viii
iv

A real time packet filtering module

for network intrusion detection system

by

Guang Yang

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Science

Major Professor: R. C. Sekar

Iowa State University

Ames, Iowa

1998

Graduate College

Iowa State University

This is to certify that the Master’s thesis of

Guang Yang

has met the thesis requirements of Iowa State University

Major Professor

For the Major Program

For the Graduate College

Table of Contents
ABSTRACT
v
CHAPTER 1. INTRODUCTION
1
1.1 Network Security and Potential Threats
1
1.2 Intrusion Detection
2
1.3 Key Contributions
3
1.4 Thesis Organization
3
CHAPTER 2. OVERVIEW OF TCP/IP BASED NETWORK INTRUSION
5
2.1 TCP/IP Basics
5
2.1.1 Protocol Hierarchy
5
2.1.2 IP
5
2.1.3 UDP
7
2.1.4 TCP
7
2.2 Common Vulnerabilities
9
2.2.1 IP Source Address Spoofing
9
2.2.2 TCP Sequence Number Prediction
9
2.2.3 Port Scanning
10
2.3 Network Intrusions
11
2.3.1 Denial of Service
11
2.3.1.1 CHARGEN and ECHO
12
2.3.1.2 SYN Flooding
12
2.3.1.3 Other Denial of Service Intrusions
15
2.3.2 Spoofing
16
2.3.2.1 Client-Side Spoofing
16
2.3.2.2 Server-Side Spoofing
18
2.3.3 Service Specific Intrusions
19
2.3.3.1 Finger Daemon Attack
19
2.3.3.2 Routing Infrastructure Intrusions
20
2.3.3.3 DNS Misuse
20
2.3.3.4 NFS
22
2.3.3.5 X-Windows
23
CHAPTER 3. INTRUSION DETECTION AND PACKET FILTERING
24
3.1 Current Techniques in Network Security
24
3.1.1 Audit Trails
24
3.1.2 Firewall
25
3.1.2.1 Screening Router
25
3.1.2.2 Application Gateway
26
3.2 Packet Filtering
27
3.2.1 General Issues
28
3.2.2 Existing Packet-Filtering Systems
28
3.2.2.1 Linux SOCK_PACKET
28
3.2.2.2 Data Link Provider Interface
29
3.2.2.3 BSD Packet Filter
29
3.2.3 Packet Capture Library
31
3.3 Bro: An Intrusion Detection System Based on Packet Filtering
32
3.3.1 Bro Architecture
32
3.3.2 Bro Language
33
3.4 Packet Filtering for Network Intrusion Detection
35
CHAPTER 4. INTRUSION PATTERN SPECIFICATION LANGUAGE
37
4.1 ASL Syntax
37
4.2 Packet Structure Description
37
4.3 Constraint Checking
39
4.4 Sample Patterns
41
CHAPTER 5. SYSTEM DESIGN AND IMPLEMENTATION
43
5.1 System Architecture
43
5.2 Packet Offset Calculation
44
5.3 Filter Model for Single Rule
45
5.4 Filter Integration
47
5.5 Rule Preprocessing
51
5.5.1 Rule Decomposition
51
5.5.2 Constraint Stack Construction
52
5.6 Automaton Construction
54
5.6.1 Offset Selection
54
5.6.2 Sub-Automaton Sharing
56
5.7 Code Generation
57
5.8 Data Generation
59
CHAPTER 6. EXPERIMENTAL RESULTS AND CONCLUSION
62
6.1 Intrusion Detection Using ASL
62
6.2 Preliminary Performance Testing
63
6.2.1 SRVSTAT: Service Statistics
63
6.2.2 Performance Comparison: ASL vs. BPF
64
6.3 Conclusion
65
APPENDIX A PACKET DATA STRUCTURES FOR ASL
67
APPENDIX B INTRUSION PATTERN SAMPLES
72
REFERENCES
75
ACKNOWLEDGEMENTS
77

ABSTRACT

Computer networks bring us not only the benefits, such as more computing power and better performance for a given price, but also some challenges and risks, especially in the field of system security. During the past two decades, significant effort has been put into network security research and several techniques have been developed for building secure networks. Packet filtering plays an important role in many security-related techniques, such as intrusion detection, access control and firewall. A packet-filtering system constitutes the first line of defense in a computer network environment. The key issues in the packet-filtering technique are efficiency and flexibility. The efficiency refers to the ability of a filter to quickly capture network packets of interest, while the flexibility means the filter can be customized easily for different packet patterns.

In this thesis, we present a real-time packet-filtering module, which can be integrated into a large-scale network intrusion detection system. The core of this packet-filtering module is a rule-based specification language ASL (Auditing Specification Language), which is used in describing the packet patterns and reactions for a network intrusion detection system. The important features of ASL that are not provided by other packet-filtering systems are protocol independence and type safety. ASL provides a number of new features that distinguish it from other languages used for intrusion detection and packet filtering, such as packet structure description and protocol constraint checking.

We develop the algorithms and heuristics for constructing fast packet filter from ASL specifications. Our algorithms improve upon existing techniques in that the performance of the generated filters is insensitive to the number of rules. We discuss implementation of these algorithms and present experimental results.

CHAPTER 1. INTRODUCTION

Computation models have experienced a significant change since the emergence of computer networks, which allow heterogeneous computers to communicate with each other. During the past two decades, most centralized systems have been replaced by a number of interconnected computers. This factor has led to more computing power, increased flexibility and better performance/price ratio.

However, at the same time, we also face many new challenges and risks with networked computing, such as lack of communication reliability, coordination, resource management, and so on. As more and more computer networks are brought into electronic commence, transaction management, and even national defense, people begin to pay increasing attention to system security.

1.1 Network Security and Potential Threats

There are a number of security issues for a computer network environment [1]:

· Availability: The system must be functional and correctly provide services.
· Confidentiality: The data transmitted from one system to the other must be accessible only for the authorized parties.
· Authentication: The identity associated with the data must be correct. The identity can apply to a user, host or software component.
· Integrity: The data being processed or transmitted can be modified only by the authorized parties.
· Non-repudiation: Neither the sender nor the receiver of data is able to deny the fact of data transmission.

A system that meets the above criteria can be considered as a secure computer network system. A hacker who wants to attack a network, thus thinks of ways to compromise the above criteria [1]:

· Interruption: Destroy a system or make it unavailable or unusable.
· Interception: Obtain unauthorized access to data.
· Modification: Compromise data integrity, e.g. modify messages sent from one system to another.
1.2 Intrusion Detection

As defined by Heady et al. [2], an intrusion is

any set of actions that attempt to comprise the integrity, confidentiality or availability of a resource.

Intrusion leads to violations of the security policies of a computer system, such as unauthorized access to private information, malicious break-in into a computer system, or rendering a system unreliable or unusable.

A full-blown network security system should include the following subsystems:

· Intrusion Detection Subsystem: Distinguishes a potential intrusion from a valid network operation.

· Protection Subsystem: Protects the network and security system itself from being compromised by the network intrusions.

· Reaction Subsystem: This part either traces down the origin of an intrusion or fights back the hackers.

The focus of this thesis is on the intrusion detection subsystem, which constitutes the first line of defense for a computer network system. There are a number of approaches in this field. Most of them fall into three primary categories: anomaly detection, misuse detection and hybrid schemes.

The anomaly detection approach is based on a model of normal activities in the system. This model can either be predefined or established through techniques such as machine learning. Once there is a significant deviation from this model, an anomaly will be reported. By contrast, a misuse detection approach defines specific user actions that constitute a misuse and uses rules for encoding and detecting known intrusions [3]. The hybrid detection approach uses a combination of anomaly and misuse detection techniques.

1.3 Key Contributions

Packet filtering is a critical technique in network management, firewall strategy and intrusion detection. However, the existing packet filtering systems have a number of limitations in system efficiency, flexibility and scalability. For instance, a packet filter for one protocol suite can not be easily changed to fit for another protocol suite. In addition, most packet filters suffer from significant performance degradation as the number of packet patterns increases.

In this thesis, we present a novel approach for constructing a real-time packet-filtering module that can be used for network intrusion detection purpose. One of the main contributions in our approach is a specification language designed for describing intrusion patterns and reactions. This language provides a number of features that distinguish it from other specification languages used for intrusion detection or packet filtering, such as protocol independence and type safety. Another important focus of our work is the development of fast pattern-matching algorithms (for packet filter) that are insensitive to the number of patterns.

1.4 Thesis Organization

In chapter 2, we give a brief review of TCP/IP (Transmission Control Protocol/Internet Protocol) protocol suite and several security holes in the design and implementation of TCP/IP. Chapter 3 surveys some existing techniques in building a secure computer network system. We also discuss some general issues on packet filtering that is one of the main techniques in network intrusion detection. In chapter 4, we give a detailed description of our specification language and its application to intrusion detection. Chapter 5 discusses the issues in the design and implementation of our packet-filtering module. The primary concern is to reduce the processing time of a packet filter. In the last chapter, we provide some experimental results from performance testing of our packet filter and summarize our work.

CHAPTER 2. OVERVIEW OF TCP/IP BASED NETWORK INTRUSION

TCP/IP is the common language used in the world of computer networks. Nevertheless, there exist several security flaws in the protocol design or implementation of TCP/IP. As a result, network hackers, who intend to compromise the target network systems by exploiting these security holes, have invented various intrusion methods.

2.1 TCP/IP Basics

Developed under the sponsorship from DARPA (Defense Advanced Research Projects Agency), TCP/IP is the most widely used communication protocol suite today. It is the de facto standard employed to interconnect computing facilities in modern network environments.

2.1.1 Protocol Hierarchy

TCP/IP is designed through a layered approach, with each layer responsible for a different facet of communication [4]. This hierarchical architecture makes each protocol layer possible to evolve independently without affecting the adjacent layers. In addition, data encapsulation is achieved through various headers among different transportation layers like IP header, TCP header or other application headers as shown in Figure 2.1. These headers are important in keeping the state information for each network connection and facilitating multiplexing and de-multiplexing of transmission messages.

2.1.2 IP

IP is the workhorse protocol of the TCP/IP protocol suite. It provides an unreliable, connectionless datagram delivery service. All the TCP, UDP (User Datagram Protocol),

[image: image1.wmf]Branching Mechanism Comparison

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1

4

8

16

32

Number of Patterns

Processing Time for 1

Packet (Microsecond)

Sequential

Comparison

Binary Search

Hashing Table

[image: image2.wmf]ASL vs. BPF

0

0.5

1

1.5

2

2.5

3

3.5

4

1

4

8

16

32

Number of Patterns

Processing Time for 1

Packet (Microsecond)

BPF

ASL

[image: image3.wmf]Branching Mechanism Comparison

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1

4

8

16

32

Number of Patterns

Processing Time for 1

Packet (Microsecond)

Sequential

Comparison

Binary Search

Hashing Table

[image: image4.wmf]ASL vs. BPF

0

0.5

1

1.5

2

2.5

3

3.5

4

1

4

8

16

32

Number of Patterns

Processing Time for 1

Packet (Microsecond)

BPF

ASL

Figure 2.1 TCP/IP Protocol Hierarchy

ICMP (Internet Control Message Protocol), and IGMP (Internet Group Management Protocol) data are transmitted as IP datagrams [4].

An IP header has the information like source IP address and destination IP address, which plays an important role in routing a packet around the networks. A detailed description of IP header can be found in [4]. Figure 2.2 shows the structure of a normal IP header.

Figure 2.2 IP Header

Delivering a packet to the correct destination is non-trivial, especially in a large-scale network system. Each intermediate routing device makes best effort to deliver the IP packet, but there is no guarantee that it will reach the destination finally. So, a packet can be lost, duplicated, or delivered out of order [4]. It is the task of higher layer protocols to correct such errors.

2.1.3 UDP

UDP is a transport layer protocol, but it does not offer much functionality over and above that of IP. The port numbers in UDP header identify the sending process and the receiving process [4], while the checksum provides a limited ability for error detection (Figure 2.3).

Figure 2.3 UDP Header

However, due to its simplicity and low overhead compared to connection-oriented protocols, UDP is suitable for the design of simple request/reply application protocol, such as DNS (Domain Name System), SNMP (Simple Network Management Protocol), and so on.

2.1.4 TCP

TCP is built on top of the IP layer, which is unreliable and connectionless. But TCP provides the higher layer application a reliable connection-oriented service. As the tradeoff, each TCP connection requires an establishment procedure and a termination step between communication peers. TCP also provides sequencing and flow control.

Without any option, a TCP header occupies 20 bytes as shown in Figure 2.4. The sequence number is essential in keeping the sending and receiving datagram in proper order.

Figure 2.4 TCP Header

There are six flag bits within a TCP header, namely URG, ACK, PSH, RST, SYN and FIN, each of which has a special meaning in connection establishment, connection termination or other control phases. Window size, which specifies how many bytes of data can be accepted each time by the receiving side, is advertised between the two communication peers for the purpose of flow control.

TCP establishes a connection in three steps, commonly known as a three-way handshake. Figure 2.5 shows a typical three-way handshake procedure between a source host S and a destination host D.

SYNISNs

SYNISNd, ACKISNs+1

ACKISNd+1
Figure 2.5 Three-Way Handshake

First, S sends a SYN packet to D in order to establish a connection. Meanwhile, S sets its own ISN (Initial Sequence Number) in sequence number field of the packet. Upon receiving the request packet, D sends back a SYN_ACK packet as the acknowledgement including its own ISN and the incremented ISN from S. As the acknowledgement packet reaches the source host S, S immediately transmits an ACK packet back to D. In the last ACK packet, S needs to include the incremented ISN of D as the confirmation of the connection. At this point, the connection has been setup. There is one extra point that needs to be mentioned: suppose that host S does not send any SYN packet but received a SYN_ACK packet from host D, it will then send back a RST packet to reset the connection.

2.2 Common Vulnerabilities

During the past two decades, many security problems of TCP/IP protocol suite have been discovered. Meanwhile, the network hackers created a large number of intrusion methods to exploit those vulnerabilities. Most of the examples in this section are taken from Bellovin’s excellent paper on TCP/IP security [5].

