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ABSTRACT

As more and more of our critical infrastructures such as telecommunication, transportation, commerce and banking are controlled by networks of computers, it is becoming increasingly important to secure these systems against coordinated attacks. Most such attacks are based on exploiting software errors on the target systems. Since it is infeasible to eliminate all software errors that lead to vulnerabilities, research efforts have focussed on intrusion detection techniques that detect attempts to exploit these vulnerabilities. 

In contrast with previous research that focussed on after-the-fact detection, our project aims to develop proactive techniques that can prevent intrusions before they occur, and/or automate responses so as to contain damages due to such attacks. Our approach is based on high-level specifications of security-related behaviors of processes and hosts. Deviations from these specifications indicate intrusions. Assuming that the different components of the system to be protected are physically secure, the only mechanism for delivering attacks are the network packets arriving at the target host. Moreover, any damage to the system must occur either because of errors in the operating system kernel or as a result of the operating system calls made by application processes running on the system. We therefore characterize system behaviors in ASL in terms of the sequence of network packets received on the system and the operating-system calls (together with their arguments) made by processes on the system. 

Our work in this thesis focuses on the following aspects of ASL design and implementation. We develop the interface definition component of ASL, which decouples ASL implementation from the specifics of each interface (such as the system call, network interface) from which our system may acquire data. In order to do this without compromising the robustness of the specification language, we develop a strong type system for the language. We implement the front-end of the ASL compiler, which includes the lexical analyzer, parser, type-checker and module instantiator. The front-end of the compiler interfaces to the back-end (not developed in this thesis), which translates these rules into C++ code that can be compiled and linked with a runtime system to produce an intrusion detection/response system.

CHAPTER 1. INTRODUCTION

Computer networking has seen dramatic growth over the past decade, thanks in part to the rapid expansion of the Internet. Increasingly it is playing an important role in providing critical services such as power generation and distribution, telecommunication, commerce and banking and transportation. As with every technological breakthrough, the current advances in this field also lend themselves to misuse. Individuals or organizations can seriously disrupt the above-mentioned critical services by attacking their computer networks. Hence it is very important to protect the networks from malicious attacks so as to ensure their reliability. 

A majority of attacks on modern computer systems are based on exploiting errors in various applications or system programs and/or operating system implementations to gain unauthorized privileges in the system. For instance, the well-known Internet worm [Spafford91] exploited a buffer-overflow error in the UNIX fingerd program, and also an inadequate authentication error in the sendmail program involving the use of a debug option. In spite of extensive use and several years of bug-fixes, the continuing stream of advisories from organizations such as the CERT( (Computer Emergency Response Center) Coordination Center suggests that similar errors will continue to persist in many applications and system programs in the foreseeable future. Thus, techniques for securing computer systems must focus on approaches that can detect exploitation of such errors, rather than relying on elimination of the underlying errors. Several such techniques for intrusion detection have been developed recently [Anderson95, Forrest97, Ilgun93, Kumar94, Ko96, Lunt93].

Going one step further, simply detecting intrusions would not help if we want to combat the intrusions, as the intruder would have done damage before we responded. Hence, there is a need for a system that combines detection of an intrusion with automatic response. This would allow critical tasks as detailed above to continue to perform in spite of failures caused by either bugs in the programs or by malicious attacks.  The key issues being addressed in the project are: detecting a possible attack before it causes any damage and automating the response to defend against the attack. Our approach is based on specifying expected behaviors of components characterized in terms of interactions along well-defined interfaces such as process-to-OS interface and network-to-host interface. Deviations from these specifications are indicative of intrusions. Our specification language also permits us to capture the responses to be taken when the assertions are violated. This helps in integrating the automated response function with the detection function.

1.1.  Our Approach

We develop a high level language, Audit Specification Language (ASL), to capture intended behaviors of components. These behaviors over well-defined interfaces (such as process-to-OS, host-to-network) are characterized in terms of events.  ASL is an event-based language wherein system administrators can write specifications describing the normal behavior (or vulnerabilities) of hosts and processes running on them. For example, program-level specifications can be written based on the intended behavior of the program as can be determined from its manual pages or other documentation, as well as specific known vulnerabilities obtainable from sources such as attack advisories. Deviations from the intended behaviors are indicative of intrusions. ASL is powerful enough to express a range of integrity constraints and events over time. Specifications in ASL are compiled into optimized programs for efficient detection of deviations from these specifications. The primary purpose of the current thesis work involves:

· Acquisition of information across interfaces (such as process-OS) into the detection system.

· Description of the information in terms of interactions.

· Specifying the reactions.

Assuming that the different components of the information system are physically secure, the only mechanism for delivering attacks are the network packets arriving at the target host. Moreover, any damage to the system must occur either because of errors in the operating system kernel (especially the network device drivers and protocol implementations) or the application process receiving the messages.  In the former case, we can characterize the attack in terms of the contents of the packets and their sequencing.  In the latter case, damage must eventually be effected via the system calls made by the attacked process to access services provided by its operating-system environment. In particular, operations for manipulating files or network connections are all administered through system calls. In either case, security-related behaviors can be represented in terms of the network packets originating from or arriving at a host, and/or the system calls made by each process running on the host. Hence these are the two interfaces in which we will be mainly interested. However, we have made describing the interface in ASL generic enough to express different unrelated interfaces in a uniform way.

The rest of this chapter is organized as follows. In the next section, we give a description of the system model. Related work is explained in the subsequent section. We then proceed to the contribution of this thesis. Finally we give the overall organization of the thesis.

1.1.1.   Protected System Model

The system to be secured is modeled as a distributed system consisting of many hosts interconnected by a network. The network and the hosts are assumed to be physically secure, but the network is interconnected to the public Internet.  Since attackers do not have physical access to the hosts that they are attacking, all attacks must be launched remotely from the public network. 

1.1.2.   Behavioral Specifications Model

The detection system detects attacks on individual processes and hosts in a decentralized fashion, based on events that are observable at a per-process level and a single host level. The specific choice of events used in the behavioral model is influenced by the following considerations. We are interested in identifying and observing events that impact the security-related behavior of processes and/or hosts.  If all programs were designed with intrusion detection in mind, they would internally notice and report security-related events to an external security system. However, most existing programs are not designed in this manner.  Therefore, we need to use other methods to extract security-related events.  The current approach is to:

· identify the well-defined interfaces used by all processes and hosts,

· treat interactions on these interfaces as event,

· develop behavioral specifications describing permissible event sequences, and

· intercept and verify actual event sequences occurring at runtime against the behavioral specifications. 

Currently, we are focussing on the process-to-operating system (OS) interface and host-to-network interface. One could also model security behaviors in terms of other events (e.g., events recorded in audit logs or other system logs, notifications received over a management protocol such as SNMP). Interception of system calls and packets enables runtime validation and reaction, whereas the other sources of data support only offline observation with limited ability to prevent ongoing attacks or take reactions that contain the resultant damage.  Nevertheless, other sources of data do provide valuable information that may not be easily obtained from the raw network packets or system calls.  As such, the system has been designed in such a manner as to permit easy integration with alternative sources of data.  In particular, information specific to each interface (such as the events that can be observed at the interface, datatypes that can be exchanged over the interface, external functions that can be used for effecting reactions, etc.) is declared in ASL as part of an interface specification. Detection programs generated from ASL specifications will provide functions to handle each of the interface events, while relying on a runtime support system to provide the external functions. This enables ASL to acquire information from heterogeneous sources in a way that would not require any further effort by the user of the language.

1.1.3.   Detection System Model

The detection system consists of an offline and a runtime components. The offline system is concerned with the generation of detection engines based on the ASL behavioral specifications, whereas the runtime system is concerned with the execution of the generated engines. We focus on the process-to-OS and host-to-network interfaces.  There would be one detection engine for monitoring network packets, and a single detection engine per process for monitoring system calls. 

