes,
which is structureless and hard to use. Also, retrieving system call arguments data from a process’s memory
space is sometimes an expensive operation. For example, using Linux’s ptrace interface, only four bytes can be
retrieved in each system call. Therefore, we need an interface to access system call arguments conveniently and
efficiently. That is the objective of system call argument related classes. In order to show a more understandable
picture of how these classes works, we describe them through the process of system call arguments logging.
Before we start, let’s have a overview of the related classes. SysCallArgRep is the class of system call
argument representation. It keeps information of the location of a system call argument, either in memory or in
register. It also caches the system call arguments for faster access. Using such a separate system call argument
representation allows us to have lazy access to system call arguments, i.e., in a system call entry, we initialize the
SysCallArgRep objects only with the location information; the access of system call argument data is delayed
until necessary. The rest of classes are divided into two families, ArgType and ArgBase. ArgBase manipulates
the byte streams of the system call argument data, while ArgType generates high-level view of the byte stream.
ArgBase has two subclasses: SysCallArg interacts with the ArchDependent interface for system call argument
access; PersistArg is a copy of the cached values of SysCallArg and is used to facilitate system call arguments



logging. ArgType and its children classes are used to generate high-level and more understandable format of the
system call argument data. For example, if we want to access a struct stat argument, we first use SysCallArg
to get the byte stream from the process using information provided by SysCallArgRep. Then we use StatP
class to format it into a struct stat format so that we can access it in a conventional way.

Now we will show how system call argument logging works. System call argument logging is built as a
subclass of BehaviorMonitor. When a new system call event is delivered into it, the SysCallArgRep objects
corresponding to current system call is retrieved through the pointer to current SystemCall object. Then, for
each system call argument, a SysCallArg object is initialized with its SysCallArgRep, and its type is retrieved
from the ArchDependent interface. Using the type information, we create a corresponding ArgType child object
with the SysCallArg object. For example, if the system call is stat, we will initialize a StatP object with the
SysCallArg object. Next, we will call the get function of the ArgType class to retrieve argument data from
the process, which will initialize the data cache in the corresponding SysCallArgRep. A PersistArg object is
then created with the cached value. Finally, after all the information of a system call is gathered, the system
call is serialized into the log file. Later, when the log file is used, a user need to unserialize the system call one
by one. In an unserialized system call, the system call arguments are represented as PersistArg objects. The
user can then pass this object to its corresponding ArgType class, such as StatP, to get a high-level access of
the argument’s data.

2.3 Class Interfaces

Corresponding to each program component, there is a class in our implementation. In this section, we give a
detail description of the important classes.

2.3.1 Class ArchDependent

The interface of class ArchDependent is as follows.

class ArchDependent
{
public:
virtual pid_t startTracing(const char *path, char **argv)=0;
virtual int attachProc(pid_t pid)=0;
virtual int detachProc(pid_t pid)=0;
virtual int killProc(pid_t pid)=0;
virtual int waitForCall(pid_t *newpid, SystemCall *call)=0;
virtual int abortCall(pid_t pid, int rc, int errnum)=0;

virtual long getReg(pid_t pid, int reg)=0;
virtual int setReg(pid_t pid, int reg, long val)=0;

virtual int getData(pid_t pid, long addr, char* buf, size_t len)=0;
virtual int setData(pid_t pid, long addr, const char *buf, size_t len)=0;

virtual long allocMem(pid_t pid, size_t size)=0;

virtual long getCallNum(pid_t pid)=0;
virtual int setCallNum(pid_t pid, long scno)=0;

virtual int getReturnVal(pid_t pid, int *errnum)=0;
virtual int setReturnVal(pid_t pid, int rc, int errnum)=0;

virtual int getWorkingDir(pid_t pid, char *path, size_t size)=0;
virtual int getExecPath(pid_t pid, char *path, size_t size)=0;

virtual int getUID(pid_t pid)=0;
virtual int getEUID(pid_t pid)=0;



virtual int getGID(pid_t pid)=0;
virtual int getEGID(pid_t pid)=0;
virtual pid_t getPPID(pid_t pid)=0;

virtual unsigned long getPC(pid_t pid)=0;
virtual unsigned long getIP(pid_t pid)=0;
virtual SysCallInfo *scInfo(int scno)=0;

s

Class ArchDependent defines the interface for one process to trace another, and to access the traced process’s
information. According to their functionality, the member functions are divided into two categories.