2.2.1 IP Source Address Spoofing

As we have seen from the previous section, the IP address (either source address or destination address) contained in an IP header is the only information needed by an intermediate routing device to make a decision on how to route the IP packet. So, anyone who has access to the IP layer can easily modify the source address in the IP header of a packet, spoofing itself as from another host or even from a non-existing host.

2.2.2 TCP Sequence Number Prediction

From the three-way handshake, we know that to establish a TCP connection between two communication peers, the source host must obtain the ISN of the destination host from its acknowledgement packet. Usually, an ISN is more or less a random number [5].

If a hacker can predict the ISN, he/she can impersonate host S by sending a request packet with the IP source address changed to S. Although the hacker will not get the SYN_ACK packet sent by D, he/she can still finish the establishment process by sending back an ACK packet to host D with predicted ISN. As shown in Figure 2.6, ISNg represents the guessed ISN of host D by the hacker.

In Berkeley systems, the initial sequence number is incremented by a constant number (128 in 4.2BSD and 125,000 in 4.3BSD) once per second and by half that number each time a connection is initiated [6]. Thus, what a hacker needs to do is just to initiate a normal connection and remember the ISN received from the destination host. After that, the hacker could calculate the ISN for the next connection attempt, based on the round-trip delay and the number of connections after the first connection. This approach has a high probability of succeeding.

Figure 2.6 TCP Sequence Number Prediction

2.2.3 Port Scanning

Strictly speaking, port scanning is not a technique used directly to perform an intrusion. Instead, its goal is to discover an exploitable communication channel and then launch the real attack. The reason for doing port scanning is that some vulnerable services may not use a fixed port number. As in the SUN NFS system, some application servers run at an arbitrary port and register the port number to a specific server, which is called directory server. For the client programs of a particular application server, they need to first check with the directory server to obtain the port number for that application server. Usually, the directory server is well protected. So, a hacker needs another way to locate his victim.

There are several methods that can be used to detect a potential communication channel. For a listening TCP server, the most elementary approach is to make a real connection. The UNIX system-call connect can be used to open a connection with every port that the hacker intends to examine. If there is a listening server, the connect call will succeed. Otherwise the port is unused. Another method is through SYN scanning, in which a SYN packet is sent to the victim as if it is going to create a real connection. As mentioned in TCP three-way handshake, a returned SYN_ACK or RST packet indicates the presence or absence of an active server on the port. Another variant of this approach is TCP FIN scanning. Instead of sending SYN probes like in SYN scanning, this method sends FIN packet and waits for a RST packet from a closed port. In case of an active listener, it will discard the FIN packet silently without sending anything back.

Unlike TCP, UDP is a connectionless protocol, whose simplicity makes port scanning more difficult. Since UDP does not require a three-way handshake to establish a connection, a UDP server does not need to acknowledge any probe packets. Also, no error messages are returned for closed ports. However, most hosts send ICMP “port unreachable” message for a packet intended for an unused UDP port. This gives hackers some clue. Since neither UDP packets nor the ICMP messages are guaranteed to be delivered due to the unreliable nature of the protocol itself, a port scanner needs to have some retransmission policy to ensure that lost packets do not lead to erroneous results.

2.3 Network Intrusions

A number of network intrusions have been found till now, each of which utilizes one or more security vulnerabilities in TCP/IP protocol specifications or implementations. These intrusions include IP source address spoofing, TCP sequence number prediction as mentioned earlier, and other intrusions like SYN flooding, DNS misuse, Ping of Death, or some Java-related attacks. However, based on the intrusion patterns and impacts to the victim systems, we can divide the intrusions into two main categories: denial of service and spoofing.

2.3.1 Denial of Service

The lifeblood of today’s world is information [8]. The denial-of-service intrusions attempt to prevent or delay access to the information or the information processing systems. The basic idea behind this type of intrusion is to tie up a service provider with bogus requests in order to render it unreliable or unusable.

2.3.1.1 CHARGEN and ECHO

CHARGEN is a simple service provided by almost all TCP/IP implementation under UNIX. It runs on both UDP and TCP port 19. For every incoming UDP packet, the server sends back a packet with 0 to 512 randomly selected characters. Another well-known service is ECHO, which runs on UDP and TCP port 7. The server just responds to the client program with whatever it receives.

These two services are normally used for the diagnostic purpose. However, they can be employed by a malicious denial-of-service type intrusion. Assuming a “chain” has been established between a CHARGEN service and an ECHO service, what will happen next? Each of them will produce output continuously, leading to a huge number of packets among the network and thus a denial of service on the machines where the services are provided.

Launching such an intrusion is surprisingly easy. A simple UDP packet could set the whole network into trouble. Suppose there are two hosts A and B and a hacker on machine X. With the help of IP source address spoofing, a hacker can send out a UDP packet to A with B’s IP address as the source address and 7 as the source port, while setting the destination IP address as A’s IP address and 19 as the destination port. When this packet is received by A, A will falsely think that B is requiring the CHARGEN service, and sends back a packet to B’s ECHO port. At this point, a “chain” has been established successfully. Subsequently, large amount of traffic will be generated within the network where hosts A and B reside. As a result, network users will feel an abrupt drop in the performance of their network applications.

Generally speaking, CHARGEN and ECHO type of intrusion is a kind of blind attack. There is no particular objective from a hacker’s point of view. The goal is to slow down the speed of the whole network.

2.3.1.2 SYN Flooding

Unlike the simple CHARGEN and ECHO intrusion, SYN flooding is a specially designed attack that employs a flood of SYN packets to consume the limited resource on the targeted host. It results in delays to legitimate network connection requests and eventually halts the service provider.

As in the TCP/IP implementations for UNIX, a number of memory structures need to be allocated for each TCP connection request. Take BSD system as an example: a socket structure is used to hold the communication elements (e.g. protocol being used), address information, request queues, buffers and flags [4]. Moreover, there are two extra memory structures with special meanings to a TCP connection, namely IP control block (inpcb) and TCP control block (tcpcb), which keep the TCP state information, port numbers, sequence numbers and several connection-related timers. Typically, these structures will use a few hundred bytes of memory [7].

A normal scenario of a TCP connection process starts with a system in LISTEN state receiving a SYN packet, which is to be examined for checksum immediately. If the checksum is incorrect, the packet will be discarded silently, with the expectation that the remote site will retransmit a new packet. Otherwise, the TCP control block associated with this connection is searched for. If no such item is found, it means no server process is waiting for this packet, and then the packet will be removed and an RST packet is returned to inform the remote client. By contrast, if a server process is located, several memory structures will then be allocated for this connection and a SYN_ACK packet will be sent back as an acknowledgement to the sender to continue the three-way handshake. Meanwhile, the system enters into the SYN_RECVD state and starts up a connection establishment timer. The connection of this stage is always called a half-open connection. Most TCP/IP implementations set the timer to expire after 75 seconds. If the final ACK packet arrives before the timer expires, the request will leave kernel space and go to application space. Otherwise, the three-way handshake fails. Under both cases, the corresponding memory structures will be released from kernel space.

From the description above, we know that the process of TCP connection establishment requires significant amount of work and resources at the server side. So, in most systems, there is a limit on the total number of half-open connections. A hacker exploits this limitation and initiates a SYN flooding attack by issuing a large number of connection requests with a spoofed source IP address to the target host, which cannot tell a malicious request from a legal request. After receiving the SYN packet, the target host will respond with SYN_ACK packet as usual. Unfortunately, this time the final ACK packet will never come back, for the request SYN packet has a spoofed source address and that address is “unreachable” to the target host (Figure 2.7). There are several reasons for an IP address to be “unreachable”. For instance, the machine with that IP address is turned down, or there may be even no host with that IP address at all. Actually, there may be some error messages like ICMP “host unreachable” or “network unreachable” generated by a router, coming back during the time when the target host waits for the final ACK packet. But current implementations of TCP/IP typically ignore such error messages. Before the timer used for TCP connection establishment expires, the memory allocated for a connection request will stay in the kernel. As large numbers of bogus connection requests come to the target host, it will run out of kernel memory quickly. As a result, if there is no more memory structures can be allocated for the following connection requests, they will be discarded silently.

S

D

Spoofed SYN

 LISTEN

SYN_ACK

 SYN_RECVD
Figure 2.7 SYN Flooding

The key issue in this type of intrusion is how to choose an “unreachable” source IP address for an attacking packet. There are several patterns followed by the hackers.

· Single address: all the attacking packet using same IP address

· Short list: there is a small pool of addresses for every outgoing packet to choose
· No list: the source address is generated randomly

Different addressing method poses different challenges for an intrusion detection system.

The basis for this type of attack is that TCP/IP protocol suite does not provide strong authentication on its control packet [9]. The endpoint of a connection has no way to authenticate its communication peer. As a result, it is extremely difficult to trace the original source of the spoofed IP packet. Therefore, a hacker can feel free to perform this kind of intrusion without worrying about being tracked down.

2.3.1.3 Other Denial of Service Intrusions

Other forms of denial-of-service type intrusions also exist, like Ping of Death. Ping of Death explores a bug in some TCP/IP implementations that cannot handle the fragmented IP packet correctly. In this case, a hacker first breaks a normal packet into a series of fragments, then modifies the last one and makes the total length of all fragments exceed the maximum packet length specified in TCP/IP protocol. When the receiving host assembles those fragments, it will overflow its buffer in the TCP/IP stack due to the abnormal size of the arrived packet. As a result, system on that host will crash.

There are some intrusions, which utilize the broadcast property of transmission media, are limited to a LAN (Local Area Network) environment, especially Ethernet. However, we cannot overlook those intrusions. It is possible that some hosts are less secure than other hosts on a LAN. A hacker can perform a multi-step intrusion by first breaking into a less secure host and then compromise the whole network. One of the threats to a LAN is called SYN_RST generator, which can block most of the TCP connections. Suppose that a host A wants to make a TCP connection with host B, it will first send a SYN packet to B. If host X also hears this message, because of the broadcast communication media, before B responds with a SYN_ACK packet, X can quickly send out a RST packet to A, shutting down the intended connection. Another intrusion example is one in which the flow control mechanism of TCP communication is attacked. In order to prevent a fast sender from overrunning the buffer of a slow receiver, each TCP packet has a window size for its communication peer. During the communication process, a third party host can impersonate the destination host, sending a packet with zero window size. Then, both communication parties can be halted due to the lack of buffer advertised by the communication peer.

With the increasing use of Java in the web computing, intrusions by malicious Java applets are another source of concern. Most of the applet intrusions fall into denial of service, in which a Java applet consumes a lot of CPU and memory resources of the client machine.

2.3.2 Spoofing

Spoofing is another important hacking technique in the network intrusions. Due to the distributed nature of computer networks, the primary method used to exchange data among different hosts is message passing. Therefore, strong authentication is not easy to achieve compared to that in a traditional centralized system, especially among arbitrary communication peers. A network hacker exploits this weakness and creates many intrusion methods, either spoofing himself as a legitimate client or server.

2.3.2.1 Client-Side Spoofing

In client-side spoofing, a hacker impersonates himself as an authorized client and in turn gains services from a server. An example is provided by the “r-utilities” on most UNIX systems.

“R-utilities”, like rlogin, rsh and rcp, is a set of commands for remote operations among different UNIX systems. The security hole underlying “r-utilities” is the authentication scheme used by this set of commands.

Take “rlogin” as an example, which uses TCP as its transportation layer protocol and is a simple client/server application. With two hosts A and B, each of which “trusts” the other one, we can configure the file “/etc/hosts.equiv” or “.rhosts” on each host to let a user with accounts on both hosts to login from one host to another without being prompted for a password. In effect, the user is authenticated via the host name of the machine he/she is currently logged on.

In 1995, CERT(TM) Coordination Center issued a security advisory addressed a kind of intrusion called “IP Spoofing”, in which the hackers created packets with spoofed source IP address, then exploited applications that use authentication based on IP address, like “r-utilities” [7]. IP spoofing consists of several steps and uses both address spoofing and TCP sequence number prediction. Following are two scenarios that can happen, one is a normal “rlgoin” session, while the other is a spoofing intrusion (Figure 2.8).

Usually, IP Spoofing takes the following steps:

Figure 2.8 IP Spoofing

· First, a victim host is selected and a pattern of trust is discovered, e.g. which hosts the victim host trusts. In the example shown in Figure 2.8, the victim host is S, while it trusts host C.

· Then, C is “shut down”, either by SYN flooding that machine or by intercepting the entire network traffic to it. Alternatively, the attack may be initiated when C is down due to other reasons, such as maintenance.

· Next, a normal TCP connection request packet is sent to the victim host S to get back a valid sequence number. Based on the round-trip delay and the TCP sequence number generating algorithm, a hacker could predict the next sequence number that will be used by S.

· At this point, S can be intruded upon. The hacker sends a SYN packet to S with the trust host C as source IP address. Even though the SYN_ACK packet will not return to the hacker, he/she can still finish the connection establishment by sending out the final ACK packet with the guessed sequence number from the previous step.

· The victim host S all along concludes a valid connection request from trusted host C. Then, the hacker could send data from host X.

One thing that needs to be clarified in this intrusion is, when the hacker from host X masquerades himself as a trusted client and sends out a SYN packet, the returned SYN_ACK packet from the victim host will go to the real host C. As mentioned in the previous chapter, the host C will immediately respond with a RST packet and the intrusion will fail because the intended connection will be shutdown when the victim host S received this packet. Therefore, SYN flooding is always performed as a preparing step in “IP Spoofing”. As a result, the returned SYN_ACK packet would not reach the destination host C but gets lost on the way. The reason is that the host C is busy in dealing with large amounts of bogus requests and runs out of system resources.

IP spoofing is a typical example of client-side spoofing intrusion. All the applications with loose authentication mechanism based on IP address also face the threats from this type of intrusion.