The first step in intrusion detection is the preparation of detection engine based on the specifications in ASL. The starting point is a system security administrator who is familiar with the functionality of various system components, as well as known system vulnerabilities.  These behaviors (or vulnerabilities) are captured using ASL specifications at the system call or network packet level.  The system call level specifications are developed by a system security administrator who is familiar with intended behavior of a program as well as specific known vulnerabilities obtainable from sources such as attack advisories.  Network packet level specifications are also developed in an analogous manner, based on documentation on network protocols and services, and vulnerability information obtained from attack advisories and the like. The ASL compiler translates these specifications into a C++ class definition.  This is then compiled by a C++ compiler and linked with a runtime infrastructure to produce a detection engine. The runtime infrastructure provides all of the support functions pertaining to the interface being monitored by the specification.  For instance, the system call runtime infrastructure will provide the mechanism for intercepting system calls, delivering them to the detection engine and provide functions that can be used by the detection engine to take responsive actions. 

1.2.  Related Work

Intrusion detection techniques can be broadly divided into anomaly detection and misuse detection techniques. Anomaly detection based approaches first create a profile that defines normal behaviors and then detect deviations from this profile. Several such techniques have been developed, based on statistical methods, expert systems, neural networks, or a combination of these methods [Fox90, Lunt88, Lunt92, Anderson95]. One of the main advantages of anomaly-based intrusion detection is that the system can be trained to identify normal behavior, and it can then automatically detect when observed behavior deviates significantly from this. The downside is that an attacker can evade detection by changing behavior slowly over time. For this reason, most systems combine anomaly detection with misuse detection, where we define and look for precise sequences of events that result in compromising the security of a system. Intrusion can be flagged as soon as these events occur. Techniques for misuse detection have been based on expert systems, state-transition systems [Porras92, Ilgun93] and pattern-matching [Kumar94]. While it is relatively easy to deal with known vulnerabilities using misuse detection, it is difficult to cope with unknown vulnerabilities.  

A specification-based approach, first proposed by Ko et al [Ko94, Ko96], is aimed at overcoming the drawbacks of misuse detection. This is done by describing intended behaviors of programs, which does not require us to be aware of all the vulnerabilities in the program that could be misused. An important improvement in our approach is that we can enforce the specified behaviors at runtime to prevent large classes of attacks, whereas their approach uses offline analysis of audit logs. Another important distinction arises in terms of the specification language used. [Ko96] uses a specification language based on context-free grammars augmented with state variables, while our specification language is closer to regular languages augmented with state variables. While regular grammars are less expressive than context-free grammars, the difference is much less pronounced when these grammars have been augmented with state variables. Moreover, use of regular grammars affords the ability to compile the specifications into an extended finite-state automaton (EFSA) which is a finite-state machine that is augmented with state variables. Such an EFSA would enable very efficient runtime checking, while using bounded resources (CPU or memory) that can be determined a priori. These factors are particularly important in the context of an online approach such as ours. 

Forrest et al [Forrest97, Kosoresow97] have developed intrusion detection techniques inspired by immune systems in animals. They characterize “self” for a UNIX process in terms of (short) sequences of system calls that are made by the process in course of normal operation. Intrusion is detected when we observe “foreign” system call sequences that have not been observed under normal operation. Their research results are largely complementary to ours, in that their focus is on learning normal behaviors of processes, while our focus is on specifying and enforcing these behaviors efficiently. In particular, the finite-state automaton learnt by the technique of [Kosoresow97] could be fed as input to our runtime monitoring and isolation system. Goldberg et al [Goldberg96] have developed the Janus environment designed for confining helper applications (such as those launched by web-browsers) so that they are restricted in their use of system calls. Like our techniques, they can also prevent unauthorized operations, such as attempts to modify a user’s “.login” file. However, their approach is designed more as a finer-grained access-control mechanism rather than as an intrusion detection mechanism. The essential distinction we make in this context is as follows. Access control mechanisms enable us to provide the minimum set of access rights needed by each process to get their job done, while intrusion detection techniques are aimed at determining whether a process uses its access rights in the intended fashion. For instance, problems such as race conditions and unexpected interactions among multiple processes all manifest themselves as unintended use of access rights. Consequently, it is necessary for us to support a more expressive specification language that can capture sequencing relationships among system calls made by one or more processes, whereas Janus permits restriction of access to individual system calls only. 

1.3.  Issues Addressed in this Thesis

We envision running the intrusion detection system from within the operating system kernel to enable real-time response. To achieve this goal, our system needs to be robust and tackle static and dynamic errors in the specifications. If for any reason the specification written in ASL is incorrect, it might end-up becoming vulnerability. Hackers can then take advantage of this security hole in much the same way as they currently take advantage of the errors in applications/system programs. Therefore, we have developed a simple, yet powerful language made robust with an expressive type system. 

On a related front, we need to gather data from heterogeneous sources of information to be used as input for the detection engine. In other words, we need to develop a data model for acquiring events from heterogeneous sources in a way that hides the low-level details accociated with the interface. For example, data can be obtained from disparate sources like system calls, network packets, SNMP, audit logs, etc. As can be seen, one of the data sources might be in a binary form while the other is in the form of a simple ASCII text file. In ASL, incoming data is viewed in terms of events. For example, data received at the network level is viewed as a packet event; data associated with the invocation of a system call is viewed as a system-call event, etc. Once the data is represented in the form of an event, the rest of the specification deals with extracting information from this data; describing patterns that correspond to intended or normal behavior, to specify reactions that automate response. From the viewpoint of the specification writer, then, the role of heterogeneous data is limited to the ability to capture data in the form of events and to be able to manipulate it in some fashion. To achieve this level of transparency, techniques for “interfacing” to heterogeneous data are developed in the current work. In ASL, we describe the data from a source in the form of events and provide capabilities (internal to ASL or external) to manipulate or view the data. 

Finally, we make a case for automatic response. Our approach is aimed at prevention, detection and automated response to malicious attacks on computer systems and networks. In order to provide the preventive ability, we intercept, monitor and possibly alter the interactions at the system call and network-packet interfaces. In order to provide the ability to respond we provide reaction component in the language. The general structure of ASL rule (to capture the intended/normal behavior) is as follows:

Rule:
(event | condition) ( reaction

In this example, when the condition is matched over the data coming from the event, the reaction part kicks in. Since ASL also provides ability to store state, one can aggregate data in the reaction component. Moreover, when a certain threshold level for the aggregated item is reached, we can specify the actions that are to be taken to safeguard the system from intrusions. 

1.4.  Thesis Organization

The rest of the thesis is divided organized as follows:

· In Chapter 2, background information on the various network intrusions and system call level intrusions are detailed.

· In Chapter 3, we move onto the description of the work done on interfacing heterogeneous sources of information. This is our most significant contribution to this thesis work. It explains the problem in detail and details the steps taken to solve it. Other steps in the design phase are also detailed.

· Chapter 4 deals with some practical illustrations of ASL usage. A section on data collection from audit logs is also included.

· Chapter 5 describes the implementation of the ASL language. Emphasis is given to the type checking mechanism.

· Concluding remarks appear in Chapter 6.

ATTACKS ON COMPUTERS 

This chapter gives background information on some of the common attacks on hosts in computer network. We concentrate on application level intrusions and network-level intrusions. 

1.5.  Application Level Intrusions

We refer to application level intrusions as those that arise due to bugs in a software program. Since applications make calls to the underlying operating system during execution, the “bugs” in software can be termed as the misuse of system calls (either intentionally or unintentionally). Herein we will delve into the software flaws that make the computer system vulnerable.

1.5.1.   Trojan Horse Attack

Trojan Horse attack refers generally to a program that masquerades as a useful service but exploits the rights of the program's user in a way that the user does not intend to.  For example, an application might declare that it is an email client. In actual practice, in addition to being an email client, this application might also be sending information about the system on which it runs. The malicious flaw can occur in software obtained via a download from an untrusted source. 

1.5.2.   Rdist Attack (Race Condition)

This attack refers to the exploitation of timing window between two operations. Rdistd is the server program for the rdist command. Rdist is a program to maintain identical copies of files over multiple hosts. It preserves the owner, group, mode, and modification time of files and can update programs that are executing. The way rdistd works is by first creating a temporary file that the user is allowed to modify. Since rdist is a setuid program, the owner of this temporary file is root.  When the user completes writing to the file, rdistd uses chown(), chmod(), and rename() system calls to change the own, mode and name of the temporary file to the user (who invoked the rdistd program.) 