The first category is process control. These functions are used to control the execution of the traced process.
startTracing takes a vector of command line arguments, and starts tracing the program specified by the
command line. attachProc is another way to trace a process, which uses process ID of an existing process,
instead of command lines. detachProc detaches a traced process, making it running without tracing. killProc
terminates a traced process. waitForCall is the most important function in ArchDependent, which reports a
new system call event. It return the process ID of the new event by the argument newpid. Its second argument
call contains information about a system call, which will be described in Section 2.3.4.

The second category is data access. This category includes functions used to retrieve process execution
related data, such as the register contents and the effective user ID. getReg and setReg are used retrieve
and change the contents of the process’s register, respectively. The register is specified by the argument reg,
whose values is specified by the header file <sys/reg.h>. getData retrieves len bytes memory contents starting
from addr from the traced process into buf, while setData write the buf into the process’s memory. The
next four functions deal with the system call number and return value of current system event, respectively.
getWorkingDir retrieves current working directory of process pid, and getExecPath retrieves the executable
file of process pid. getUID, getEUID, getGID, getEGID and getPPID returns the user ID, effective user ID,
group ID, effective group ID, and parent’s process ID, respectively. getPC returns the location from which the
current system call is called, and getIP returns the current program counter. The last call of ArchDependent is
scInfo, which returns a structure containing information of the system call specified by scno, such as system
call name and the type of each argument.

2.3.2 Class ManagerClass

class ManagerClass

{
private:
ArchDependent *arch;
ProcHashTable<MonitoredProc> monitoringTable;

public:
ManagerClass (ArchDependent *pAD, const char *mapfile);
“ManagerClass() ;

int startTracing(char* argv[]);
int startTracing(pid_t pid);
ArchDependent *getArch();

3

Class ManagerClass has maintains a pointer to the current ArchDependent object, and a hash table MonitoredProc,
which stores information of traced processes. To trace a process, a program needs to create a ManagerClass
object with a pointer to current ArchDependent object and the location of mapping file (see Section 3.1). It
then can start the program by call the startTracing member function, either by providing the full command
line argument vector, or by providing the process ID of the program to trace. Function getArch return the
current ArchDependent object for the rest part of the interceptor to access process related information.



2.3.3 Structure SysCallArgRep

struct SysCallArgRep
{
bool ISreg_;
long addr_ ;
bool inited_;
long data_;
char xbuf_;
size_t size_;

};

Structure SysCallArgRep holds the representation of a system call arguments. The following assumptions
are made about system call arguments: (a) they can be stored in a long; data that wont fit within a long is
stored in memory, and a pointer to this buffer is the actual system call argument; (b) they are contained in a
register or memory.

Field ISreg._ specifies whether this argument is a register. addr_ records the location of the argument. For
a register argument, it is the register number as in <sys/reg.h>; for a memory argument, it is the address
in memory. Field data_ is a local cache to store system call arguments the is in monitored process’s register
or memory space, and inited_ indicates whether the cache is valid. If the argument is a pointer to another
structure or string, buf_is used to cache its contents. For example, in open system call, the first argument is a
string specifying the file location. After the file name is retrieved, it is cached in buf_. The size_ records the
size of cached buf_. If the argument is not a pointer, or the pointed value is not used, buf_ is NULL and size_
has a zero value.

2.3.4 Class SystemCall

class SystemCall
{
private:
long uscno_ ;
bool isEntry_ ;
SysCallArgRep *arg ;

public:
SystemCall();
~SystemCall();

long uscno();

bool isEntry();

SysCallArgRep *getArgRep(int number) ;
s

Class SystemCall records the information of current system call event. uscno reports the current system call
number, and isEntry tells whether the current event is a system call entry or system call exit. System call
arguments can be accessed by getArgRep. It return the pointer to the argument’s corresponding SysCallArgRep
object. In the next two sections, we will see how this object is used to retrieve system call arguments.

2.3.5 Class ArgBase

class ArgBase
{
public:
virtual long getData()=0;
virtual int setData(long dat)=0;
virtual void* getBuf(size_t size)=0;
virtual void* getDelimBuf (size_t size, unsigned char delim)=0;



virtual char* getStr(size_t size)=0;
virtual bool setBuf (const char *buf, size_t size)=0;
virtual bool setNewBuf (const char *buf, size_t size)=0;

s

Class ArgBase provides an abstract interface for accessing system call arguments. We explain its interface by
describing how it child class, SysCallArg, handles system call arguments. In SysCallArg, getData initializes
the data_ field in the SysCallArgRep from either register or memory, while setData write the value of dat into
the argument’s register or memory. If the arguments is a pointer, getBuf will retrieve a block of size size from
where the pointer points to. getDelimBuf is similar to getBuf, but it only retrieves the buffer before a delimiter
delim. A special case of this function is getStr. It retrieves a string pointed by the argument, in which case
the delimiter is the value zero. Those functions will be used by the class ArgBase to provide a higher level view
of the system call arguments.