2.3.2.2 Server-Side Spoofing

Server-side spoofing employs a similar idea. However, the goals and the methods used are a bit different. For the client-side spoofing, as we mentioned in the example of “rlogin”, a hacker impersonates an authorized user and then gains data from an information provider. By contrast, the server-side spoofing is executed in the reverse way. In order to obtain confidential information from individual clients, a hacker masquerades as a real service provider and steals sensitive information from service users.

The idea behind server-side spoofing intrusion can be properly expressed by a real life example. Suppose that some one creates a machine that looks extremely like an ATM but does not provide the real functionality of a normal ATM. Instead, it records the number of an ATM card and its holder’s PIN (Personal Identification Number), then reports some error message to mislead the user that this machine has temporary mechanical problem. If such a machine were placed at the entrance of a shopping mall, the result would be disastrous. A user may lose large amounts of money just because he/she once used an out-of-order ATM several days before.

Same idea is employed in web spoofing. First step is to put some HTML (Hypertext Makeup Language) links in some popular web pages. When a victim visits that page and clicks that link, all the following connections is hijacked by a malicious server, which hides itself between the user browser and the real web server. No sophisticated technique is used in this attack. Some simple Java script applet, together with a little HTTP (Hypertext Transfer Protocol) and CGI (Common Gateway Interface) knowledge, is sufficient to hijack such connections. With the growing popularity of electronic commence, this type of intrusion becomes even more dangerous. A malicious server can easily grab personal information from a web shopper, such as credit card information.

2.3.3 Service Specific Intrusions

In this section, we survey some service specific intrusions, such as finger daemon attack, routing infrastructure intrusion, DNS misuse and several attacks to NFS (Network File System) or X-Windows system.

2.3.3.1 Finger Daemon Attack

All the intrusions discussed above were either attacks to the protocols themselves or intrusions that result due to weak implementations of protocols. However, there are still a number of intrusions that do not have much relation with communication systems. But we could still detect their existence by examining the related network traffic.

The well-known Internet worm program fits into this category, which exploits some flaws in several utility programs under UNIX systems. One problematic utility, which it found, was fingerd. The fingerd program was intended to run as a daemon, or background process, to service remote requests using finger protocol [6]. The fingerd used a system-call gets, which does not check the length of the buffer used for reading. So, a hacker could deliberately form a finger request to overwrite the buffer in fingerd, and this buffer overwrite can be used to execute arbitrary command at the target system. A detailed description of this attack can be found in [19]. Technically, this intrusion is a buffer overflow type of attack. But we can still detect it by checking the network packets to a finger daemon, for a normal request only has a small length of data, while a malicious intrusion packet contains a large amount of data intending to overwrite the system buffer.

2.3.3.2 Routing Infrastructure Intrusions

As described at the beginning of this thesis, all the TCP/IP services are built on a connectionless packet delivery system [7]. With a layered protocol stack in mind, every message is transferred in the form of IP packet, which is the basic unit of data traveling among distributed network devices. In a large-scale and heterogeneous network environment, like the Internet, delivering a packet to the right destination is the task of routing infrastructures.

Internet adopts a hierarchical routing architecture, which relieves a single router from storing huge amount of path information. A router makes routing decision of an IP packet based on a data structure called routing table, which keeps the status of each path linked to that router. If RIP (Routing Information Protocol) is used, a router will periodically generate LSU (Link State Updates) that describe the latest status of the links to the router and disseminate those updates to the other neighboring routers. Then, based on LSU received, routers update their own routing tables and cooperate in forwarding the IP packets from source to destination [8].

Potential threats to the routing infrastructures come mainly from the spoofing intrusions and some of them can lead to the results of denial of service. A faulty router can modify the packets passing through it or discard the packets at all. This may bring some networks or hosts unreachable. Furthermore, a malicious or compromised router can send bogus routing control packets, like LSU, to other routers, which may in turn cause all the packets switch to itself and it can then eavesdrop the content within the packets. Another scenario is that a router sends bogus LSU’s that makes other routers think that some reachable hosts are unreachable.

2.3.3.3 DNS Misuse

DNS is not a part of TCP/IP protocol suite when it was first proposed. However, with millions of networks and hosts interconnected by the Internet, IP address becomes inconvenient for an end-user to make connections. An alternative approach is to map low-level IP addresses into meaningful hostnames, which is the main motivation of using DNS.

DNS is a distributed database system, which handles mapping high-level host names into low-level IP addresses, or vice versa. Much like routing infrastructures, DNS is composed by a large number of name servers in a distributed hierarchical architecture, while each individual name server handles requests from a limited number of domains. If a name server does not know how to resolve a particular query, it may forward the query to another name server, which either has much more information or is more specific to that particular domain.

Most DNS implementations adopt UDP as the transportation layer protocol. So, besides the vulnerabilities of DNS, security flaws from UDP, like lack of state information and weakness in user authentication are also inherited. With a similar architecture as the routing infrastructures, DNS faces the same threats from spoofing type intrusions. A misused name server could be easily used by a hacker to masquerade himself as from any host, for a hacker-controlled name server can intercept a resolver query and can respond with whatever IP address a hacker intends to be. A recently found bug in Java class verifier has a tight relation with this kind of intrusion, in which a malicious applet could connect with any host other then the host from which it was downloaded.

Caching is widely used by DNS to improve the system performance. In DNS specifications, there is a little concern for the data integrity and consistency of caching. Therefore, an intrusion by sending spoofed information to a name server in a straightforward way will not work. Instead, a hacker uses another approach called “Ask Me” to poison a name server’s cache by malicious data items [10].

Imagine there is a hacker on host X, who has full control of name server B and intends to provide the following wrong mapping information to name server A:

· IP of host X
(
Name of host A

· Name of host A
(
IP of host X

As NS B cannot directly send this malicious mapping to NS A, it asks NS A to resolve a mapping that can only be handled by NS B itself. As a result, NS A will forward this request back to NS B. NS B then appends the above incorrect mapping information at the response to NS A. With this little trick, the cache of name server A will be poisoned by a malicious record. After this point, the hacker on host X can go ahead and launch some more serious intrusions, for instance, an intrusion towards address-based applications like “r-utilities”.

In addition to the likely results mentioned in the routing infrastructure intrusions, such as misleading the packet flow, a DNS intrusion can greatly facilitate the attacks aimed at address-based applications. In sum, a combined intrusion on the DNS system and the routing mechanism can be catastrophic [2].

2.3.3.4 NFS

NFS (Network File System) was created by SUN Microsystems and is the predominant distributed file system in use today [9]. NFS allows files to be shared among multiple hosts, and it works in a way transparent to the user applications.

A NFS server host exports one or more file systems to be used by client hosts, which have the permission to use those file systems. The NFS server grants the access based merely on the IP address of client machine, which is not difficult to be spoofed. In fact, NFS stores the configuration on the server side, including the information like which host is authorized to use this system, what level of access right a particular user has, for example, read only or read-write. The need for user authentication is left for client host. So, from a compromised host, a malicious user could impersonate anyone and get access to the file system. The entire NFS protocol is specified as a set of RPCs (Remote Procedure Call), which is built on top of UDP. As we mentioned earlier in this thesis, UDP is connectionless and is trivial to spoof.

At the application level, NFS adopts a stateless approach, which means the server has no idea about which file the remote clients open or what part of a file is being accessed. The benefit of this approach is that the system is easy to recover from communication failures. The downside is that a client can keep the file handle, which is previously assigned by the server, and continue to use it, even though the server no longer trusts that client host.

2.3.3.5 X-Windows

X-Windows is a client/server application mainly used for display management under single or multiple UNIX systems. An X server resides at a user machine (a.k.a. client machine) and handles client inputs, which may come from the local machine or from a remote host. Then the server dispatches these inputs to the corresponding applications running at same machine. X provides three good features: location independence, hardware independence and operating system independence [9].

However, X-Windows has security weakness in its access control and authentication mechanism. There is no limitation on which process at that host can access the X server. So, a hacker can spoof as an X client and receive inputs from other user processes on the same host or even from other hosts. Furthermore, the hacker can modify the message not belong to himself or block the message from reaching the real user process. On the other hand, an X server can also be spoofed, which will lead to display of information from other users’ applications.

CHAPTER 3. INTRUSION DETECTION AND PACKET FILTERING

From the discussion in the previous chapter, we can find most intrusions take advantages of vulnerabilities in the system design and implementation. However, it is impractical for us to eliminate all the errors in the existing systems or replace all the old systems with new error-free systems given the established base of software. An alternative approach in protecting a system from intrusion is to detect and isolate the problem before it can impact the system performance or functionality. In this chapter, we review some basic techniques in enhancing system security and address some general issues in real-time packet filtering, which is important for network intrusion detection.

3.1 Current Techniques in Network Security

A number of techniques have been invented in the past few years to help a system administrator in strengthening the security of a single host or the whole computer network. We review a couple of most widely used techniques.

3.1.1 Audit Trails

As defined by the National Computer Security Center in its Rainbow series of system security guide, an audit trail is

“A chronological record of system activities that is sufficient to enable the reconstruction, reviewing, and examination of the sequence of environments and activities surrounding or leading to an operation, a procedure, or an event in a transaction from its inception to final results.” [8]

Audit trail can be used in determining whether an unexpected or unauthorized behavior has occurred in a system. Therefore, it can be invaluable to a system administrator for network management and security analysis. In practice, almost every operating system used today provides auditing and logging utilities. Most of them are in the form of log files, which record information from a user’s most recent login time and a user’s originating host, to every message generated by operating system kernel.

The hacker, who knows where to find the log files and how to modify their contents, can easily make a system, look as if nothing has happened. Generally speaking, auditing is a kind of post event protection mechanism. In other words, by the time an intrusion is logged, the hacker may have already broken into the system. Therefore, audit trail may not be very useful in terms of protecting a system from break-ins. Moreover, an experienced hacker can typically defeat or circumvent the auditing mechanisms. Nevertheless, system auditing can be an effective deterrent for inexperienced hackers, since it provides a mechanism to trace their activities.

3.1.2 Firewall

A recent trend in network security enhancement involves the use of firewall, which is a collection of filters and gateways that shield trusted networks within a locally managed security perimeter from the external untrusted networks [1].

3.1.2.1 Screening Router

Screening router is a router, which in addition to forwarding packets like a normal router, also examines data in the packets, and applies some predefined access control policies on the packets to determine whether they can be forwarded to the next hop or should be discarded.

The packet-filtering function performed by a screening router is implemented by examining a small portion of data in the header part of each packet, such as source and destination address in the IP header and port number in the TCP or UDP header. Meanwhile, some security policies are tested against each packet by the screening router, mostly for the purpose of access control. With carefully configured policies, the screening router can be effective in preventing some classes of network intrusions. For example, we can set up the policy on a screening router as follows:

· Configure the external interface of the router to block incoming packets that have source IP address from the internal network;

· Configure the internal interface of the router to block outgoing packets that have source IP address from the external network.

This is effective in preventing most IP-Spoofing based attacks aimed at or launched from within the local hosts.

However, since a screening router does not check the information other than protocol headers, it is unable to prevent attacks that depend on packet content. For instance, it is not capable of detecting attacks such as DNS cache poisoning.

3.1.2.2 Application Gateway

Due to the above-mentioned limitations of a screening router, various application gateways are created to implement high-level policies in a firewall strategy. As the name implies, an application gateway works at the level of application layer protocols rather than being limited to IP or TCP level. Application gateways provide one or more of the following functionality: relay, proxy and server filter.

Relay gateway, passes the data between the two sides of a firewall system. In some special environments, like a company using “local” IP addresses (i.e. visible only within the company) for internal network, a relay gateway should also provide the function for translating these addresses before they are sent out.

Proxy is of most importance to a firewall system, for most of access control policies are enforced through application proxies. Usually, a proxy gateway is application specific. When a client program inside the firewall requires a connection with an outside server, an application proxy on the firewall will handle the request first. It applies some security policies against the connection request. If the connection request is granted, the proxy will make real connection to the server outside the firewall. Beyond this point, a proxy gateway acts no more than a relay gateway.

Server filter works in the opposite direction as an application proxy. It handles the incoming connection requests from external network to the internal servers. Similar to inetd under most UNIX systems, a server filter acts as a proxy for multiple internal application servers. When receiving a connection request, the server filter dispatches it to the corresponding application server. The benefit obtained from using server filter is that we are able to perform access control without changing too much for the original application servers.

As an application gateway examines more data in a network packet than a screening router does, it provides more power in network intrusion detection and prevention. On the downside, it requires more system resources and more processing time. As a tradeoff, modern firewall security systems always adopt a combination of screening router and application gateways (Figure 3.1). Usually, a screening router is placed as the first line of defense, which is used to filter out invalid network traffic by applying the policies against IP address, TCP or UDP port, and so on. Then, the packets left are forwarded application gateways, which implement higher-level security policies.

Firewall System

Figure 3.1 Screening Router and Application Gateway

3.2 Packet Filtering

Packet filtering technique was invented for diagnostic and analysis purpose in network management. Later on, it began to be used by the network security systems. As we mentioned earlier, it forms the foundation for the firewall strategy. Neither screening router nor application gateway can live without packet filters. At present, the packet-filtering technique also plays an important role in network intrusion detection.

3.2.1 General Issues

The key issues on building a packet filter are:

· Real-time performance: the packet filter should be able to quickly capture a raw packet from data link layer and process it in a short period of time.

· No packet dropping: no packet dropping is allowed, especially for a network intrusion detection system. The information missed from dropped packets can make the whole detection scheme fail.

· Flexibility: the specification of packet patterns can be modified easily to support different communication protocols.

· Scalability: in terms of a system for network intrusion detection, new intrusion signatures can be added into the packet filter without degrading performance.

3.2.2 Existing Packet-Filtering Systems

The three common methods for accessing the data link layer and retrieving raw packets under UNIX are the BSD Packet Filter (BPF), the SVR4 Data Link Provider Interface (DLPI) and the Linux SOCK_PACKET interface [11].