An attacker can exploit the small window of opportunity that exists between the time of creation of the temporary file and the changing of its mode (owner). An attacker can symbolically-link the temporary file with any other files (e.g. /etc/passwd) and change it's mode to public write or change it's owner. This way he can allow himself into the system with root privileges.

1.5.3.   Lpr Attack 
A more complex example involving multi-place attack.  The lpr command is a setuid root program that places files in the spool directory on behalf of users. Typically, it places a copy of the file in the spool directory, but if given the -s option, it will create a symbolic link to the file in the spool directory.

The files in the spool directory have a very predictable name. The name of a spool file starts with cf for a control file and df for its associated data file. The 3-digit number after cfA and dfA part of the file names will increment after every print command. Thus, after a thousand print commands, the same filename will be reused.

The essence of this attack is to create a link in the spool directory to a file you want to overwrite. After that, execute a thousand prints until the number in the spool directory filename warps around, then print the file you want to overwrite. The lpr program will write over the existing link, and as it is setuid root, it can overwrite whatever that link pointed to. If the number in the spool directory filename does not warp around or if there is a check to make sure that the lpr process can only write files in spool directory, this attack can not happen.

1.6.  Network Level Intrusions

Large classes of network intrusions seek out the weakness in the TCP/IP protocol specification and/or implementation of the TCP/IP stack. A few notable attacks include IP spoofing, TCP sequence number prediction, SYN flooding, Ping of Death etc. Herein, we will look into a few such attacks

1.6.1.   CHARGEN and ECHO Attack

CHARGEN is a simple service provided by almost all TCP/IP implementation under UNIX.  It runs on both UDP and TCP port 19.  For every incoming UDP packet received at this port, the server sends back a packet with zero to 512 randomly selected characters.  Another similar service, ECHO, (which runs on UDP and TCP port 7), responds to each packet it receives by sending back the same packet. These two services are normally used for the diagnostic purpose.  However, they can be employed effectively by a denial-of-service type intrusion. This would involve redirecting the CHARGEN packets to the echo packets and vice-versa. This way, a huge number of packets per unit time are exchanged back and forth by these two services leading to network clogging and thus resulting in a denial of service on the machines the services are provided.  

Launching such an intrusion is surprisingly easy [Guang98].  A simple UDP packet could set a whole network into trouble.  Suppose there are two hosts A and B and a hacker on machine X.  With the help of IP source address spoofing, the hacker can send out a UDP packet to A with B’s IP address as the source address and 7 as the source port, while setting the destination IP address as A’s IP address and 19 as the destination port.  When this packet is received by A, A will falsely think B is requiring the CHARGEN service, then sends back a packet to B’s ECHO port.  At this point, a “chain” has been established successfully.  Subsequently, large amount of traffic will be generated within the network where hosts A and B reside.  Consequently, network users will feel an abrupt drop of the speed of their network applications.

1.6.2.   SYN Flooding

Unlike the simple CHARGEN and ECHO intrusion, SYN flooding is a more specialized attack that employs a flood of SYN packets (TCP SYN Packets) to consume TCP-related resources on the targeted host, resulting in denial of service to genuine network requests. This intrusion applies to all TCP connections, such as WWW, Telnet etc.

In most TCP/IP implementations for UNIX, several memory structures need to be allocated for each TCP connection request. Typically, these structures will take at least 280 bytes in total. For establishing a TCP connection, the three-way handshake (Figure 1) should be completed. As soon as a TCP SYN packet is received, the server allocates several memory structures and sends back a SYN_ACK packet (for continuing the three-way handshake.)  Meanwhile, system enters SYN_RECVD State and starts up a connection establishment timer (which might wait up to 75 seconds). The server then waits for an ACK packet from the connection initiator. If the ACK packet arrives before the timer expires, the request will leave kernel space and goes to backlog queue or application process space.  Otherwise, the three-way handshake fails.  Under both cases, the corresponding memory structures will be released from kernel space.


Figure 1.   Three way hand shake

Since the TCP connection-setup is expensive, there is a limit on the total number of half-open connections.  A hacker explores this limitation and initiates a SYN flooding attack by issuing a large number of connection requests with spoofed source IP address to the victim host.  The target host cannot tell a malicious request from a legal request.  After receiving a SYN packet, it will respond with SYN_ACK packet as usual.  Unfortunately, this time the final ACK packet will not come back, for the SYN packet has a spoofed source address that appears “unreachable” from the victim host. But the host keeps all the data structures associated with this connection until the timer times out. Thus, if there are a large number of such half-open connections maintained for an attacking machine, there would be no resources available for a legal request. This results in a denial of service.     

ASL Design

Designing a language involves a great deal of effort. Designing a language for real-time detection and prevention of intrusions is even harder. ASL is a specification language that incorporates features such as seamless integration of data from heterogeneous sources, strong type checking flexible data structures and automated response. To make all these things happen, we need to come up with a language design that is simple enough for a new user to understand. At the same time, it should be robust enough to handle lexical and semantic errors in the specification. This calls for a flexible, yet feature-rich language that caters to the needs of intrusion detection. ASL is our answer to these stringent requirements. In what follows, we will describe the following important design choices:

· Interface Design: This is the essential novelty of the language. We design this feature to help refer to the data from disparate sources in a uniform way. 

· Data Types: There would be times when some of the data one would refer to from within the detection engine agent might be present in another process’s address space. We develop techniques to tackle the problem. In addition, in order to describe the special nature of information sources like packets, we need to come up with specialized data structures. 

· The general structure of the language design is then discussed. Without some mechanism to aggregate data, our system would not be useful. We discuss support provided in ASL to do just that.

· Finally, we talk about the design of the type system. Since it is very important to have a robust system (since we intend to run detection engine in the kernel space), design of the type checker assumes utmost importance. We discuss in depth the issue of type checking of events. 

1.7.  Issues in Interface Definition Language

In this section, we will see the importance of collecting information from heterogeneous sources. We will also try to solve this in a way that is transparent to the specification developer.  In this context, we will introduce the concept of “interfacing” referred in the context of representing the data sources in ASL. Finally, we will see how this has been achieved in ASL.

1.7.1.   Data Collection from Heterogeneous Sources

The basis for “intrusion detection” as well as for “network monitoring” is to deduce relationships (aggregate data) from the data that comes in. Hence, it is of paramount importance to collect as much data as possible in order to come to the correct decision. Another important aspect is that it may not be wise to rely on just a single source of information for detecting intrusions. Sometimes the information obtained at two different sources together may indicate an intrusion. Therefore, it is also important to collect information from heterogeneous sources. Examples of such data sources include packet-level data, system-call invocation data and audit trail data. The two main issues we would be looking at include: 

· Number of data sources we would be interested.

· Flexibility in representing the data from a particular source.

If we design our language in such a way that we support the data collection functions and aggregation functions for specific data formats, we will be seriously undermining the extensibility of the system. If, in future, we decide that information necessary for intrusion detection can be easily obtained through Simple Network Management Protocol (SNMP), we will have no way of capturing that data in ASL. For this reason, we need a unified way of representing the data source, which should be independent of the data from the source itself. 

The second issue of “flexibility” in representing the data from a particular source is very important. Take for example, the case of network level IP-packets. Today, we know the way that the IP-packets are set-up. First, there will be an Ethernet header. Then depending on the type of packet, it may have an IP-header or ICMP header. If it is an IP-header, it may have UDP or TCP headers and so on. So, is it easier to represent them as simple structures holding specific data fields? Yes, of course. However, consider the scenario where a new kind of packet, say IPV6 is invented (in this Internet age, this is not an impossibility). In its current form (as we represented above), we will not be able to deal with these new kinds of packets. We will have to go back to source code for ASL, incorporate the changes (by including new data structures representing IPV6) and recompile it again. Clearly, something better can be done than this. That is what we attempted to do by allowing the ASL specification writer to describe the data structures as and when deemed fit. This calls for language support to describe the data structures. We provided support for psuedo-C-structs (which will be described in later chapters).