2.3.6 Class BehaviorMonitor

class BehaviorMonitor

{
protected:
MonitoredProc* mp;
public:
BehaviorMonitor (MonitoredProc* MP);
virtual int deliverEvent();
virtual BehaviorMonitor* clone();
SysCallArgRep *getArgRep(int i) ;
String programName() ;
String getCwd();
int getPID();
int getPPID();
int getUID();
int getEUIDQ);
int getGID();
int getEGIDQ);
3

Class BehaviorMonitor is the interface of our interceptor and the user supplied behavior monitor module.
Among the member function, the deliverEvent is the entry point. Upon receiving a system call event,
ManagerClass will call this function of the BehaviorMonitors of the system call’s process. Therefore, users
need to put their monitoring logic into this function. Other functions are used to provide process information
to the user’s behavior monitor. For example, the function getPID returns the process ID of the system call
event’s caller.

3 Tutorial

This section shows how to assign behavior monitors to a program, and how to start monitoring a program using
our interceptor.



3.1 Mapping file specifications

Our interceptor uses mapping files to associate behavior monitors to programs. The mapping file is a text
file containing lines of rules. Each line is in the following format(lines that begin with # is considered to be
comments):

PROGRAM LOCATION  CLASS-NAME

e PROGRAM is the canonicalized absolute program path name, i.e., absolute path names with all symbolic
links expanded and . or .. resolved. The word “default” is used to match all path names not specified
in a mapping file.

e LOCATION is the path name of dynamic library containing the specified behavior monitors.

e CLASS-NAME is the class name of the behavior monitors to be associated with the PROGRAM. It’s
case sensitive. Two behavior monitors are predefined, KILL and NONE. KILL’s behavior is to terminate the
monitored process while NONE does nothing about the events. To use these two predefined extensions, the
LOCATION field must have the value “PREDEFINED”.

Behavior monitors are organized in a layered fashion by the order in which they appear in the mapping file.
The earlier an behavior monitor of a program appears in the mapping file, the closer it is to the program, i.e.,
when an entry of a system call event is delivered, the earlier it receives the event. After the kernel finishes the
system call, the exit of the system call is delivered in the reverse order, i.e., the closest behavior monitor to the
program gets the event delivered last. That’s how the behavior monitor layer works.

3.2 Tracing programs using the interceptor

After the behavior monitor is specified by a mapping file, the interceptor can be started with the following
command:

tracer -f mapfile [ -p pid | command ]

The mapping file is passed to the interceptor by the -f option and there are two ways to specify a program. One
way is to pass the whole command to interceptor after specifying the mapping file; if the program is already
running, interceptor can be attached to the program by specify the pid using -p option. In the second case, the
executable name is retrieved from the system to look up behavior monitors in the mapping file.

4 Guide for developers

4.1 Migrating Ul to another operating system

In previous sections we saw the various components of the system. In this section we will go through the
components in detail so as to aid a programmer in porting the tracer (interceptor) across platforms. In the first
section we will cover some design decisions that were made during the design of the interceptor. In section 3.2
we will cover the Architecture Dependent class that has to implemented in the target platform. and in section
3.3 the Architecture Independent classes which can be used without any change across platforms but there is a
need to understand these classes too as they call on the functions in the Architecture Dependent class.

4.2 Assumptions

The design of the tracer is not specific to any operating system and tracing mechanisms. Instead, we defined a
set of abstracted interfaces, describing what the operating system and tracing mechanism needs to provide. As
long as those interfaces can be implemented on a particular system, our tracer can be supported. And it is the
only work needs to be done.

Our tracer is based on the following assumptions.

e Each process/thread can be identified by a handler, which can fit into the size of a long word.



A process/thread access the operating system services through system calls. Each system call can be
identified by a numerical identifier.

e All the arguments of a system call can fit into a long word. That means, an argument larger than a long
word must be passed by pointers. The arguments are either stored in registers or in memory cells.

e The tracing mechanism to be used needs to intercept a system call before and after the system call’s
execution. Once the system call is intercepted, the corresponding process/thread is stopped until the
tracer finishes processing.

e The tracing mechanism need to provide ways to access the memory and registers of a traced process/thread.

e The tracing mechanism must be able to trace a new-spawned process/thread.