3.2.2.1 Linux SOCK_PACKET

Linux has an elementary mechanism for packet capture, namely SOCK_PACKET. It provides the capacity for a user process to directly fetch packet from data link layer. However, there is no buffering and filtering done in the kernel space for this mechanism. Therefore, it means most of packets will be copied into the user space for further processing. The overhead to a packet filter is obvious in this implementation.

3.2.2.2 Data Link Provider Interface

DLPI is a protocol-independent interface designed by AT&T. It provides a user application with the service to the data link layer under most SVR4 systems [11]. As shown in Figure 3.2, there are two main components within DLPI: pfmod which filters the packet stream before it goes to the user space, and bufmod, which buffers filtered packets between data link layer and user process. The primary advantage of DLPI over Linux SOCK_PACKET is part of packet filtering can be performed inside the kernel space without the overhead brought by cross boundary copy of packets.

Figure 3.2 DLPI System Architecture

The filter model used by DLPI is straightforward and can be described as a boolean expression tree. Figure 3.3 shows an example filter built by DLPI to collect all the packets coming from “host foo”, no matter the packet is an IP packet or an ARP or RARP packet.

3.2.2.3 BSD Packet Filter

BPF was originally created for BSD UNIX and has been ported to many UNIX flavors. It is an elegant solution for packet filtering and provides better performance than

Figure 3.3 DLPI Filter Model

other packet filtering systems described above.

BPF consists of two main components: network tap and packet filter [10]. The network tap is responsible for copying raw packets from device drivers and moving them to the listening user processes. The filters are sitting between the device driver and user process as shown in Figure 3.4. They apply the filtering patterns and determine whether a packet should be delivered to the upper-level component or it should be discarded in the kernel space.

kernel

 packets

network

Figure 3.4 BPF System Architecture

Although BPF has a similar architecture with DLPI, it adopts a different approach in the filter model design. Other than using the boolean expression tree, BPF builds a packet filter with a directed acyclic control flow graph (CFG). Figure 3.5 shows a sample BPF filter with the same function as that of the previous DLPI filter.

Figure 3.5 BPF Filter Model

Comparing the above two filters, we can clearly see the advantage of BPF model over DLPI model. In the DLPI filter, an expression may be computed redundantly. For instance, “ether.type==ARP” will be evaluated, even if the tested for “ether.type==IP” has been satisfied. On the other hand, each path in the BPF filters exclusively represents a comparison procedure needs to be done for a particular packet pattern. In other words, the packet information is “remembered” in the filter. Once an expression is evaluated, it need not be computed again every time it is referenced.

3.2.3 Packet Capture Library

The library, libpcap, is a set of implementation-independent APIs for packet capturing and filtering. It can be built on top of either one of the three packet capture facilities we mentioned before, Linux SOCK_PACKET, DLPI and BPF.

The libpcap provides a powerful language for packet pattern specification. The patterns written in this language can be translated into a filter function, which may either use an expression tree or a CFG, depending on which underlying packet capture mechanism is being used.

Following are two sample packet patterns that can be recognized by libpcap:

tcp port 25

icmp[0] != 8 and icmp[0] != 0

The first one describes all the packets to and from TCP port 25. The second one intends to capture all the ICMP packets without ICMP echo requests or echo replies.

As illustrated by the example patterns, this specification language supports basic protocol types of TCP/IP, such as IP, TCP and ICMP, etc. Furthermore, it also facilitates the pattern specification by abstracting several frequently used fields in the protocol headers, like source and destination address in IP header, TCP and UDP port, etc. In case a user needs to access a field not in any predefined protocol, a packet can be simply treated as a plain byte stream. Any reference to a packet field can be converted to byte offset, as illustrated in the second example.

3.3 Bro: An Intrusion Detection System Based on Packet Filtering

Packet filtering can be very important to a network intrusion detection system. In this section, we introduce Bro, a stand-alone system developed by the Network Research Group in Lawrence Berkeley National Laboratory for detecting network intruders in real-time by passively monitoring a network link over which the intruder’s traffic transits [12].

3.3.1 Bro Architecture

The design of Bro is through a hierarchical and modular approach. Conceptually, there are three components in a Bro system: a packet capturing and filtering module implemented by libpcap, an event engine and a policy script interpreter (Figure 3.6).

The packet-filtering module of Bro captures the raw packet stream from data link layer and applies filter function to choose the packets need to be passed to the higher layer component. The use of libpcap in the implementation may bring significant performance improvement if a kernel filter can be used, like BPF.

Figure 3.6 Bro Architecture

When the filtered packet stream arrives at the Bro event engine, it will be further processed for the convenience of high-level analysis. For instance, a TCP packet will be checked for connection status, if either of SYN, FIN or RST flag is discovered in the packet header. After the packet processing, the event engine will check whether an event is generated. If so, it will trigger the corresponding event handler specified in the policy script.

Policy script captures the response to be taken when an event is detected. In the policy script, a specification language is used to specify the event handler, which can be various commands supported by Bro runtime system, such as generating new event, logging notifications, recording data to disk, or modifying internal state for sequent events [12]. An interpreter is used to bind the event with the relevant handlers.

3.3.2 Bro Language

Different from the specification language used by the libpcap, in which the patterns for the packets to be captured are described, Bro language is a domain-specific language mainly used to write event handlers. Simply put, an event handler describes the processes need to be done after a pattern has been observed.

In the Bro system, packet structures are totally hidden from the security policy writers. Different packet patterns are encapsulated through a number of predefined C++ classes. Take finger service as an example. In the Bro event engine, there is a class FingerConn, which is derived from the general purpose TCP_Connection class. Whenever a new connection is encountered with service port 79, a FingerConn object will be instantiated, instead of a TCP_Connection object for an unrecognized port [12]. Therefore, for each specific service, a corresponding class needs to be implemented for application specific process.

For a security policy writer, what he/she needs to do is to specify the finger_request, which is the event handler for a finger connection. Following is the entire policy script for the finger service.

global hot_names = ["root", "lp", "uucp", "operator", "admin", "system"];

global finger_log = open(getenv("BRO_ID") == "" ? "finger.log" :

fmt("finger.%s", getenv("BRO_ID")));

event finger_request(c:connection; request: string; full: bool;)

{

local id = c$id;

if (byte_len(request) > 80)

{

request = fmt("%s...", sub_bytes(request, 1, 80));

++c$hot;

}

if (request in hot_names)

++c$hot;

local req = request == "" ? "ALL" : fmt("\"%s\"", request);

if (c$addl != "")

This is an additional request.

req = fmt("(%s)", req);

if (full)

req = fmt("%s (/W)", req);

local msg = fmt("%s > %s %s", id$orig_h, id$resp_h, req);

if (c$hot > 0)

log fmt("finger: %s", msg);

print finger_log, fmt("%.6f %s", c$start_time, msg);

c$addl = c$addl == "" ? req : fmt("*%s, %s", c$addl, req);

}

The first line in the script defines a set of strings, which represents the login names of some system users. The second statement specifies a file to store finger logs. In Bro language, record field access is using $ to avoid ambiguity with constants used for hostname or IP addresses. So, the expression c$id is the same as c.id in C. Following is the event handler, which is executed when a finger request arrives. The event handler checks whether the request is excessively long and whether the request corresponds to any of the entries in the hot_name set. Finally, it logs the request into a log file. The detailed description can be found in [12].

3.4 Packet Filtering for Network Intrusion Detection

Besides the requirements for general-purpose packet filtering, a network packet filter for intrusion detection faces many new challenges, like the large number of packet patterns and more sophisticated packet patterns. Therefore, both the existing packet-filtering facilities and Bro system suffer limitation when they are applied to a large-scale intrusion detection framework.

The primary concern in a packet filter, like BPF, is to reduce the number of packets copied from kernel space to user space. The reason is that most reaction logic to a network packet is located within the user space. Minimizing the packets that need to be copied is the main goal of BPF to improve the entire system performance. The time needed for that the user process in computing the reaction logic is not considered. However, this is not the case for a packet filter for network intrusion detection purpose, for the reaction to a packet needs to be taken right away. For instance, if a packet filter detects a packet used by a CHARGEN/ECHO attack, it is better to discard this packet without passing it to the high-level system component. In addition, another difference of the packet filter for intrusion detection is that the filter needs to report all the patterns matched by a packet instead of indicating whether the packet should be copied or not.

As described in the previous section, the language of Bro system is layered on top of BPF, and thus suffers from the drawback mentioned above. Blind copying would necessitate that the high-level process perform the matching operations again in order to identify which rules are applicable. Moreover, low-level packet patterns are captured by a set of user-developed C++ classes in the Bro system. So, flexibility becomes an issue when the same security polices need to be applied for different protocols or new packet patterns are to be added into the existing system. The reason is that the user needs to rewrite the entire C++ class hierarchy or provide new derived class for each new packet pattern.

Therefore, a powerful specification language is required for describing various intrusion patterns. The ideal language should be protocol-independent and easy to change for different packet structures. In addition, the approach must be robust in the face of any attack on the packet filter itself. An important concern in this context is type and memory safety, which focus a typed language that ensures that adequate type checking can be performed (at compile time or runtime) to ensure safety of all memory accesses. In order to make a language memory safe and type safe, automatic type checking is highly desired. For example, before the IP source address in a packet can be tested, the packet should have been verified as an IP packet. Moreover, performance is especially important to a packet filter for intrusion detection. For instance, a hacker may overburden the filter before he/she launches the real attack. As far as the filter model is concerned, a highly simplified boolean function is not strong enough for an intrusion detection system, because it needs to distinguish various patterns in the network packets.

CHAPTER 4. INTRUSION PATTERN SPECIFICATION LANGUAGE

Network intrusion detection brings a number of new challenges to a packet filtering system, such as flexibility, scalability and robustness. Both the existing packet-filtering facilities and Bro system discussed in chapter 3 suffer from limitation when they are faced with the requirements for a network security system. In this chapter, we present a novel approach in the design of a domain-specific language for network intrusion detection. ASL is our specification language for describing intrusion patterns and reaction. This language is protocol independent, extensible and type safe.

4.1 ASL Syntax

ASL is made up by the rules of the form

pattern | condition (reaction

The pattern specifies the event that initiates a rule. In terms of a packet filtering system, a pattern is always an arriving network packet. The condition part usually includes simple tests on the components of the pattern. As far as a network packet is concerned, a condition typically consists of a series of comparisons involving packet fields. Once the condition is satisfied, the actions specified by the reaction part will be triggered.

The discussion of reaction is beyond the scope of this thesis, as we only focus on the pattern matching for the network packets. It will suffice to assume that reaction is simply an identification of the rule that matched

4.2 Packet Structure Description

An obvious benefit from using packet structures is convenience for describing a packet pattern. Suppose we do not use any structure for packet-field access. Instead, we treat a packet as a byte stream. Then, a reference to the protocol field inside an Ethernet header will look like this, “(short)p[12]”. A drawback of this approach is the type information for each filed is lost and type casting needs to be used everywhere, for a filter cannot know whether you want to use a two-byte short value or a four-byte integer.

To capture the nested structure of protocol headers, ASL employs a language mechanism similar to inheritance. Therefore, an IP header can be considered as an extension of Ethernet header with extra options for IP protocol. Similarly, a TCP header is inherited from IP header with entire data members from IP header and Ethernet header. Following are some code snippets for the definition of these data structures:

1.#define ETHER_LEN 6

2.struct ether_hdr {

3.
byte
e_dst[ETHER_LEN];
/* Ethernet destination address */

4.
byte
e_src[ETHER_LEN];
/* Ethernet source address */

5.
short
e_type;

/* protocol of carried packet */

6.};

7.struct ip_hdr : ether_hdr { /* ether_hdr plus following fields */

8.
bit
version[4];
/* ip version */

9.
bit
ihl[4];
/* header length */

10.
byte
tos;

/* type of service */

11.
short
tot_len;
/* total length */

12
…

13.
byte
protocol;
/* high-level protocol */

14. …

15.};

16.struct tcp_hdr : ip_hdr { /* ip_hdr plus following fields */

17.
short
tcp_sport;
/* source port number */

18.
short
tcp_dport;
/* destination port number */

19.
int
tcp_seq;
/* sequence number */

20.
int
tcp_ackseq;
/* acknowledge number */

21.
…

22.};

23.struct udp_hdr : ip_hdr { /* ip_hdr plus following fields */

24.
byte
udp_sport;
/* source port number */

25.
byte
udp_dport;
/* destination port number */

26.
byte
udp_len;
/* header + data length */

27.
byte
udp_csum;
/* checksum for header & data */

28.};

Packet structure description is a novel way in providing a packet filter with flexibility and extensibility. A new protocol such as ICMP can be easily supported by the system with a set of newly defined packet structures. In addition, the whole system can be conveniently ported to another protocol suite, like IPv6.

4.3 Constraint Checking

Another requirement for ASL is to be type safe for each packet operation. For instance, before any access to the field tcp_sport, a packet must be verified as a TCP packet. However, among the previously defined packet structures, it is not easy to distinguish between the structure tcp_hdr and udp_hdr, for both of them are derived from ip_hdr. We then strengthen our data structure definition by introducing the concept of constraint checking. A direct observation from TCP/IP specification is that, a field in high-level protocol header always has dependence on some particular value in the low-level header. For example, only if the e_type field in the ether_hdr equals to 0x0800, the following part of a packet can be an IP header. Based on this observation, we modify the definition of IP header as:

#define ETHER_IP 0x0800

struct ip_hdr : ether_hdr with e_type == ETHER_IP {

bit
version[4];
/* ip version */

bit
ihl[4];
/* header length */

byte
tos;

/* type of service */

short
tot_len;
/* total length */

…

byte
protocol;
/* high-level protocol */

};

Following the new keyword with is the constraint of this packet structure. We can think in this way, an IP header is an Ethernet header with its e_type field equal to a specific value ETHER_IP. Following the same rule, we can change the structures of tcp_hdr and udp_hdr as follows:

#define IP_TCP 0x0006

#define IP_UDP 0x0011

struct tcp_hdr : ip_hdr with protocol == IP_TCP {

short
tcp_sport;
/* source port number */

short
tcp_dport;
/* destination port number */

int
tcp_seq;
/* sequence number */

int
tcp_ackseq;
/* acknowledge number */

…

};

struct udp_hdr : ip_hdr with protocol == IP_UDP {

byte
udp_sport;
/* source port number */

byte
udp_dport;
/* destination port number */

byte
udp_len;
/* header + data length */

byte
udp_csum;
/* checksum for header & data */

};

Sometimes, dependence may also exist among different fields in the same packet structure. Usually, a field occurring in the later portion of a packet depends on the value of a field occurring earlier. Here is an example:

struct ip_pkt : ip_hdr {

byte
ip_data[] with sizeof(ip_data) == tot_len - ihl;

};

In this case, the length of data segment of an IP packet is calculated by two fields, tot_len and ihl, all of which are fields of ip_hdr. Basically, whenever a field inside a packet structure is to be accessed, all of the constraints included by the structure and its parent structures need to be examined first.