1.7.2.   Our Approach

The keyword for capturing heterogeneous data is flexibility. As discussed above, we need to be able to use data from all sources of data in a uniform way. This calls for developing new techniques for solving the problem. In ASL, we follow the approach of describing the sources of information with the help of an interface (Figure 2). Put simply, the person using ASL to write specifications to capture data has to first define the interfaces from which he will be obtaining the information. ASL treats these interfaces as “black boxes”. The implementation for the functions described in the interfaces should be provided by the specification developer.


Figure 2.   Data Collection from heterogeneous sources

1.7.3.   Interface

Webster’s Dictionary defines the word “interface” as follows:

· The place at which independent and often unrelated systems meet and act on or communicate with each other <the man-machine interface> 

· The means by which interaction or communication is achieved at an interface

· To interact or coordinate harmoniously

This is pretty much what we are trying to achieve through the interface mechanism. We want to be able to coalesce independent and often unrelated systems (data sources) so that the information obtained from them is coordinated harmoniously. 

1.7.3.1.   ASL Interfaces

To allow the user of the flexibility talked above, we support a structure called “interface”, which can be specified by the user. It has the following constituents:

· Class Declarations. (foreign function declarations grouped under a class, a.k.a. foreign types)

· Event Declarations.

· External Function Declarations.

1.7.3.2.   Class Declarations

Data that is exchanged over the detection engines’ interfaces may not be described or manipulated in native data types (including structs) since the concrete representation may be unknown. For this reason, we introduce the concept of foreign types (defined by the keyword “class”) which are essentially abstract data types. More information can be found in the later chapters (when “Types Supported in ASL” are discussed in mode depth).

class CString {

string getVal() const;

void   setVal(string s);

};

From the above, we see that the user is at a liberty to describe the foreign functions in terms of the “class”. Thus, we adhere to the tenet we described at the beginning of this section: the keyword is flexibility.

1.7.3.3.   Event Declarations

As mentioned earlier, ASL follows an event-driven approach. As soon as an event occurs, it triggers some mechanism in ASL, which then analyzes it and acts as appropriate. For example, if we are looking at the network interface, the most important event we would be interested in is the “packet” event. It can be described in ASL as follows:

event packet(if, data, len)

where   if represents the physical network interface


data represents the content of the packet


len represents the length of the packet.         

 Therefore, events in ASL are a way to describe the kind of real-life “events” that we wish to study in order to determine the “information-worthiness” of the incoming data. This will help us in intrusion detection as well as in network monitoring in that we will be, based on the content of a particular event, able to work with these events to find out any content of interest.

1.7.3.4.   External Functions

External functions are functions that are defined outside of the detection engines, but which can be accessed from the detection engines. Semantically, they are no different from member functions associated with foreign types. In other words, member functions are simply external functions that use a different syntax.

The primary purpose of external functions is to invoke support functions needed by the detection engine or reaction operations provided by the system call and packet interceptors. For instance, when an event for opening a file is received by a detection engine, it may need to resolve the symbolic links and references to “.” and “..” in the file name to obtain a canonical name for file.  It may make use of a support function declared as follows to accomplish this:

string realpath(CString s);

The detection engine may also need to check access permissions associated with the file, which may be done using a support function declared as follows:

@stat(const Cstring s, StatBuf b);

We remark that in ASL, system call references occur in two different contexts.  The first context is an event, and the second context is the use of a system call by an ASL specification.  To differentiate between these contexts, we use the convention of preceding system calls with an @-symbol to denote the second context. 

1.7.3.5.   Summary

A generic interface is described in the figure 3. It gives the whole picture in short. ASL keywords appear in bold. Once an interface is defined for a particular information source, it could be included in all the ASL files dealing with that interface. Moreover, the power of ASL is realized because of this, since we can work with more than one interface at one time. This would allow us to observe events happening over multiple interfaces in a seamless way. 


Figure 3.   Generic interface declaration in ASL

Take for example events that occur over two different yet unrelated interfaces: the network interface and the open-system call interface. Let us consider an intruder trying to attack through the fingerd buffer-overflow attack. Now, as stated previously, we will be able to detect the suspicious activity at the network level by observing that the length of the packet is unusually long (for a finger request). Almost simultaneously, we will also observe a call to the open system call to open the “/etc/passwd” file. Looking at both the events in parallel would allow us to reach the correct conclusion: that there is a fingerd attack in progress. This may not have been possible had we concentrated on only a single interface. Thus, ASL provides a very important and much needed facility.

1.8.  Overall view of ASL Design

As stated repeatedly, ASL is an event based language. Herein, we briefly describe the way different components that come into play to make such a system possible. Firstly, this model is chosen because it is relatively easy to map the real-world events into ASL events. Let us examine various components of ASL {excluding the data types and interface definitions. 

The variables declared at the beginning of the module are called state variables since they retain state over a module instantiation. In addition, the ASL code can be modularized by allowing other modules to be instantiated inside of a module. Rules refer to the combination of sequence of event-patterns with reaction component There can be any number of rules. Observe that they are not named. With this structure, it is clear that to capture a specific attack, all one needs to do is to use the events specified in the interface over which this attack can be observed; define the different patterns that we would be interested in. Finally, if the pattern of the above (sequence of) event(s) matches, what action should be taken is specified in the reaction component. The reaction component makes use of certain aggregation techniques to determine if there is an attack under progress and if so takes appropriate actions. 

Another important feature of ASL is the strong type checking provided in the language. One of the reasons for the strong type checking in ASL is because if the ASL itself allows illegal inputs to be accepted, an attacker may try to attack the Detection engine itself, thereby compromising it. If this happens, all our efforts at intrusion detection would come to a naught since our main and only defense against intrusions is the Detection Engine. We would take a closer look at the type checking mechanisms that are implemented in ASL in the later chapters.

1.8.1.   Record Type -- Flexible Data Structure 

We discuss some of the issues involved in representing the data that is obtained at the interface (from heterogeneous sources) without hard coding. This would involve allowing the end user to declare data types and do so in an efficient manner. In what follows, we describe the issues in the design of the record types. Note that this discussion would also relate to other interfaces in general. 

An obvious way to access the contents of a network packet is to treat it as a byte stream. Then, a reference to the protocol field of an Ethernet header in an Ethernet packet in buffer p is expressed as: (short)p[12].  Drawbacks of the byte stream approach are that the type information for each field is lost and type casting is needed for most data references. Type-unsafety leads to several problems. For instance, a simple programming bug may cause access using an offset that is outside the packet boundaries which may cause a memory protection fault, or worse, a shared data inter-writing error. Or, another simple programming bug using explicit type casting, such as (int)p[15], leads to a memory-related error on architectures that require integers to be aligned on a 4 or 8 byte boundary.  Language features that minimize the likelihood of these common errors are needed, since the monitor may be running within the operating system kernel, where errors may cause the host to crash. 

One way to ensure type-safe access to packet fields is to hard code the structure of packets for various protocols into ASL. Hard-coded packet structures have been used in previous approaches for packet capturing, such as the Berkley Packet Filter (BPF) [McCanne92]. However, hard coding makes it difficult to deal with new protocols. Supporting new lower-level protocols such as ATM or IP-level protocols such as IPv6 will require substantial work. More importantly, supporting higher layer protocols such as those used for routing, NFS, DNS etc. is made more difficult by the hard-coded approach.  For these reasons, a language mechanism for conveniently describing the structure of packets is provided in ASL. 

1.9.  ASL Data Types

We distinguish between three different kinds of datatypes, each of which is described in detail in subsequent sections.

· built-in types such as integers and doubles that can be manipulated in ASL and exchanged on the interfaces. 

· record types, similar to C-structures, principally used to describe the structure of data received on one or more of the interfaces. Record types are defined using the keyword struct.  Record types can be used to describe the structure of network packets, for example.  Like built-in types, ASL can manipulate record types. The essential distinction between the C-structures and record types in ASL is that the record types support “inheritance” and constraint-mechanisms. 