4.3 Architecture Dependent Components

This is the abstract interfaces describing the needs from an operating system and tracing mechanism. According
to the functionalities, they are classified into four categories, namely, data type mapping, dynamic library support,
tracing support, and data access.

4.3.1 Data Type Mapping

These are some typedefs which are needed to ensure cross platform porting.

NAME LINUX EQUIVALENT
PID_TYPE pid_t

PATH_MAX PATH_MAX
SIGNALS_MAX SIG_MAX

4.3.2 Dynamic Library Support

This section deals with the need for handling Dynamic Libraries. To setup extensions the tracer needs to load
it dynamically this way we don’t have to tie the extensions at compile time.

a) Function openDynamicLibrary Input : path Output : handle Description: Opens the specified dynamic
library and returns a handle to it.

b) Function getDLFunction : Input : handle, symbol name Output : address Description: getDLFunction
takes a "handle” of a dynamic library returned by dopen_library and the null terminated symbol name, returning
the address where that symbol is loaded.

¢) Function closeDynamicLibrary Input : handle Output : Success Description: closeDynamicLibrary is
called after all operations on the dynamic library have been performed. If no other process is using this library
then the operating system usually unloads it.

d) Function getDLError Input : None Output : Error Description : If in any of the above functions there
was some error, get DLError returns that error.

4.3.3 Tracing Support

These functions do the setup for the interception and the actual interception. The also return information back
to the control classes (Manager class for example) based on which decisions can be taken.

a) Function startTracing : Input : path, arguments Output : Process id Description: Creates a new process
for the program located in 'path’ with the ’arguments’ supplied. Returns Process id of the created process.
Function also updates information that this process is being traced.

b) Function attachProc : Input : Process id Output : Success Description: Starts tracing a process given
by the Process id. Returns success. Function also updates information that this process is being traced.

¢) Function detachProc : Input : Process id Output : Success Description: Removes the process from the
control of the tracer. It also updates information that this process is no longer being traced.

d) Function killProc : Input : Process id Output : Success Description: Kills the process. It also updates
information that the process has terminated hence is no longer being traced.



e) Function waitForCall : Input : Process id, System Call Output : Status of the next call Description: In
this function, the program waits for the next system call and finds the corresponding control block.

f) Function abortCall : Input : Process id, return val, error num Output : Success Description: Stop the
system call from executing/terminate the system call.

4.3.4 Data Access

These functions are used to get and set data from the Operating System.

a) Function getReg : Input : Process id , register number Output : Content of specified register. Description:
Get the contents of the specified register.

b) Function setReg : Input : Process id, register, input value Output : Success Description: Set the contents
of the specified register with the input value.

¢) Function getData: Input : Process id, addr, buf, len, buffermode, size Output : Success Description: This
function is used get argument data for arguments which are stored in memory. Get the Data of size ’len’ bytes
from addr into ’buf’.

d) Function setData : Input : Process id, addr, input string, len Output : Success Description: This function
is used set argument data for arguments which are stored in memory. Function writes ’len’ bytes of data from
‘input string’ to ’addr’.

e) Function getUID Input : Process id Output : UID Description: Get the UID for the process.

f) Function getEUID : Input : Process id Output : EUID Description: Get the EUID for the process.

g) Function getGID : Input : Process id Output : GID Description: Get the GID for the process.

h) Function getEGID : Input : Process id Output : EGID Description: Get EGID for the process.

i) Function getPPID : Input : Process id Output : PPID Description: Get PPID for the process

j) Function allocMem : Input : Process id, size Output : address Description: Allocate random memory on
the stack and return the address.

k) Function getCallNum : Input : Process id Output : System call number Description: Get the number of
the current system call for the process being traced.

1) Function setCallNum : Input : Process id, System call number Output : Success Description: Set the
number of the current system call for the process being traced.

m) Function getReturnVal : Input : Process id, error num Output : return value of system call Description:
Get the return value of the current system call and if return value is -ve then error num stores the value.

n) Function setReturnVal : Input : Process id, retval, error num Output : Success Description: Set the
return value of the current system call and if retval is -ve the error number in error_num is used.

0) Function getPC : Input : Process id, system call number, indirect call, stack length, number of frames,
pointer to call stack, initial offset, offset, useoffset Output : PC Description: Gets the program counter at the
point in the program where the system call was made. Note that the system call could be made by the code
directly or by a function in a library called by the code. The getPC returns the program counter at the time of
making the system call in the code or the program counter value when the code called the library function.