There is a bit concern on how to determine the type for a packet variable. In ASL, we declare the type for the packet variable p occurred in the packet(p) event specification as the base structure ether_hdr. The reason is that the packet(p) event can be used in multiple rules, while different rule is able to use it at different protocol level, like IP, TCP or HTTP. As a result, p can be of different types. However, we declare it as the base structure. Once a field of p is referenced in a rule, we need to do the name lookup inside the structure ether_hdr or its child structures. Then we can obtain the type information for the variable p. In turn, we are able to locate all the required constraints for p, which are already defined in the packet structure description. Therefore, a requirement for packet structure design is to uniquely name each packet field across all the packet structures.

4.4 Sample Patterns

We illustrate how to use ASL to write the packet pattern rules by a couple of simple examples. First, we revisit the “host foo” filter, in which a packet filter is required to capture all the packets coming from host “foo”. Supposing “xx.yy.zz.ww” is the IP address of host “foo”, the corresponding rule looks like:

packet(p) | (p.s_addr == xx.yy.zz.ww) (message(“host foo”);

The packet is a predefined pattern, representing a raw packet obtained from a device driver. The condition part is simply a boolean function, in which, the “p.s_addr” refers to the IP source address of the packet p. As we mentioned earlier in this thesis, every packet operation must be type safe. So, before the p.s_addr can be accessed, we need to verify that the packet belongs to IP protocol. Thus, this pattern is equivalent to:

packet(p) | (p.e_type ==ETHER_IP) && (p.s_addr == xx.yy.xx.ww);

The next example is a real world network intrusion, Ping of Death. As we described in chapter 2, the nature of this intrusion is making sum of the offset and packet size of the last fragment in an IP fragment series, exceed the maximum size of an IP packet. The matching rule is:

packet(p) | (p.tot_len+p.frag_off > MAX_IP_SIZE) (message(“Ping of Death”);

We can easily understand the pattern of this intrusion from the above rule.

The CHARGEN and ECHO attack discussed in Chapter 2 can be another example of using ASL to describe the intrusion patterns. This attack is straightforward and its corresponding ASL rule is as follows:

packet(p) | (p.udp_sport == PORT_ECHO) && (p.udp_dport == PORT_CHARGEN)

(message(“CHARGEN/ECHO Attack”);

As we mentioned earlier in this thesis, finger daemon attack is a buffer overflow type intrusion. However, we can also write a rule in ASL to capture the pattern of this attack.

packet(p) | (p.tot_len – p.ihl – p.tcp_len > MAX_FINGER_LENGTH)

(message(“Finger Buffer Overflow”);

In this rule, p.tot_len – p.ihl – p.tcp_len is used to calculate the length of the data portion in a finger request packet, where p.tot_len is the total length of an IP packet, p.ihl and p.tcp_len is the length of IP header and TCP header separately.

CHAPTER 5. SYSTEM DESIGN AND IMPLEMENTATION

The ASL-PFM (ASL Packet Filtering Module) plays a fundamental role in our entire network intrusion detection system. It facilitates the intrusion detection process by providing a powerful packet pattern matching function. In this chapter, we mainly focus on the design and implementation issues in constructing this packet filter module.

5.1 System Architecture

The packet patterns written in ASL will be translated into a runtime filtering system (Figure 5.1). Then the incoming network packets will be fed into the runtime ASL-PFM directly from data link layer. Once a pattern is matched, the ASL-PFM will trigger the reaction part in the rule. The reaction will typically be to print a message that identifies the matched pattern(s).

Figure 5.1 ASL-PFM Architecture

For the purpose of system diagnosis and performance analysis, we also provide ASL-PFM with the ability to fetch the data from files. In addition, a data generation module has been developed to produce test data.

5.2 Packet Offset Calculation

The packet structure represented in the language ASL, can facilitate rule writing and packet type checking. However, the runtime system cannot recognize any data structures but only access data using a byte offset, e.g. p.e_type field of a packet p can only be tested in the form of p[12], in which 12 is the offset corresponding to the field e_type.

Most of the offset calculation can be done at compile time, because the corresponding offset is a constant. For example, the offset for e_type is 12, while the offset for e_src is 6 all the time. Following is the definition of the structure arp_hdr and the offset calculation procedure for the field ar_op:

struct arp_hdr : ether_hdr with e_type == ETHER_ARP {

short
ar_hrd;
/* Format of hardware address */

short
ar_pro;
/* Format of protocol address */

byte
ar_hln;
/* Length of hardware address */

byte
ar_pln;
/* Length of protocol address */

short
ar_op;
/* ARP opcode (command) */

};

offset(ar_op) = offset(arp_hdr) + sizeof(short)*2 + sizeof(byte)*2

 = offset(ether_hdr) + sizeof(ether_addr)*2

 + sizeof(short) + sizeof(short)*2 + sizeof(byte)*2

 = 0 + 6*2 + 2 + 2*2 + 1*2

 = 20

However, there are some offset calculations that cannot be done prior to the runtime, like the starting offset for the data segment of an IP packet with extra options. The data begins right after the header part of an IP packet. In other words, offset(ip_data) equals offset(ip_hdr)+sizeof(ip_hdr). The length of an IP header is specified by the field ihl of structure ip_hdr. But you can only obtain the value of ihl at runtime. So, the computing of offset(ip_data) will be delayed to the time at which a packet is being parsed.

5.3 Filter Model for Single Rule

The design of filter model adopted by the ASL packet filtering module gains much benefit from the CFG model of BPF. The CFG model is good at keeping the parsing information for already parsed packet, while reducing the possibility of redundant testing. In addition, it can facilitate type checking required by the ASL matching rules.

The “host foo” example can be used as well to show how the CFG model fits for building a filter for matching a single rule. The first step is to write a matching rule and patching proper type checking conditions, as we have done in previous section:

packet(p) | (p.s_addr ==xx.yy.zz.ww) (message(“host foo”);

packet(p) | (p.e_type ==ETHER_IP) && (p.s_addr ==xx.yy.zz.ww) (message(“host foo”);

Next, we can establish the filter tree with the reference to CFG model.

As shown in Figure 5.2, a little difference from the previous CFG filter happens at the rule-matching node. Instead of returning a boolean value, ASL filter is required to invoke the corresponding reactions described in the rule. In the above filter tree, we notice that each comparison node can only have two outgoing branches. Sometimes, it may degrade the whole structure of the tree. For example, there is an intrusion pattern called IP Unknown Protocol attack. The idea of this attack is using an invalid value at the protocol field in the IP header of a network packet to crash a poorly implemented TCP/IP stack. Assuming only four protocols are supported in TCP/IP specification, i.e. TCP, UDP, ICMP and IGMP. We can describe this intrusion as:

Figure 5.2 Sample Filter for “Host foo”

packet(p) | (p.protocol !=IP_TCP) && (p.protocol != IP_UDP)

 && (p.protocol != IP_ICMP) && (p.protocol != IP_IGMP)

 (message(“IP Unknown Protocol”);

The corresponding filter tree is shown in Figure 5.3. We can optimize the tree structure by pulling the value out of the comparison node and converting it into an output branch. The immediate benefit is the decrease on the size of the tree, for a comparison node can have multiple branches. The improved version of filter tree for the intrusion pattern “IP Unknown Protocol” is shown is Figure 5.4.

Figure 5.3 Sample Filter for “IP Unknown Protocol”

Figure 5.4 Improved Filter for “IP Unknown Protocol”

5.4 Filter Integration

If we can build an efficient filter for a single rule, does it mean we can build an equally efficient packet filtering system for multiple rules? The answer is no.

An ideal packet filtering system should have the following properties:

· All the matching rules can be identified in a single scan. It means that a packet can be processed without repeated tests on the same fields.

· The time required for rule matching is insensitive to the number of rules.

Basically, there are two approaches in building a packet filer for multiple rules. One is to simply put together all the filters for individual rules, then test these filters one after another. Clearly, this is not a good choice. For example, a packet will be tested against each rule separately, while every elementary comparison common to the multiple rules will be checked more than once. Like the expression “p.e_type”, it is going to be compared with the same value by all the rules for the IP protocol in the system. More over, the number of matching rules largely affects the performance of a filtering system. In other words, a filtering system working fine for five rules may become unacceptably slow for one hundred rules.

Another approach in building a packet filtering system is through a DFA (Deterministic Finite Automaton) like automaton, which can rapidly select the matching-patterns in a single scan of input [13]. A typical scenario in fulfilling this approach is to preprocess all the patterns into a DFA-like automaton, then scan the packet fields in a left to right manner. In the paper written by R. C. Sekar, R. Ramesh, and I.V. Ramakrishnan [13], a new concept named “Adaptive Pattern Matching” is proposed. The basic idea is to adapt the traversal order to suit the input patterns. Simply put, instead of browsing the information from the input one by one, we can improve the system performance by skipping over those fields that are irrelevant for matching any pattern. A detailed discussion of this algorithm can be found in [13].

The adaptive pattern matching is a good fit for the packet filtering system. First, in a network packet, most of the critical information is stored in the various protocol headers, like IP header, TCP header or HTTP header, etc. Within a protocol header, we may only care about a small part of fields, e.g. source address in the IP header, SYN flag in the TCP header. Therefore, many fields in the protocol headers and almost the entire data portion of a packet are always useless for the pattern matching purpose, because most known intrusion patterns can be discovered through checking partial number of fields in a packet. So, by skipping most irrelevant data and examining only a limited number of fields of a packet, we can gain significant performance improvement over traditional packet filtering approach.

In the context of packet filtering for network intrusion detection, an intrusion pattern is described as a part of a matching rule in our ASL system. A direct observation is more than one rule can be matched simultaneously. For instance, a rule “p.s_addr==xx.yy.zz.ww” can be matched at the same time another rule “(p.s_addr==xx.yy.zz.ww) && (p.protocol==IP_ICMP)” is matched. This is the difference of our filter model from that of BPF or any other packet filter. In those filters, only one value is returned by the filter function to indicate whether the packet should be captured or discarded. By contrast, our filter needs to report all the rules matched by a packet. Therefore, we need a data structure to represent either the rules already matched or the rules to be matched at each parsing stage.

An algorithm for filter automaton construction is shown in Figure 5.5.

Procedure Build is recursive and the entire automaton can be established by invoking Build (root), where the root is a node with an empty matching rule set and a candidate rule set containing all of the rules specified. In line 2, the candidate rule set is examined. If no potential rule can be matched, the procedure will be terminated. Otherwise, the construction process continues from line 4 to line 15. In terms of packet filtering, the next position to be inspected refers to an offset in a packet. It is computed by select function, which can be implemented through different strategies. We will discuss this function later. Once the offset has been set up for the current node, we need to create a new node for each value appearing at that offset and mark the transition by the value. In addition, we construct a branch representing a value other than all the values appearing at the offset in any of the patterns in C. If a rule can be matched after the comparison at this step, we can put this rule into the matched rule set of the new node. Otherwise, we put it into the candidate rule set of the new node. If a rule with inequality comparison has been matched, we need to put that

Procedure Build (v) {

1. v is a node in automaton /* extra information are attached to each node: p is the offset to be inspected, m is the set of already matched rules and c is the set of candidate rules */
2. if (v.c is empty)

3.
stop /* if no candidate rule, terminate the procedure */
4. v.p = select(v.c) /* select the next offset to inspect */
5. create all the possible branches of node v /* each branch has a edge to it from v, with corresponding value */
6. for each rule r in v.c

7.
if r has test relevant to v.p

8.

if test for equality

9.

add r into matched rule set if r can be matched after this test, otherwise add r into candidate rule set of the branch with corresponding value

10.

if test for inequality

11.

add r into matched rule set if r can be matched after this test, otherwise add r into candidate rule set of all branches except the branch with corresponding value

12.
else /* all the test in r are irrelevant to v.p */
13.

add r into candidate rule set of all branches

14. for each branch v’

15.
Build(v’) /* recursively call Build for v’ */
}

Figure 5.5 Algorithm for Automaton Construction

rule into every newly created node, except the one with the equal value. Same method applies to the candidate rule set. If the offset does not appear in any comparison of a rule, that rule should be added into the candidate rule set for all the branches. The reason is that you cannot rule out the possibility that the rule will be matched after this comparison.

The easiest way to illustrate the algorithm is through an example. Consider the following matching rules for our ASL packet filtering system.

R1: packet(p) | (p.e_type == ETHER_IP) && (p.protocol !=IP_TCP)

&& (p.protocol != IP_UDP) && (p.protocol != IP_ICMP)

&& (p.protocol != IP_IGMP)

R2: packet(p) | (p.e_type == ETHER_IP) && (p.protocol ==IP_UDP)

&& (p.udp_sport == ECHO_PORT) && (p.udp_dport == CHARGEN_PORT)

R3: packet(p) | (p.e_type == ETHER_IP) && (p.protocol ==IP_TCP) && (p.tcp_flag == SYN)

R4: packet(p) | (p.e_type == ETHER_IP) && (p.protocol ==IP_TCP) && (p.tcp_flag == ACK)

We removed the reaction part from each rule intending to focus only on the condition part, which consists of the packet patterns we need to match. Rule 1 is the exact description of IP Unknown Protocol attack, where all of the necessary type checking related conditions have been added. A previously mentioned denial of service intrusion CHARGEN and ECHO is mapped by rule 2. It is one instance of this intrusion. Other instances can be obtained by changing the source and destination UDP ports. The third and forth rule consist partly of the intrusion pattern of SYN flooding, in which, a SYN packet or an ACK packet is matched separately. The corresponding automaton for above rules is constructed by applying the procedure Build as shown in Figure 5.6.