· foreign types correspond to data that can be exchanged on one or more of the interfaces, but whose representation is opaque to ASL.  Foreign types are defined using the keyword class.  Unlike built-in types and record types, ASL cannot directly manipulate foreign types.  ASL can only manipulate foreign types via member functions defined on the foreign type. Since the detection engine and the monitored program might be running in two different virtual environments, the reference to a particular memory may not be valid over multiple events.  Moreover, in ASL, to avoid such pitfalls, the foreign data can only be manipulated through the functions provided in the “class”.

Since ASL specifications may be compiled into detection engines that run within an operating system kernel, safety and reliability are especially important.  Two important language mechanisms in ASL that promote safety and reliability are strong typing and the absence of pointer types.

1.9.1.   Built-in Types

Built-in types include bit, byte, short, int, long, double and string. All of the integral types excluding bit and byte may either be signed or unsigned.  Their sizes coincide with the norm for the specific host for which the ASL specification is being applied. ASL supports multi-dimensional arrays of built-in types.  

1.9.2.   Record Types

The main purpose of record types is to describe the representation of data structures exchanged across an interface. For instance, record types may be used to describe the representation of network packets or the format of records in a log file or an audit file. Specific ASL features supported for record types are based on the structure of network packets and protocols.  As mentioned earlier, the Record Types support single inheritance and constraining mechanisms. For example, if a certain constraint has been imposed on a struct, then any variable of this type should have satisfied that constraint in order for it to access the individual members in the structs. Further discussion is provided in the following sections. 

1.9.2.1.   Design Of Record Types in ASL

A simple example of a record type is illustrated by the following definition of a header for an Ethernet packet.  Record types use syntax that is similar to that used in the C-language.

#define ETHER_LEN 6

struct ether_hdr {


byte
e_dst[ETHER_LEN];
/* Ethernet destination address */


byte
e_src[ETHER_LEN];
/* Ethernet source address */


short
e_type;

/* protocol of carried packet */

}

To capture the nested structure of protocol headers, ASL employs a language mechanism similar to inheritance.  For instance, an IP header can be considered as an extension of Ethernet header with extra options for the IP protocol.

struct ip_hdr : ether_hdr { /* ether_hdr plus following fields */


bit
version[4];
/* ip version */


bit
ihl[4];
/* header length */


byte
tos;

/* type of service */


short
tot_len;
/* total length */
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byte
protocol;
/* high-level protocol */

}

Similarly, a TCP header is inherited from IP header with entire data members from IP header and Ethernet header.

struct tcp_hdr : ip_hdr { /* ip_hdr plus following fields */


short
tcp_sport;
/* source port number */


short
tcp_dport;
/* destination port number */


int
tcp_seq;
/* sequence number */


int
tcp_ackseq;
/* acknowledge number */
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}

Simple inheritance by itself is not powerful or flexible enough to satisfy our needs. In particular, the following requirements cannot be supported by simple inheritance. First, the size of some fields in the packet may depend on the values of other fields that occur earlier in the packet. For instance, we may need to describe the data part of a TCP packet as a byte array whose size is a function of the packet length field. Second, a structure describing a lower layer protocol typically has a field identifying the higher layer protocol that is carried over the lower layer protocol. For instance, the field e_type specifies whether the upper layer protocol is IP, ARP, or some other protocol. Finally, we need to accommodate the fact that the same higher layer protocol may reside on many different lower layer protocols. To support these requirements, ASL augments inheritance with constraints. The structure for IP and TCP headers with the constraint information is as follows.

#define ETHER_IP 0x0800

struct ip_hdr : ether_hdr with e_type = ETHER_IP {


bit
version[4];
/* ip version */


bit
ihl[4];
/* header length */


byte
tos;

/* type of service */


short
tot_len;
/* total length */
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byte
protocol;
/* high-level protocol */

}

#define IP_TCP 0x0006

struct tcp_hdr : ip_hdr with protocol = IP_TCP {


short
tcp_sport;
/* source port number */


short
tcp_dport;
/* destination port number */


int
tcp_seq;
/* sequence number */


int
tcp_ackseq;
/* acknowledge number */
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byte tcp_data[tot_len-ihl];

}

If we wish to capture the fact that IP may be carried over either Ethernet or a token ring networks, then we may modify the constraint associated with ip_hdr into one that may look as follows:

(ether_hdr with e_type=ETHER_IP) or (tr_hdr with tr_type=TOKRING_IP)

It is instructive to compare the notion of inheritance given by this declaration with traditional notions of single and multiple inheritance. In single inheritance, a derived class inherits properties from exactly one base class. In multiple inheritance, a derived class inherits the properties of every one of the (several) base classes. In contrast, the above declaration asserts that the derived class inherits properties from exactly one of many base classes. Viewed alternatively, multiple inheritance would correspond to a conjunction of constraints, whereas we are dealing with an exclusive-or operation here. (From the point of view of describing packet structures, there seems to be little need for supporting multiple inheritance, as protocol layering typically ensures that a single PDU of a lower layer protocol carries a packet corresponding to exactly one higher layer protocol.)
The semantics of the constraints is that they hold before we access fields corresponding to a derived type. In particular, note that at compile time, we will not know the actual type of a packet received on a network interface, except for the lowest layer protocol. For instance, all packets received on an Ethernet interface must have the header given by ether_hdr, but we do not know whether they carry an ARP or IP packet. To ensure type safety, the constraint associated with the ip_hdr must be checked (at runtime) before treating the packet as an IP packet and accessing the relevant fields. Similarly, the condition protocol = IP_TCP must be checked before treating an IP packet as a TCP packet and accessing the relevant fields.  More generally, before a field in a particular structure is accessed, all constraints associated with all of the parents of the structure need to be checked.

1.9.3.   Foreign Types

It is not appropriate to describe and manipulate some of the data that is exchanged over the detection engines' interfaces using built-in or record types. This is because the concrete representation may be unknown, subject to changes or hidden as in object-oriented languages. In addition, for system call arguments, an argument may be a pointer that resides in the virtual address space of the process being monitored, and thus may not even be accessible within the detection engine.  For these reasons, we introduce the concept of foreign types (defined by the keyword class) that are essentially abstract data types. The representation of foreign data is completely encapsulated and invisible to ASL, and can be manipulated only via operations defined as part of the data type.  

A common use for foreign types is to refer to arguments of UNIX system calls. A sample declaration for a class that corresponds to C-style string is given below. We use C++-style syntax for class definitions:

class CString {

string getVal() const;

void setVal(string s);

};

Similarly, a class describing the structure used in the system call stat is given by:

class StatBuf {

int getDev()const;

int getIno()const;

int getMode()const;
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int getAtime()const;

int getMtime()const;

int getCtime()const;

};

Note that the return type of a member function could itself be a foreign type. Whether or not member function changes the value of the object is given by the declaration associated with the function. This plays an important role in type checking of ASL patterns as described later.

1.10.  Events

For network events, an event is reception of a packet.  It may be denoted as rpkt(if,data,len) where if  denotes the network interface on which a packet was received, data refers to the content of the packet, and len denotes the length of the packet. For system call events, we associate one event with the entry to the system call and one with the exit from the system call. An example declaration of a system call entry event is: 

event stat(Cstring s, StatBuf b);

The exit from this system call is denoted by:

event $stat(Cstring s, StatBuf b);

We use the convention of using the system call name for entry events and prefixing the system call name with $-symbol for exit events. Observe that this approach provides no direct mechanism for accessing the return value from the completed system call or the value of errno. (Recall that errno is the global variable in UNIX-based systems that store the specific error code corresponding to the most recent error). A suitable convention would be to have two external functions in the interface to access these values.

int rv() const;

int errno() const;

For the audit log events, an event corresponds to a single entry in the log file being audited. We associate one event with each log file being audited. For example, if syslog file is currently being audited, then the event corresponding to it would be of the form: 

syslog (fname, time-stamp, data), 

where 

fname denotes the audit log file, 

time-stamp refers to the time at which this event happened, 

data refers to the content of the event.