5 Security Issues

5.1 Race condition

In [1], the author discussed several types of race conditions, namely, symbolic link race, relative path race,
argument race, file system information race and shared descriptor space races.

For symbolic link race, relative path race and file system information race, they make use of the ambiguity
of the path name argument and make changes after the time of check and before the time of use. To prevent
these race conditions, our solution is to replace the ambiguous name with the canonicalized absolute path, which
uniquely identifies the file in the file system.

For argument race, our solution is to move the argument to the process’s private memory space, the top of
process’s stack. It is still vulnerable if there are threads in the process’s space, because the other threads can
scan the stack and possibly change the argument value. To defend against this possibility, we adopt the method
of [3], putting the arguments at a randomized address of the stack.

The shared descriptor space race is currently not handled.

10



Program | Total Calls | Call frequency | Normal time | Traced time | Overhead
gzip 17289 446 /sec 38.731s 38.961s 0.6%
gostscript 10739 14357 /sec 0.748s 0.897s 19%
tar 87319 85106/sec 1.026s 1.830s 78%
ftpd 12629 145161 /sec 0.087s 0.174s 100%
xpdf 48915 211753 /sec 0.231s 0.572s 148%
Is 19733 243617 /sec 0.081s 0.223s 173%

Figure 3: Performance Result and System Call Frequency Information

5.2 Guard the monitoring process

Because the monitored process and monitoring process run with the same user, it is possible that the monitored
process can affect the execution of monitoring process, such as sending a signal. Fortunately, it must be done
by a system call. Therefore, after such system calls are intercepted, we check whether they are targeted to the
monitoring process. If so, the call will be aborted. For example, if the pid argument of kill system call is the
pid of monitoring process, the signal argument will be changed to 0, which does no harm to the monitoring
process.

6 Performance Evaluation

To evaluate the performance impact of the tracer, we tested it using several commonly used UNIX applications,
namely, gzip, gostscript, tar, ftpd, xpdf and 1ls. The test was done on a Dell Inspiron 4150 laptop,
which has a Mobile Intel Pentium 4 1.80GHz CPU with 512KB cache, 512MB memory and a 40G 5400RPM
hard disk. During the test, the tracer intercepted all the system calls made by the tested process and its children,
but no more operations were performed unless they were necessary, such as attaching to the new child process
after it was created. The testing data used for each application is described as follows.

e gzip: A data file of 160MB was used as the input to gzip, and the output file was 60MB.

e gostscript: In the test, gs was used to interpret an academic paper which contained 10 pages and
whose size was 167KB.

e tar: The /usr/bindirectory of a Redhat Linux 8.0 system was used to generate the archive. It contained
2173 files and the size of the output file was 160MB.

e ftpd: We transfered a data file of 10MB using the wu-ftpd server. To avoid the interference of disk and
network I/0O, the server was setup on localhost and the output of the client was redirected to /dev/null.

e xpdf: An 180KB academic paper which consisted of 10 pages was interpreted during the test.

e 1s: A directory structure containing 3139 entries was used to test the performance of 1s. 1s was
invoked with the -1R command line option, which is to display long list format of each file and to list the
subdirectories recursively.

Figure 3 shows the results of the performance test. In this table, total calls is the total system calls made
by the process and all its children. Normal time is the sum of user times and system times of the tested process
and all its waited children during normal execution. Traced time is the sum of user times and system times of
those processes running under the monitor of the tracer. The call frequency is calculated by dividing the “total
calls” by the “normal time”. From the above results, we can see that computation intensive programs like gzip
have less overhead while system call intensive programs like 1s -1R suffer from more performance penalty. To
further explore the relation between the system call frequency and the performance overhead, we plotted the
data of Figure 3, which is shown in Figure 4. We can see that the overhead is proportional to the system call
frequency.

11



180

160

140

120

100

80

Overhead(%)

60

20

gs
gzip

xpdf

ftp

tar

50000

100000 150000 200000

System calls per second

250000

Figure 4: Relationship between System Call Frequency and Overhead

References

[1] T. Garfinkel. Traps and pitfalls: Practical problems in in system call interposition based security tools. In

NDSS, 2003.

[2] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer. A secure environment for untrusted helper applica-
tions: confining the wily hacker. In USENIX Security Symposium, 1996.

[3] K. Jain and R. Sekar. User-level infrastructure for system call int erposition: A platform for intrusion
detection and confinement. In ISOC Network and Distributed System Security, 2000.

12