As we mentioned earlier, several strategies can be employed in implementing the function Select, which is used to determine the next offset in a packet to inspect.

Figure 5.6 Sample Automaton for R1-R4

· Select an offset such that the number of distinct values appearing at the node is minimized. With this criterion, we attempt to minimize the number of transitions out of a state.

· Select an offset such that the number of distinct values appearing at the node is maximized. The motivation here is that the candidate sets associated with each transition is likely to be smaller.

· Select an offset such that the number of rules that involve a test at this offset is maximized.

· Select an offset such that the number of duplicated rules after the current comparison is minimized. This strategy will reduce the possible redundant comparisons performed in future.

In the sample automaton, we adopt the third strategy, which tries to involve as many as possible rules in one offset checking. However, this can be easily changed for an individual problem.

5.5 Rule Preprocessing

Some preprocessing needs to be done for an ASL rule, before it can be used in automaton constructing.

5.5.1 Rule Decomposition

Before any two rules can be processed into a single automaton, we need to filter out each individual comparison expression. Otherwise, we are not able to find the packet offset checked by more than one rule, or even among different comparison expressions within the same rule. Take the following two rules as an example:

R1: packet(p) | (p.protocol ==IP_TCP) && (p.tcp_flag == SYN)

R2: packet(p) | (p.protocol ==IP_TCP) && (p.tcp_flag == ACK)

Every packet offset examined in R1 also appears in R2. And, the conjunction among the comparison expressions are all “&&”. So, we can decompose the conditions of R1 and R2 into four sub-rules:

R11: (p.protocol ==IP_TCP)
R12: (p.tcp_flag == SYN)

R21: (p.protocol ==IP_TCP)
R22: (p.tcp_flag == ACK)

It is trivial to prove that R1 can be satisfied if and only if both R11 and R12 are satisfied. Things will become a little bit complicated, if the conjunction “||” is used in the rule. Nevertheless, we can avoid using “||” in a rule condition by moving “||” out of a rule and making a single rule become multiple rules at the highest level. So, within a single rule, all the comparison expression are connected by “&&”.

The following simple recursive algorithm can be employed to turn a single rule into multiple sub-rules.

Procedure Factor(c) {

1. c is the condition inside a rule to be factored /* in reality, a rule is always represented by an expression tree */
2. if (c is in the form of “c1 && c2”) {

3.
Factor(c1); /* recursively call Factor for c1 */
4.
Factor(c2); /* recursively call Factor for c2 */
5. } else if (c is in the form of “expr1 operator expr2”) { /* operator can be ‘==’, ‘!=’, etc. */
6.
create a new sub-rule for the rule being factored

7. }

}

5.5.2 Constraint Stack Construction

After the decomposition step is finished, a rule becomes a collection of comparison expressions. For expressions involving a packet variable, we need to take care of constraint checking for each field access.

As we mentioned earlier in this chapter, when a field access within a packet is accessed, we need to check the type of the variable, such as an ether_hdr or an ip_hdr. This can be done through recursive name lookup in all child structures of the base structure ether_hdr, as long as each filed name is unique throughout the packet structure hierarchy. After type checking, we are able to locate the parent structure of the variable and even its parent’s parent structure through the inheritance relationship among the packet structures. Following the parent links, we can easily collect all the constraints for the variable and then build them into a corresponding constraint stack.

An algorithm in pseudo code is used to show the procedure for constraint stack construction.

Procedure ConsBuild(p, f) {

1.
p is a packet variable with correct type information; f is a field within p

2.
s = structof(p); /* structof(p) returns the corresponding structure type for p */
3.
for each field f’ of s that appears before f /* iterate in reverse order */
4.

if f’ has a constraint

5.

push the constraint into the stack /* add constraint for the field in the same structure */
6.
if s has a constraint

7.

push the constraint into the stack /* add constraint for the whole structure */
8.
p’ = parentof(p) /* parentof(p) returns the parent structure type for p; if p is the base structure, returns null */
9.
f’ = lastfieldof(p’) /* lastfieldof(p) returns the last field inside a structure p */
10. if (p’ != null)

11. ConsBuild(p’.f’); /* recursively call ConsBuild for p’f’ */
}

Applying this algorithm to the expression “p.tcp_flag == SYN”, we can obtain the constraint stack shown as follows (Figure 5.7).

Figure 5.7 Sample Constraint Stack for “p.tcp_flag == SYN”

5.6 Automaton Construction

Up to this point, all the packet-matching rules have been converted into lists of expression stacks with necessary constraints inside the stack. Next step is to build the automaton with the algorithm we developed at the Section 5.4.

5.6.1 Offset Selection

In the process of automaton construction, choosing the right variable or offset of a packet variable to be tested at a comparison step is crucial in reducing the automaton size or matching time for a packet pattern. The function Select is created for this purpose. In the implementation of ASL-PFM, we support all the heuristics mentioned in Section 5.4.

One heuristic we always use is to minimize the number of duplicated rules after a comparison, while preferring fields that lead to creation of small number of branches. The observation of this heuristic is that it can significantly reduce the size of the created automaton. A rule will be duplicated into all the branches after a comparison node, if the variable or offset that is checked in the comparison node is irrelevant to the rule. We then define the duplicate index of a variable as the product of the number of rules not involved in examining it and the number of branches of the variable. For instance, we have 5 rules in total, while 3 of which do not check the variable x and the left 2 rules have the expression x==1 and x==2 separately. Then we can calculate the duplicate index of x as:

DI(x) = 3 * 3 = 9

In the Select function, we compute the duplicate index for each variable and choose the variable with the minimal value. In case two variables have the same duplicate index, we will select the one with less number of branches. See the following three rules (we have omitted the reaction part):

R1: (x == 1) && (y == 1)

R2: (x == 2) && (y == 1)

R3: (x == 3) && (y == 1)

Both variable x and y have the same duplicate index 0. We can build the automaton in either way shown in Figure 5.8. However, it is obvious that choosing variable y first can reduce the size of target automaton.

Choose y first, then x.

Figure 5.8 Sample Automaton

Most operations to a network packet are equality and inequality comparisons, which can be handled very well by the Select function. For the comparisons like >, >=, <, or <=, we can consider the whole expression as a single boolean variable with two branches 1 and 0, representing true and false separately. Then we can apply the Select function in the same way as to the variable with equality and inequality comparisons. However, there is another kind of operation with a packet variable, bit-wise operation, especially bit-and. A typical situation happens when we want to examine the network address of a packet, like in p.d_addr&0xFFFFFF00 == 0x65432100. In the expression, the hexadecimal value 0xFFFFFF00 is the network mask for an IP address, assuming we are in a class C network. The bit-and operation brings some difficulty when we apply the Select function. Suppose we have following two rules: one has an expression p.s_addr == 0x87654321, while the other one includes an expression p.s_addr&0xFFFFFF00 == 0x87654300.

A solution for this problem is to further decompose the expressions. In the above case, we can convert the expression p.s_addr == 0x87654321 into two sub-expressions as follows:

(p.s_addr&oxFFFFFF00==0x87654300)&&(p.s_addr&0x000000FF==0x00000021)
After doing this, we can apply the Select function again and obtain the common offset s_addr&oxFFFFFF00.

5.6.2 Sub-Automaton Sharing

Under certain circumstance, some redundancy may exist among different sub-automata in a large automaton. Consider the following automaton built for the two simple rules listed below (Figure 5.9):

R1: packet(p) | p.icmp_type == ECHO_REQ

R2: packet(p) | p.s_addr == 0x87654321

Figure 5.9 Unoptimized Automaton

You may have noticed that the same automaton after the testing for field s_addr occurred at different place of the automaton. In a larger automaton, this duplication may be even worse. The reason is that the Build procedure is executed at different node recursively.

Each run is independent and is not aware that the same automaton has been established somewhere else.

One way to solve this problem is that whenever a procedure needs to create a new node, let it first looks up all the existing nodes in order to avoid duplicate. However, this lookup is not trivial. The comparison of the same offset of a packet variable is not strong enough in deciding whether two nodes are identical. As shown in the Figure 4.9, although the node I has the same offset compared as that of node II and III, it cannot be substituted by either node II or III, for it has different matching rule set and candidate rule set. A sufficient condition for two nodes to be equivalent is both of them have the same comparing variables, matching rule sets and candidate rule sets. In addition, for a rule in both nodes’ candidate sets, it must have the same tests remaining for each rule. All of these make the exact input for our Build procedure and Select function. Therefore, the same input guarantees the node to be created will be same as well. An optimized version of automaton is shown as follows (Figure 5.10).

Figure 5.10 Optimized Automaton

5.7 Code Generation

The ultimate result from our ASL-PFM is an executable code snippet, which can be used in developing the runtime packet filter.

What a packet filter does is almost the same as an automaton check through an input stream. A portion of a packet will be compared with some value at a node and the automaton will then move to the branch with matched value label. When a left node is reached, no further comparison will be made. Instead, the reaction specified in the rule definition will be triggered for all matched rules. The code generated by ASL-PFM should exactly reproduce this process. Take the following two rules as an example, we will see what the generated code looks like.

Example rules:

R1: packet(p) | (p.e_type==0x800) && (p.protocol=1) && (p.icmp_type==8)

(message(“ICMP ECHO Request”);

R2: packet(p) | (p.e_type==0x800) && (p.protocol=1) && (p.icmp_type==0)

(message(“ICMP ECHO Reply”);

Example Code generated by ASL-PFM:

void sample_code(const u_char *p) {

 if ((*((unsigned short *)(p+12))) == 8) {

 if ((*((unsigned char *)(p+23))) == 1) {

 if ((*((unsigned char *)(p+34))) == 8) {

 message("ICMP ECHO Request");

 }

 else if ((*((unsigned char *)(p+34))) == 0) {

 message("ICMP ECHO Reply");

 }

 else {

 }

 }

 else {

 }

 }

 else {

 }

}

There are a number of issues need to be mentioned around code generation. First of all, an incoming packet is treated as a byte stream. This is a natural design and can be easily implemented through various packet capture facilities. The type information of a packet field is enforced through proper pointer casting as shown in the sample code. One thing needs to be taken into consideration for a packet field larger than 8 bits is byte order. Normally, we need to convert the filed in a packet from network order into host order before it can be compared with any value specified in the rule definition. However, in order to save the precious time at runtime, we should make the reverse conversion on the predefined values. In other words, we can change those values from host order into network order at compile time.

An important issue that may affect the runtime performance of the future packet filter is the way we handle the comparison and do the branching. In the above sample code, we simply used if-else statement provided in C. It may work fine for the variable, which has the number of branches less than 3. In case there are a large number of branches for a variable, this scheme may greatly degrade the efficiency for a runtime packet filter. An alternative is binary search, in which the branches of a variable need to be sorted before code generation. In our implementation, we adopt binary search for each node with the number of branches more than 3. At runtime, this kind of node can be processed in log2N time, where N is the number of branches. A further improvement can be achieved by using jump-table or hash-table if the number of branches become very large.

5.8 Data Generation

Static packet data can be very helpful in the design phase for a real-time packet-filtering system. It can be used in testing and performance analysis. An ideal data source should meet the following requirements.

· Interpretable by other systems. If the generated data can be fed into other packet-filtering system, like tcpdump, we can then easily compare our implementation with others.

· Easy to specify. On one hand, a user is able to setup every field inside a packet. On the other hand, data integrity must be guaranteed, i.e. there should be no conflict among dependent fields and all of the required fields must be filled in advance automatically. For instance, whenever a UDP packet is specified, the e_type field of ether_hdr must be set to ETHER_IP as default.

· Controllable distribution. When a large amount of data needs to be produced, we may want a statistically controlled distribution of various packet kinds, like 52% TCP packets, 23%UDP packets, as well as 25% ICMP and IGMP packets.

The first requirement can be easily achieved with the help of libpcap. After some modification of libpcap API, we are able to produce packet data file with the compatible format as the file used by tcpdump.

In terms of field dependence and type checking, the constraint stack concept in our ASL language design and pointer type casting in the code generation can be a potential solution. As we have described in Chapter 3, whenever an automaton is constructed, all the required fields are checked before a packet field is accessed. Therefore, we propose to convert each reading operation on a packet field into writing a certain value on a pseudo packet, for the purpose of data generation.

Before various packets can be generated, a user should have a convenient way in specifying the distribution percentage for each packet kind. We then extend our ASL language specification intending to provide a weight field for each rule. Following are some examples:

R1: (x == 1) (… [0.4]

R2: (x == 2) (… [0.6]

R3: (y == 1) (… [0.2]

R4: (y == 2) (… [0.8]

Because we are focusing on the data generation, both pattern and reaction part have been omitted from rule definition. The number at the end of each rule is the weight field, which is the expected percentage for this pattern in the final data generation. There is a little difference when a rule is specified for the purpose of packet generation, i.e. all the fields occurring in the rule must be explicitly specified. It means if you have a rule p.s_addr==p.d_addr, you have to change it to (p.s_addr==0x87654321) && (p.d_addr==0x87654321). The reason for doing that is to facilitate the packet generation.

In order to achieve the distribution specified in the rule definition, we need to build the weight into the nodes of the automaton and apply it when the code is generated. The way we calculate the weight is as follows:

· For a left node: the weight is computed by multiplying all the weight specified by the matched rules. This is simply based on the observation that the possibility of matching two rules is the product of the possibility of matching each single rule.