1.11.  Patterns

ASL general event patterns are used to specify valid or invalid behaviors. Event patterns consist of primitive patterns composed using temporal operators. Primitive patterns describe specific events of interest, while the temporal operators capture the sequencing and timing relationships that must hold between primitive events. 
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. C may contain standard arithmetic, comparison and logical operations. It may also contain comparisons of the form x = expr where x is new variable. The semantics of such comparisons is to bind the value of expr to x. 
A primitive pattern is obtained by combining the above basic patterns with the disjunction operator ||, and possibly preceding the entire expression with the complement operator “!”.  Both operators have the obvious meaning, which is described, precisely in a subsequent section.

As an example of a primitive pattern, consider the following pattern:

execve(f,x,y) | realpath(f) != “/usr/ucb/finger”

The example captures all invocations of the execve() system call where the program being executed is other than /usr/ucb/finger. In this pattern, realpath is an external function that resolves all links (hard or symbolic) and occurrences of “.” and “..” in the filename argument and returns an absolute path name. Such a pattern may be used to capture the Internet worm attack that exploited fingerd vulnerabilities [Spafford91]. Another example of a primitive pattern is 

   !((open(f)|realpath(f)=/home/*/.plan)||(close(f))||(exit(f))

which captures all system calls other than those for opening “.plan” files, closing files or terminating processes? Patterns such as these may be used to capture disallowed system calls for many processes.

1.11.1.   General Event Patterns

To capture sequencing or timing relationships among events, ASL uses several temporal operators to compose primitive event patterns into more complex general-event patterns. The syntax of the composition operators is:
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· Real-time constraints: p within [image: image31.wmf]]
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denotes the occurrence of events corresponding to pattern p occurring over a time interval. The shorthand for [0,t] is [t], whereas the shorthand for [t,(] is [t,]. 

For convenience, we define the operator “..” that can be applied only to primitive patterns. [image: image32.wmf]1

p

..[image: image33.wmf]2

p

is equivalent to 
[image: image34.wmf]2

2

1

1

);

)

||

(

(!

;

p

p

p

p

*

, i.e., [image: image35.wmf]1

p

 followed by [image: image36.wmf]2

p

with possibly other events occurring in between. To avoid excessive use of parenthesis, we define the following associatively and precedence for the temporal operators. The operators “;” and “||” associate to the left, while “..” is non-associative. The operator “!” has the highest precedence, “*” has the next lower precedence, “;” has the next lower precedence and “||” has the lowest precedence. 

1.12.  Reaction

The reaction component is one of the most critical components in the detection of intrusions. Although it doesn’t play any direct role in determining whether an event is normal, it provides “historical” support via special data structures and control structures. What this amounts to is that the state variables in the module will be remembered and aggregated using techniques like “Moving Averages”, etc., so an appropriate action in response to an intrusion attempt can be made quickly and automatically. In addition, it is the reaction component of ASL that determines the course to be taken after an intrusion has been detected. To support such decision making, we provide C-like statements: if-then-else statement, arithmetic-operations, external function invocation and assignments. 

1.12.1.   Need for Aggregation

Aggregation forms an important technique in “making sense” out of amorphous data. In the context of network packets for example, if we were to detect an attack, we should be in a position to capture and retain only that information which would be useful for detection of an intrusion. 

Take the example of PingFlood attack. In this attack, the hacker tries to send in a large amount of “ping” request packets in a short amount of time. The victim host will spend all its networking resources catering to the incoming pings. If we were to store data from all packets that were coming in, we would be imposing severe constraint system resources. In addition, it would also be cumbersome to re-analyze all the packets that are already taken note. 

 In such a situation, we would like our PingFlood module to be able to remember the number of ping requests it is receiving in a given amount of time. This can be achieved in a number of ways. Calculating the moving averages is one such method. 

1.12.2.   Some Aggregation Mechanisms

We need to aggregate the information over a period of time. There are many aggregate mechanisms (functions). One way to describe an aggregation is by calculating the total number of events occurring in a period. 

Example: Number of failed log-in attempts in the last one week.

We can easily aggregate this information by incrementing the state variable each time a failed login is detected.

int statevar_failed_login;

if(failed_login = = true)   statevar_failed_login++ ; 

1.12.2.1.   Weighted Moving Average

Weighted moving averages give current value more weight than older values, thereby reducing the significance of older values. To do this, each value in a series is multiplied by the number of periods preceding it: the older the value, the smaller the multiplier. 

1.12.2.2.   Exponential Weighted Moving Average

Exponential moving averages are another form of weighted averaging. In a standard moving average, the oldest value in a fixed series is dropped. By contrast, all values in a given population influence an exponential moving average: older prices gradually diminish in significance. 

For the purpose of defining a following formula, let

EMA(t)  = Exponential Moving Average at time “t”

v(t)         = value at time “t”

a             = weight associated with the value. The higher the weight, 

We can now define the exponential moving average at time “t” to be:

EMA(t) = i=-∞t(v(i) * a(t-i).

The above definition implies that we first pick a weight factor (a), which would influence the importance of the values “v” over time “t”. “v” represents the value of the parameter we choose to aggregate. The closer we are to the present (time t), the higher the value of a(t-i) (0<a<1), the multiplying factor to the value. This implies that most weight is associated with the "present” value of the parameter being watched. The previous values of the parameter slowly diminish in importance. We need to maintain a special data structure which holds the past values “v”. Since it is impractical to store “all” the values, we should purge the list depending on the maximum time limit (upto which we choose to keep the values).

1.13.  Rules

A rule is of the form “pat ( (re)action”, where pat is a pattern of the form described above, and action is a sequence of responsive steps to be initiated when the pattern occurs. Actions may be empty, variable assignment or external function invocation.  Empty actions cause no action to be taken. Assignment actions cause an assignment to a variable defined within a module (see below). External function invocation causes the specified function to be executed by the runtime infrastructure. They may be used by the detection engine for such purposes as reading or writing data in the monitored process, or executing arbitrary system calls in the monitored process.  

During the module instantiation stage, we need to represent each rule inside a module uniquely. Towards this end, an internal name is generated for each rule. It is the concatenation of the module name, the module invocation number and the current rule count in the module. The rules have been named to aid in the module instantiation phase. Since there might be multiple module instantiations of the same module (with different input parameters), the same rule would hold different meanings in different instantiations. All these rules would finally be put in a list in the main module and hence they need to be uniquely identified. Since rules form entries in the symbol table, we use names to distinguish them.

1.14.  Modules

The ASL specifications are structured as a collection of parameterized modules, each of which consists of a collection of state variables, rules and module instantiations. (Figure 4) State information can be retained across multiple rules within a module via the state variables.

ASL modules provide a mechanism for defining abstract behaviors. In particular, we can model a particular property or set of properties of a process as a collection of related rules and state variables. A module is such a collection of rules and variables, and may be parameterized with respect to a set of parameters. Viewed in another way, modules enable us to capture behaviors characterized by these parameters. For instance, we may have a module that characterizes a race condition involving file accesses, and the module may be parameterized with respect to the name of the file.

At the top level, each monitoring specification is structured as a collection of parameterized modules. Some of the parameters to a module may themselves be module names. There must always be one module named main (logically declared within the global name scope) in every specification. A module body consists of declarations of state variables, together with the rules described above. The declarations are used to specify the types of the module parameters as well as the state variables associated with the module. Since state variables need to be stored across rules, they need to be stored within the memory space of the detection engine. Since the representation of foreign types is completely opaque to the detection engine, we cannot store their values, which implies that all module variables must be native ASL types.


Figure 4.   Generic module declaration in ASL

One step in translating specification Mi into its corresponding C++ class definition Ci is instantiating the main module in Mi with appropriate arguments. Instantiating a module generates a copy of all the rules in the module body with appropriate renaming of variables used in the module, followed by substitution of module parameters with the arguments provided for instantiation.

A module may have substructure, i.e., it may instantiate other modules. This provides a way for modularizing specifications, and a mechanism to organize specifications in a hierarchical fashion. 

After the instantiations are performed, the result is that the “main” module (generated within the global entry) will have a copy of all the rules that have been declared within the other modules. The naming convention followed is the concatenation of module name, module instantiation, and rule count. This way all the rules that have been declared in the modules can be pulled into a single module without the name conflicts arising out of the same name in multiple modules. This list of aggregated rules would form the starting point for further investigation of the rules.