· For an internal node: the weight is the sum of all the weight of its child nodes.

Figure 5.11 shows the weighted automaton built for the previous example rules.

Figure 5.11 Weighted Automaton

CHAPTER 6. EXPERIMENTAL RESULTS AND CONCLUSION

In this thesis, we presented a convenient, expressive and safe language for describing intrusion patterns and reactions. The primary contribution of this language to a packet filter construction is independence from the communication protocol and type safety in packet manipulation operations. We developed an algorithm and implementation for packet filtering that is based on adaptive pattern matching technique, which is important for improving the packet filter performance and scalability.

6.1 Intrusion Detection Using ASL

At the end of chapter 4, we once listed some sample intrusion patterns written in ASL. In the real system, we extended those examples and created a number of new patterns for the attacks such as Smurf, Land, and so on. More examples can be found in Appendix B.

/* Smurf (Intermediate Site) */

packet(p) | (p.icmp_type == ICMP_ECHO_TYPE_REQUEST)

 && (p.d_addr == LOCAL_BROADCAST_ADDR)

(message(“Smurf”);

/* Land Attack */

packet(p) | (p.s_addr == p.d_addr)

(message(“Land attack”);

Our packet filter can fetch a packet either from a tcpdump file or directly from real network traffic. We also performed testing on some data files generated by our ASL_PFM itself. This greatly facilitates our testing work, for some attacks are not easy to be simulated through attacking program or by capturing real network traffic. The final result shows that our packet filter can efficiently detect (potential) network intrusions.

6.2 Preliminary Performance Testing

Performance is a key criterion in evaluating a real-time network packet filter. In this section, we did some preliminary performance study through a simple utility program, which is used to collect the number of packets arrived for each network service. We compared our runtime packet filter and BPF packet filter for this example.

6.2.1 SRVSTAT: Service Statistics

Knowing the number of packets arrived for each network service, e.g. TELNET, SMTP, or HTTP, can be helpful for the network management purpose, like checking the traffic load for each machine in the network. In addition, it may also useful in detecting some malicious network behaviors. For example, if a large number of connection-request packets are detected at login service port in a short period of time, it is possible that some hacker is trying to break into your system through password guessing. Following are some code snippets in the ASL rule definition for SRVSTAT:

packet(p) | -> pkt_total ++;

packet(p) | (p.icmp_type == ICMP_ECHO_TYPE_REQUEST)

-> icmp_echo_request ++;

packet(p) | (p.tcp_dport == PORT_HTTP)

-> tcp_http ++;

packet(p) | (p.udp_dport == PORT_NFS)

-> udp_nfs ++;

…

The idea is straightforward. Whenever a packet towards a service is captured, a corresponding counter for that service will be incremented. In addition, a counter for all the received packets will be incremented as well, no matter the incoming packet is an ICMP request or a message to the NFS server. Usually, packet filtering is service specific. This means a packet filter can be used to collect how many login attempts have been received from host foo or how many times the finger service is required. In SRVSTAT, we just count the number of packets received by each service.

An observation from this utility program is that there may be a large number of patterns for a packet filter, while the number of packet fields covered by these patterns are quite small. For instance, SRVSTAT can have over one hundred patterns specified if we want to monitor all of normal UNIX network services. However, these patterns may only access a small number of fields in a packet, such as tcp_dport and udp_dport. In this case, the processing time of our packet filter will not change too much, because it largely dependent on the number of packet fields accessed instead of the number of packet patterns.

6.2.2 Performance Comparison: ASL vs. BPF

We also performed some preliminary performance testing on our ASL packet filter and BPF packet filter. Our focus in this thesis is mainly on the filter model, especially when the number of packet patterns becomes relatively large. Therefore, we do not consider the issues, like kernel buffering or kernel filtering, which are implementation techniques that can be applied to all filter models.

In our test for the filter performance, we compared our runtime ASL filter with BPF under the conditions, where different numbers of patterns are specified for a filter. To eliminate the random factors introduced by the live network traffic, we used static tcpdump files as the data source for both filters.

First, we tested our ASL filter with different branching mechanism used. Figure 6.1 shows that the processing time for our filter, when sequential comparison is used increases significantly as more patterns are specified for the filter. This is to be expected as the number of comparison operations introduced by sequential comparison increases linearly with the number of patterns. Binary search can improve the filter performance. An efficient hashing function can improve the filter performance even more when the number of branches are moderate (4 or more).

In the next test, we run both of our ASL filter and BPF over the same set of packets. Figure 6.2 displays the final results. In terms of absolute performance, BPF is mush slower, partly because the BPF filter executes interpreter code versus the compiled code in our approach. In addition, we found that the processing time for our ASL filter does not change too much as the number of patterns increased.

Figure 6.1 Branching Mechanism Comparison for ASL Filter

Figure 6.2 Performance Comparison

6.3 Conclusion

The methods used by network intrusions can be different from one to another. However, the nature of most network intrusions is based on “malicious” network traffic, which either has invalid value inside a field of a packet, or features incorrect combination or sequence of packet segments. With this observation, we can use packet-filtering technique in building network intrusion detection systems.

However, packet filter faces new challenges for the intrusion detection purpose, like high-volume data, no packet dropping, and requirement for system flexibility and scalability. In this thesis, we borrowed some idea from the adaptive pattern matching technique and applied it to our packet-filtering module for a large-scale intrusion detection framework.

One of the key components in our approach is a specification language ASL, which is used to describe the patterns for the packets to be captured. ASL provides a number of features in facilitating pattern writing and filter construction, such as packet structure description and automatic packet type checking.

Building an efficient filter is crucial to the overall system performance. We presented an elegant algorithm in filter construction. The main concern is how to select a variable or an offset inside a packet to be inspected at a node of a filter automaton. The primary goal is to minimize pattern matching time and the size of the automaton.

ASL-PFM provides a novel and elegant way in packet filter design and implementation for network intrusion detection systems. However, there are still many topics need to be investigated in the field of packet filtering and network intrusion detection, such as in kernel integration of packet filtering module.

APPENDIX A PACKET DATA STRUCTURES FOR ASL

Ethernet Header:

--

#define ETHER_LEN

6

struct ether_hdr

{

byte

e_dst[ETHER_LEN];

byte

e_src[ETHER_LEN];

short

e_type;

}

ARP:

--

#define ETHER_IP

0x0800

#define ETHER_ARP

0x0806

struct arp_hdr : struct ether_hdr with e_type == ETHER_ARP

{

short
ar_hrd;
/* Format of hardware address */

short
ar_pro;
/* Format of protocol address */

byte
ar_hln;
/* Length of hardware address */

byte
ar_pln;
/* Length of protocol address */

short
ar_op;
/* ARP opcode (command). */

}

/* ARP protocol HARDWARE identifiers */

#define ARPHRD_ETHER
1

/* Ethernet 10Mbps */

/* ARP protocol PROTOCOL identifiers */

#define ARPPRO_IP

0x0800
/* IP */

/* ARP protocol opcodes */

#define ARPOP_REQUEST
1

/* ARP request */

#define ARPOP_REPLY
2

/* ARP reply */

#define ARPOP_RREQUEST
3

/* RARP request */

#define ARPOP_RREPLY
4

/* RARP reply */

struct ether_ip_arp : struct arp_hdr with

(ar_hrd == ARPHRD_ETHER) && (ar_pro == ARPPRO_IP)

{

byte

arp_sha[ETHER_LEN];/* sender hardware address */

int

arp_spa;

/* sender protocol address */

byte

arp_tha[ETHER_LEN];/* target hardware address */

int

arp_tpa;

/* target protocol address */

}

IP:

--

struct ip_hdr : struct ether_hdr with e_type == ETHER_IP && ihl == 5

{

bit

version[4];

/* ip version */

bit

ihl[4];

/* header length */

byte

tos;

/* type of service */

short

tot_len;

/* total length */

short

id;

/* identification */

bit

flag[3];

/* flags */

bit

frag_off[13];
/* fragment offset */

byte

ttl;

/* time to live */

byte

protocol;

/* protocol */

short

check_sum;

/* header checksum */

ip_addr
s_addr;

/* source ip address */

ip_addr
d_addr;

/* destination address */

}

struct ip_pkt : struct ip_hdr

{

byte
ip_data[tot_len - ihl];

}

ICMP:

--

/* IP protocol PROTOCOL identifiers. */

#define IP_ICMP

0x0001
/* ICMP */

#define IP_IGMP

0x0002
/* IGMP */

#define IP_TCP

0x0006
/* TCP */

#define IP_UDP

0x0011
/* UDP */

struct icmp_hdr : struct ip_hdr with protocol == IP_ICMP

{

byte

icmp_type;

/* icmp message type */

byte

icmp_code;

/* icmp message code */

short

icmp_csum;

/* checksum for entire message */

}

struct icmp_pkt : struct icmp_hdr

{

byte
icmp_data[tot_len - ihl - sizeof(icmp_hdr)];

}

#define ICMP_ECHO_TYPE_REQUEST
8

#define ICMP_ECHO_TYPE_REPLY

0

#define ICMP_ECHO_CODE

0

struct icmp_echo_request : struct icmp_hdr with

(icmp_type == ICMP_ECHO_TYPE_REQUEST)

&& (icmp_code == ICMP_ECHO_CODE)

{

byte

icmp_echoid;
/* identifier */

byte

icmp_echoseq;
/* sequence number */

byte

icmp_echodata[tot_len - ihl - sizeof(icmp_hdr) - 2];

}

struct icmp_echo_reply : struct icmp_hdr with

(icmp_type == ICMP_ECHO_TYPE_REPLY) && (icm_code == ICMP_ECHO_CODE)

{

byte

icmp_echoid;
/* identifier */

byte

icmp_echoseq;
/* sequence number */

byte

icmp_echodata[tot_len - ihl - sizeof(icmp_hdr) - 2];

}

#define ICMP_DESUNREA_TYPE

3

struct icmp_unreach : struct icmp_hdr with

icmp_type == ICMP_DESUNREA_TYPE

{

short

icmp_reserved;

ip_hdr
icmp_iphdr;

byte

icmp_data[8];

}

#define ICMP_SRCQUEN_TYPE
4

#define ICMP_SRCQUEN_CODE
0

struct icmp_squench : struct icmp_hdr with

icmp_type == ICMP_SRCQUEN_TYPE

{

short

icmp_reserved;

ip_hdr
icmp_iphdr;

byte

icmp_data[8];

}

UDP:

--

struct udp_hdr : struct ip_hdr with protocol == IP_UDP

{

byte

udp_sport;
/* source port number */

byte

udp_dport;
/* destination port number */

byte

udp_len;
/* header + data length */

byte

udp_csum;
/* checksum for header & data */

}

struct udp_pkt : struct udp_hdr

{

byte
udp_data[udp_len - sizeof(udp_hdr)];/* data */

}

TCP:

--

struct tcp_hdr : struct ip_hdr with protocol == IP_TCP

{

short

tcp_sport;

/* source port number */

short

tcp_dport;

/* destination port number */

int

tcp_seq;

/* sequence number */

int

tcp_ack;

/* acknowledge number */

bit

tcp_hlen[4];
/* header length */

bit

tcp_reserved[6];
/* reserved */

bit

tcp_urg;

/* flags */

bit

tcp_ack;

bit

tcp_psh;

bit

tcp_rst;

bit

tcp_syn;

bit

tcp_fin;

short

tcp_win;

/* window size */

short

tcp_csum;

/* checksum for header & data */

short

tcp_urp;

/* urgent pointer */

}

struct tcp_pkt : struct tcp_hdr

{

byte
tcp_data[tot_len - ihl - tcphlen];

}

DNS:

--

#define DNS_PORT

53

struct dns_hdr : struct udp_hdr with

(udp_sport == DNS_PORT) || (udp_dport == DNS_PORT)

/* either to a dns port or from dns port */

{

short

dns_id;

/* identifier */

short

dns_flags;

/* flags */

short

dns_nques;

/* No. of questions */

short

dns_nans;

/* No. of answers RR */

short

dns_nauth;

/* No. of authority RRs */

short

dns_nadd;

/* No. of additional RRs */

}

struct dns_ques

{

string
dns_qname;

/* query name */

short

dns_qtype;

/* query type */

short

dns_qclass;

/* query class */

}

struct dns_rr_hdr

{

string
dname;

/* domain name */

short

type;

/* RR type */

short

class;

/* RR class */

int

ttl;

/* time to live */

}

#define DNS_QUERY_A

1

struct dns_rr_A : struct dns_rr_hdr rrhdr with rrhdr.type == DNS_QUERY_A

{

short
rdlen;

/* resource data length */

ip_addr rdata[rdlen];

}

struct dns_pkt_A : struct dns_hdr dnshdr

{

struct dns_ques
dques[nques];
/* dns questions */

struct dns_rr_A
dans[nans];

/* dns answer RRs */

struct dns_rr_A
dauth[nauth];
/* dns authority RRs */

struct dns_rr_A
dadd[nadd];

/* dns additional RRs */

}

RIP:

--

#define RIP_PORT

520

struct rip_hdr : struct udp_hdr with

(udp_sport == RIP_PORT) || (udp_dport == RIP_PORT)

/* either to a rip port or from rip port */

{

byte

rip_command;
/* rip command */

byte

rip_version;
/* rip version */

short

rip_zero;

/* must be zero */

}

struct rip_rec

{

short

rip_afid;

/* address family identifier */

short

rip_zero;

/* must be zero */

int

rip_ipaddr;

/* ip address */

int

rip_zero[2];
/* must be zero */

int

rip_metric;

/* metric */

}

strcut rip_pkt : struct rip_hdr

{

rip_rec riprec[(udp_len - sizeof(struct rip_hdr))

/ sizeof(struct rip_rec)];

}

APPENDIX B INTRUSION PATTERN SAMPLES

1. IP Unknown Protocol

Module IPUnknownProtocol() {

packet(p)|(p.protocol != IP_TCP) && (p.protocol != IP_UDP)