Another important role of modules is that they provide a mechanism for dynamically altering the degree of monitoring, possibly in response to suspicious events. Finally, if a process is compromised, we may want to alter the behavior of future system calls made by the process in such a fashion as to isolate the process from the system. This may also be accomplished by switching to a new specification. 

1.15.  Semantic Analysis

ASL is designed with the idea that code generated from ASL specifications may be run within operating system kernel space. This means that the code generated from ASL must be robust and guard against serious errors that could contribute to failures of individual hosts or legitimate processes running on them.  Another factor is that a hacker planning to attack a host is likely to first try to cripple the security mechanisms on the host, and hence it is important to make these components very robust. Good language design principles, together with comprehensive semantic analysis, including static and dynamic type checking, play an important role in achieving robustness.

1.15.1.   Foreign Types

As mentioned earlier, ASL foreign types correspond to data that resides outside the detection engine.  As such, references to such data would have to be represented in ASL as pointers or handles into the memory space of a runtime system or a process being monitored.  This means that foreign data referenced by ASL may get overwritten, or may even become an invalid reference in between two events due to the operations taking place in the runtime system or the process that is being monitored. Moreover, this will happen without the detection engine having knowledge of these changes.  This factor may lead to memory access errors, or at the least, it will have unexpected effects on the specifications due to unanticipated changes
.  We therefore impose the restriction that foreign data cannot be stored in ASL variables across the delivery of multiple events. We also require that any external functions applied to foreign data should assure that this data would not be changed by the function.  If we want to store components of some foreign object, we need to use the appropriate assessor functions to obtain components of interest as ASL native types, and store them. 

The above condition regarding foreign types is enforced at type checking time as follows. First, we do not permit state variables that can hold foreign data.  Second, we ensure that any temporary variables in event patterns that are bound to foreign data are not used across event boundaries. Moreover, these variables are not passed as arguments to external functions unless the functions guarantee that they do not modify the argument. This guarantee comes in the form of const specifier. 

1.15.2.   Expressions

With regard to expressions, ASL enforces the usual type rules that are enforced in strongly typed languages such as Pascal. All arithmetic as well as unary operators are type checked for the ensuring the type-correctness of the expressions.  Examples of static checks include compatibility of types between the source and target of an assignment, type coercion to permit arithmetic and relational operations involving operands of different types, etc.  While evaluating boolean expressions, we use the Pascal-style semantics rather than C-style semantics as the former permits reordering of the evaluation of subexpressions. Runtime checks include array subscript and string size checks.

In ASL, we have to deal with the situation that some of the variables used within a rule may not be declared, and their types would have to be determined based on their use.  In particular, a new variable can be used as one of the operands in equality comparisons occurring in event patterns.  Such a use of a temporary variable is called as the binding occurrence or definition of the variable.  All other variables in the comparison should be state variables or temporary variables that have been defined earlier within an event pattern.  In this case, we set the type of the new variable to that of the other operand of the equality operator. 

1.15.3.   Rules

Type checking for rules follows the usual type checking conditions used in expressions and assignments for strongly typed languages. The distinctions are as follows. A temporary variable that is defined in a subpattern occurring later in the event pattern cannot be accessed earlier.  For variables defined in earlier occurring subpattern, they can be accessed in subpatterns that occur later provided the definition is consistent across any disjunction between the defining subpattern and the accessing subpattern. For instance, consider the event pattern 
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. Finally, all of the temporary variables that are accessible at the end of the event pattern are also visible in the reaction component of the rule.

1.15.4.   Modules

Semantic checking of modules involves ensuring that module parameters and state variables are used as per their declaration.  One point to be noted is that some of the module parameters may be other modules, and the type-checker needs to be able to deal with this. Finally, at the top level, we need to ensure that there exists a module named main.

Example Behavior Specifications

1.16.  Example Interface Specifications for System Call-level Detection

The interface declaration for system calls consists of:

· Class declarations corresponding to the types of system call arguments. The class declarations would typically correspond to data that resides within the virtual address space of the process being monitored. 

· Event declarations corresponding to each system call entry and exit. 

· External functions provided by the system call infrastructure. There would be one external function corresponding to each system call.  Additional support functions provided by the infrastructure will also be declared as external functions.

An example interface specification is shown in shown in the following block code. We expect that the interface declaration would be part of a (standard) header file that is included in ASL specifications.  In the examples below, we will assume that such a header file is named “syscallif.h”. 

interface exampleSystemCallInterface {

// Data types

// 

class CString {

string getVal() const;

void setVal(string s);

};

class statBuf {

     

int getDev()const;

     
int getIno()const;

     
int getMode()const;
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int getAtime()const;

     
int getMtime()const;

     
int getCtime()const;

};

// Other data type declarations not shown here

//

// Event declarations

//

event stat(Cstring f, Statbuf buf);

event open(Cstring f, int flags);

event open1(Cstring f, int flags, int mode);

event $stat(Cstring f, Statbuf buf);

event $open(Cstring f, int flags);

event $open_1(Cstring f, int flags, int mode);

// External functions --- system calls

//

int @stat(const Cstring f, Statbuf buf);

int @open(const Cstring f, int flags);

int @open1(const Cstring f, int flags, int mode);

//

// External functions --- support functions

//

string realpath(CString s);

int rv() const;

int errno() const;

void fail(int rv, int errno);

void succeed(int rv);

}; // end of interface declaration

1.17.  Finger Daemon

The following specification restricts the finger daemon
 so that it can open only a select set of files for reading, cannot open any file for writing, cannot execute any file, and cannot initiate connection to any machine. When any of these conditions are violated, the offending system call is not allowed to execute, and an error code is returned. 

module fingerd(datadir) {

   rule: open(file, mode)|

 (f = realpath(file)) && ((f != “/etc/utmp”) &&

 
 (f != “/etc/passwd”) && !inTree(f, datadir)|| 

 (mode != O_RDONLY})) -> fail(-1,EACCESS)

   rule:  execve || connect || chmod || chown || chgrp || 

 create || truncate ||  sendto || mkdir -> @exit(-1);

}

module main() {

   fingerd(“/usr/spool/finger”);

}

For events whose arguments are not of interest, we have omitted the arguments for the events. We make use of a support function inTree that determines whether a file resides within a directory or its descendents.  The example shows only a subset of disallowed system calls rather than providing a complete list. With this specification, we can prevent several attacks, including the buffer overflow attack used by the Internet worm.

1.18.  Race Conditions in Privileged Programs

The next example defends against race condition vulnerability.  We will first give a brief description of a program, R, which has the prototypical race vulnerability.  R is a setuid to root program, so when R executes the effective user of R is set to root.  For most system calls, permission to use system resources is governed by the permissions of effective user, so R in general has the privilege of root, even when R’s real user (the user who invoked R) is not root.  Suppose R allows the user to name a log file, L, into which R writes information as R executes.  R needs to ensure that L is writeable by R’s real user, not R’s effective user.  Without this distinction, the user could specify L to be any protected file such as /etc/passwd, into which only root can write.  The open() system call bases it decision to open a file base upon effective user’s permissions, so open(), by itself cannot correctly decide if real user can write to L.  R therefore uses the access() system call prior to open(), since access() checks file permission based on real user, not effective user.  If access() indicates that real user has write permission for L, R continues, otherwise R aborts.  If R continues then sometime later it will use open() to open L, under the assumption that R would not reach open() if access() had not verified real user’s permission to write to L.  In isolation R is correct, but external actions effecting L in between the time of access() and the time of open() can change conditions such that open() is fooled into opening a file for which real user does not have write permission.  More specifically, if at the time of access(), L is a file which real user can write, but by the time of open(), L has become a file which only root can write, then the open() will succeed and P will write data into a file which real user is prohibited from writing.  The transformation of L is as simple as removing L, and then creating a symbolic link with the same name as L to the protected file.  If the attacker can accomplish these two operations anytime after R does access(), but before R does open(), then the attacker has exploited the race vulnerability. 