&& (p.protocol != IP_ICMP) && (p.protocol != IP_IGMP)

(message(“IP Unknown Protocol”);

}
2. Ping of Death

Module PingofDeath() {

packet(p)|(p.tot_len + p.frag_off > MAX_IP_SIZE)

(message(“Ping of Death”);

}
3. Chargen, Echo, Time, Daytime

Module CETD(sPort, dPort) {

packet(p)|(p.udp_sport == sPort) && (p.udp_dport == dPort)

(message(“CETD Attack”);

}

4. Finger Buffer Overflow

#define FINGERD_PORT 79

Module FingerOverflow() {

packet(p)|(p.tcp_dport == FINGERD_PORT)

&& (p.tot_len – p.ihl – p.tcp_hlen) > MAX_FINGER_LEN)

(message(“Finger Buffer Overflow”);

}

5. LAND Attack

Module LAND() {

packet(p)|(p.s_addr == p.d_addr) (message(“LAND Attack”);

}

6. Smurf (Intermediate Site)

Module Smurf() {

packet(p)|(p.icmp_type == ICMP_ECHO_TYPE_REQUEST)

&& (p.d_addr == LOCAL_NET_BROADCAST_ADDR)

(message(“Smurf Attack”);

}

7. IP Spoofing

/* for external interface */

Module IPSExternal() {

packet(p)|(p.s_addr&INSIDE_NET_MASK == INSIDE_NET_ADDR)

(message(“IPS External”);

}

/* for internal interface */

Module IPSInternal() {

packet(p)|(p.s_addr&INSIDE_NET_MASK != INSIDE_NET_ADDR)

(message(“IPS Internal”);

}

8. SYN Flooding

Module SYNFlooding() {

packet(p)|(p.tcp_flag == SYN)

(nSyn = nSyn + 1;

 every predefined interval, check

 if (nSyn > SYN_THRESHOLD)

message(“SYN Flooding”);

 else

nSyn = 0;

packet(p)|(p.tcp_flag == ACK)

(if (nSyn > 0)

nSyn = nSyn – 1;

}

9. Ping Flooding

Module PingFlooding() {

packet(p)|(p.icmp_type == ICMP_ECHO_TYPE_REQUEST)

(nPing = nPing + 1;

 every predefined interval, check

 if (nPing > PING_THRESHOLD)

message(“Ping Flooding”);

 else

nPing = 0;

}

10. RIP Trace

#define 3

Module RIPTrace() {

packet(p)|(p.rip_command == RIP_TRACE_COMMAND)

(message(“RIP Trace Command On”);

}

REFERENCES

[1]
Larry J. Hughes, Jr. Actually Useful Internet Security Techniques, New Riders Publishing, Indianapolis, IN, 1995.

[2]
R. Heady, G. Luger, A. Maccabe, and B. Mukherjee. A Method To Detect Intrusive Activity in a Networked Environment. In Proceedings of the 14th National Computer Security Conference, pages 362-371, October 1991.

[3]
Abdelaziz Monnji. Languages and Tools for Rule-Based Distributed Intrusion Detection, PhD thesis, Facultes Universitaires, Notre-Dame de la Paix, Belgium, September 1997.

[4]
W. R. Stevens. TCP/IP Illustrated Vol. 1 – The Protocols, Addison-Wesley Publishing Company, Inc. Reading, MA, 1994.

[5]
S. M. Bellovin. Security Problems in the TCP/IP Protocol Suite, Computer Communications Review, Vol. 19, No. 2, pp. 32-48, April 1989.

[6]
Morris R. A Weakness in the 4.2 BSD UNIX TCP/IP Software, Computer Science Technical Report No 117, AT&T Bell Laboratories, Murray Hill, NJ, 1985.

[7]
CERT. TCP SYN Flooding and IP Spoofing Attacks, Carnegie Mellon University, Pittsburgh, PA, September 1996.

[8]
C. Cobb and S. Cobb. Denial of Service, Secure Computing, pp.58-60, July 1997.

[9]
C. L. Schuba, I.V. Krsul, Makus G. Kuhn, E.H. Spafford, A. Sundaram, D. Zamboni. Analysis of a Denial of Service Attack on TCP, Purdue University, West Lafayette, IN, 1996.

[10]
S. Dash. Integration of DNSSEC (key-server) with Ssh Application, MS thesis, Iowa State University, Ames, IA, 1997.

[11]
W. R. Stevens. UNIX Network Programming Vol. 1 – Network APIs: Sockets and XTI, Second Edition, Prentice Hall PTR, Upper Saddle River, NJ, 1998.

[12]
Vern Paxson. Bro: A System for Detecting Network Intruders in Real-Time, Lawrence Berkeley National Laboratory, Berkeley, CA, 1998.

[13]
R. C. Sekar, R. Ramesh, I. V. Ramakrishnan. Adaptive Pattern Matching, Bellcore, Morristown, NJ, 1993.

[14]
Steven McCanne, Van Jacobson. The BSD Packet Filter: A New Architecture for User-level Packet Capture, Lawrence Berkeley Laboratory, Berkeley, CA, 1992.

[15]
Biswanath Mukherjee, L. Todd Heberlein, Karl N. Levitt. Network Intrusion Detection, IEEE Network, pp.26-41, May/June 1994.

[16]
Frederick B. Cohen. A Node on Distributed Coordinated Attacks, Computer & Security, pp.103-121, v15, 1996.

[17]
Steven Cheung, Karl N. Levitt. Protecting Routing Infrastructures from Denial of Service Using Cooperative Intrusion Detection, University of California, Davis, CA, 1997.

[18]
Christoph L. Schuba. Addressing Weakness in the Domain Name System Protocol, COAST Laboratory, Purdue University, West Lafayette, IN, 1993.

[19]
Eugene H. Spafford. The Internet Worm Incident, Technical Report CSD-TR-993, Purdue University, West Lafayette, IN, September 19, 1991.

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation to Dr. R. C. Sekar, my major professor, for his full support, valuable advice and assistance to carry out and complete this research.

I would like to thank Dr. Johnny Wong for his help in my graduate study. His encouragement and support makes my two years study at Iowa State University the most rewarding time in my life.

The contribution of Dr. Doug Jacobson as committee member is greatly acknowledged.

Many thanks to Premchand Uppuluri, Ravi Vankamamidi and Yong Cai for their help to my research and study.

Finally, thanks for the love from my parents and my wife, Li Fang. Without their support, I would not have completed this research.

This project is supported by Defense Advanced Research Project Agency's Information Technology Office (DARPA-ITO) under the Information System Survivability program, under contract number F30602-97-C-0244.

user data

Appl. header user data

TCP header application data

IP header TCP header application data

Ether header IP header TCP header application data Ether trailer

version length type of service total length

 identification flags fragment offset

 time to live protocol header checksum

 source IP address

 destination IP address

 options (if any)

 data

 source port number destination port number

 UDP length UDP checksum

 data

 source port number destination port number

 sequence number

 acknowledge number

header reserved urg,ack,psh,rst,syn,fin window size

 TCP checksum urgent pointer

 options (if any)

 data (if any)

X (D: SYN(ISNx), SRC = S

D (S: SYN(ISNd), ACK(ISNx)

X (D: ACK(ISNg), SRC = S

Normal Remote Login Session:

C (S: SYN(ISNc)

	S (C: SYN(ISNs), ACK(ISNc)

C (S: ACK(ISNs)

	C (S: data

	S (C: data

Spoofed Intrusion:

X (S: SYN(ISNx), SRC = C

	S (C: SYN(ISNs), ACK(ISNx)

X (S: ACK(ISNs), SRC = C

	X (S: ACK(ISNs), SRC = C, malicious messages

Bastion

Host

(Application

Gateways)

Screening

Router

External

Network

Internal

Network

user process

user process

 filter filter

BPF driver

device driver

protocol stack

CFG Filter Function for “host foo”

ip.dst=foo

ether.type=ARP

FALSE

TRUE

arp.dst=foo

arp.src=foo

ether.type=RARP

ip.src=foo

ether.type=IP

Expression Tree Filter Function for “host foo”

ip.dst

=foo

ip.src

=foo

ether.type

=IP

ether.type

=RARP

arp.src

=foo

arp.dst

=foo

ether.type

=ARP

OR

OR

OR

AND

AND

OR

IP_IGMP

IP_ICMP

False

True | message (“IP Unknown Protocol”)

IP_TCP

IP_UDP

p.protocol

(

ETHER_IP

p.e_type

True | message (“IP Unknown Protocol”)

p.protocol != IP_IGMP

p.protocol != IP_ICMP

False

p.protocol != IP_UDP

p.e_type==ETHER_IP

p.protocol != IP_TCP

True | message (“host foo”)

False

p.s_addr==xx.yy.zz.ww

{}

{2}

{1, 2} --

1 – candidate rule,

2 – matched rule.

CHARGEN_PORT

{3}

{4}

{}

{}

p.e_type==ETHER_IP

(

x

2

(

2

event stream

packet stream

x

Data link

layer

tcpdump

file

Runtime ASL-PFM

Event Engine

{2}

(

ECHO_PORT

p.udp_dport

{2}

{}

{}

{1}

SYN

ACK

(

p.udp_sport

{3,4}

IP_ICMP

IP_IGMP

p.tcp_flag

(

{1,2,3,4}

IP_TCP

IP_UDP

p.protocol

p.e_type

(

{}

ETHER_IP

{1,2,3,4}

p.e_type == ETHER_IP

p.protocol == IP_TCP

p.tcp_flag == SYN

1

2

1

1

z

D

{}

p.s_addr

p.s_addr

p.protocol

y

S

p.icmp_type

0x87654321

(

(

{2}

p.s_addr

{1,2}

0x87654321

(

ECHO_REQ

(

IP_ICMP

p.e_type

(

ETHER_IP

{2}

{}

{1,2}

{}

{1,2}

{1,2}

{2}

{2}

{1}

{1,2}

0x87654321

(

{}

p.s_addr

data

link

p.protocol

p.icmp_type

Packet Filter

I

(

process

kernel

p.s_addr

{1,2}

0x87654321

(

ECHO_REQ

(

IP_ICMP

p.e_type

(

ETHER_IP

III

II

{1,2}

{}

{1,2}

{1,2}

0x87654321

(

{2}

{2}

{1}

{1,2}

protocol stack

bufmod

(buffer)

pfmod

(filter)

pfmod

(filter)

bufmod

(buffer)

application

application

Event control

Policy script

Packet stream

Filtered packet stream

Event stream

Real-time notificaition

Network

libpcap

Event Engine

Policy Script Interpreter

(

3

1

3

1

(

y

1

x

y

(

(

(

(

1

1

1

1

(

x

y

2

3

1

y

y

Choose x first, then y.

2

2

1.0 = 0.4+0.6

0.4=0.08*0.32

0.6=0.12+0.48

0.48=0.6*0.8

0.12=0.6*0.2

0.32=0.4*0.8

0.08=0.4*0.2

� EMBED Excel.Sheet.8 ���

� EMBED Excel.Sheet.8 ���

_962805342.xls
Chart2

		1		1		1

		4		4		4

		8		8		8

		16		16		16

		32		32		32

Sequential Comparison

Binary Search

Hashing Table

Number of Patterns

Processing Time for 1 Packet (Microsecond)

Branching Mechanism Comparison

0.062

0.063

0.168

0.219

0.146

0.168

0.254

0.182

0.168

0.463

0.22

0.168

1.08

0.248

0.168

Sheet1

		1		4		8		16		32				1		4		8		16		32

		0.062		0.219		0.254		0.463		1.080				0.0002066667		0.00073		0.0008466667		0.0015433333		0.0036

		0.063		0.146		0.182		0.220		0.248				0.00021		0.0004866667		0.0006066667		0.0007333333		0.0008266667

		0.168		0.168		0.168		0.168		0.168				0.00056		0.00056		0.00056		0.00056		0.00056

Sheet1

		0		0		0

		0		0		0

		0		0		0

		0		0		0

		0		0		0

Sequential Comparison

Binary Search

Hashing Table

Number of Patterns

Processing Time (Microsecond)

Branching Mechanism Comparison

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Sheet2

		1		4		8		16		32

		5.48		5.98		6.74		7.89		10.29

		18.62		43.71		50.5		50.5		50.5

		1		1.0912408759		1.2299270073		1.4397810219		1.8777372263

		1		2.3474758324		2.7121374866		2.7121374866		2.7121374866

Sheet2

		0		0

		0		0

		0		0

		0		0

		0		0

BPF

ASL

Number of Patterns

Relative Time

ASL vs. BPF

0

0

0

0

0

0

0

0

0

0

Sheet3

		

_962805990.xls
Chart3

		1		1

		4		4

		8		8

		16		16

		32		32

BPF

ASL

Number of Patterns

Processing Time for 1 Packet (Microsecond)

ASL vs. BPF

1.8266666667

0.0620666667

1.9933333333

0.1457

2.2466666667

0.1683333333

2.63

0.1683333333

3.43

0.1683333333

Sheet1

		1		4		8		16		32				1		4		8		16		32

		0.062		0.219		0.254		0.463		1.080				0.0002066667		0.00073		0.0008466667		0.0015433333		0.0036

		0.063		0.146		0.182		0.220		0.248				0.00021		0.0004866667		0.0006066667		0.0007333333		0.0008266667

		0.168		0.168		0.168		0.168		0.168				0.00056		0.00056		0.00056		0.00056		0.00056

Sheet1

		

Sequential Comparison

Binary Search

Hashing Table

Number of Patterns

Processing Time (Microsecond)

Branching Mechanism Comparison

Sheet2

		1		4		8		16		32

		5.48		5.98		6.74		7.89		10.29

		18.62		43.71		50.5		50.5		50.5

		1.8266666667		1.9933333333		2.2466666667		2.63		3.43

		0.0620666667		0.1457		0.1683333333		0.1683333333		0.1683333333

Sheet2

		

BPF

ASL

Number of Patterns

Processing Time for 1 Packet (Microsecond)

ASL vs. BPF

Sheet3

		