There are several ways to protect against such attacks in ASL. We follow the approach as described in the following specification:

module rProg1() {

int savedEuid;

bit changedEuid;

rule: (access(name, mode)|(ruid = getuid())..(open(name1, 

 flags)| (name = name1)) -> {

changedEuid = 1; 

savedEuid = @geteuid(); 

@setreuid(-1,ruid);

}

rule:  $open(f, fl)|(changedEuid = 1) -> {

changedEuid = 0; 

@setreuid(-1,savedEuid);


}

}

module main() {

rProg1();

}

The module first defines two state variables. The comparison in the first rule amounts to an equality check.  The way the specification works is as follows. Whenever the monitored program performs an open system call following an access system call on the same file, we set the effective user ID of the calling process temporarily to the real user ID before the open call is executed by the OS kernel.  Before doing this, we save the current value of the effective user ID in the state variable savedEuid, and set a flag changedEuid to remember that we have temporarily reset the effective user ID.  When the open system call completes, we use the values stored in these state variables to restore the original effective user ID’s. 

1.19.  A Utility Program from Untrusted Source

In this case, we may want to ensure that the program can only read world readable files, it can write only within /tmp directory, cannot execute any programs, and cannot perform network operations. This is easily ensured by the following module:

module sandbox(string datadir){

rule: open(file, mode) |[(!inTree(realpath(file), “/tmp”) 

 &&(mode & (O_WRONLY | O_APPEND | O_CREAT | 

 O_TRUNC)))||!accessible(realpath(file), mode, 

 “nobody”)) -> fail(-1,EACCESS)

rule: exec || connect || bind || chmod || chown || chgrp 

 

 || create || truncate || sendto || mkdir-> kill();

}

1.20.  Network Packet Specifications

Whereas system call based detection engines are deployed on a per-process basis, we anticipate having only one instance of a network packet based detection engine per host. (On a host with multiple network interfaces, we may deploy one detection engine per network interface.) The events received by this detection engine will correspond to packets received (or about to be sent out on) a network interface.  

1.20.1.   Specifications for Network Attacks

The following is a brief listing of ASL specifications for some popular network attacks. Note that the reactions are not fully specified. The main intention of the examples is to give demonstrate the ease of use of ASL to specify normal/abnormal behavior of components over network interface.

1. Chargen, Echo, Time, Daytime: to establish a chain between two services (like chargen and echo) so that there will be a network clogging because of infinite number of packets exchanged by these two services.

module CETD(sPort, dPort) {


packet(p)|(p.udp_sport = sPort) && (p.udp_dport = dPort)



( drop();

}

2. SYN Flooding: please refer to chapter 2.

Module SYNFlooding() {


packet(p)|(p.tcp_flag = SYN)



( nSyn = nSyn + 1;



   every predefined interval, check



   if (nSyn > SYN_THRESHOLD)




message(“SYN Flooding”);



   else




nSyn = 0;


packet(p)|(p.tcp_flag = ACK)



( if (nSyn > 0)




nSyn = nSyn – 1;

}

1.21.  Log File Specifications

Collecting information from the log files is totally different from what we have seen till now. Both the network-to-host interface as well as the process-to-OS interfaces are proactive: they help in detecting a problem before a real damage is actually done. Audit trails are different in that they are reactive: they provide references to deeds in the past and hence can act as agents to corroborate evidence collected via other interfaces. They may also be helpful in intercepting some of the attacks if they had gotten past interfaces like process-to-OS interface and network-to-host interface. However, before we look at how we define the log file interface, a little background on the audit trails in general, would be appropriate. Once we are clear about the issues involved in the collection of data from the log files, 

1.21.1.   A Brief Introduction to Audit Trails

Log files are an important building block of a secure system in that they form a recorded history (or audit trail) of a host’s (or for that matter, a network’s) past, making it easier to track down problems or attacks. Using log files, we might get just enough information to discover the source of a break-in and the scope of the damage involved. These log files may be what is needed to rebuild the system, conduct an investigation, give testimony or get accurate field service performed. The following small list would give a broad picture on the kinds of log files we are interested:

· messages: records output to the system’s console and other messages generated from the syslog facility.

· xferlog: Logs ftp access.

· sulog: Logs use of the su command.

· lastlog: Logs each user’s most recent successful login time and possibly the last unsuccessful login too.

A sample output from the “messages” file on a linux machine is reproduced here. Normally one would find many other messages too in addition to failed login messages. However, this particular session was taken especially to exemplify the fact that there are a lot of unsuccessful attempts to log in to the host under consideration! (possible attack?) The general format of this log file is:

Date, time, machine, daemon/program, message

As is evident from the messages log file, the log files are neatly structured and generally most of the log files follow some kind of structure. But in order to make all this information comprehensible to a detection engine we need to come up with a format that is basic enough to map all the information contained in the log file into a structure. This structure, being machine independent, can be read off through a log file interface! Continuing with the same example (messages log file), we try to describe the way we create a log file interface and all the things that go into it before that.

Jan 26 23:31:16 netlab4 PAM_pwdb[1039]: FAILED LOGIN 1 FROM rcs-sgi FOR sekar, User not known to the underlying authentication module

Jan 26 23:31:21 netlab4 PAM_pwdb[1039]: check pass; user unknown

Jan 26 23:31:22 netlab4 PAM_pwdb[1039]: FAILED LOGIN 2 FROM rcs-sgi FOR sekar, User not known to the underlying authentication module

Jan 26 23:31:27 netlab4 PAM_pwdb[1039]: FAILED LOGIN 3 FROM rcs-sgi FOR root, Authentication failure

Jan 26 23:31:32 netlab4 PAM_pwdb[1039]: FAILED LOGIN SESSION FROM rcs-sgi FOR root, Authentication failure

Jan 26 23:31:32 netlab4 PAM_pwdb[1039]: 1 authentication failure; (uid=0) -> root for login service

Jan 26 23:31:37 netlab4 pam_rhosts_auth[1040]: denied to sekar@rcs-sgi.cs.iastate.edu as root: access not allowed

Jan 26 23:31:43 netlab4 pam_rhosts_auth[1040]: PAM authentication failed for in.rlogind

Jan 26 23:31:45 netlab4 PAM_pwdb[1041]: auth could not identify password for [root]

Jan 26 23:31:45 netlab4 PAM_pwdb[1041]: FAILED LOGIN 1 FROM rcs-sgi FOR root, Authentication failure

Jan 26 23:31:46 netlab4 pam[1041]: pam_get_user: no username obtained

Jan 26 23:31:48 netlab4 pam[1041]: pam_get_user: no username obtained

Jan 26 23:31:48 netlab4 pam[1041]: FAILED LOGIN SESSION FROM rcs-sgi FOR (null), Error in service module

Jan 26 23:32:08 netlab4 pam_rhosts_auth[1042]: denied to root@rcs-sgi.cs.iastate.edu as root: access not allowed

Jan 26 23:32:12 netlab4 pam_rhosts_auth[1042]: PAM authentication failed for in.rlogind

Jan 26 23:32:26 netlab4 pam[1043]: pam_get_user: no username obtained

Jan 26 23:32:28 netlab4 pam[1043]: pam_get_user: no username obtained

1.21.2.   Generation of Events – Shell Scripting

Based on the information available out of massages log file, we propose a generic structure (which is described in terms of a c-style structure for the purpose of explanation):

struct messages{

Ulong date;

Ulong time;

Ulong host;

string program;

string message;

int    successFlag;

};

As can be observed, all the above information, except for the successFlag is directly mapped from messages file. The last entry is an inferred entry, inferred from the message. Now that we have a properly defined structure, we should be able to fill it up with data on an as-needed basis.

At this time, all we need is to generate events that are understandable by ASL. For this to happen, we need to generate either another file in which we can create events or generate this file on the fly. The general format of this file would be:

EventName, date, time, host, program, message, successFlag

The EventName here corresponds to an event taken from a specific log file, as in “message” event, or “lastlog” event etc. This log-event file could be generated using a shell script; scripting is selected for its ability to work with the regular expressions very well. Once the shell script is run on the log files on a host, it generates the log-event file. At this point, we have created file that contains, as the name suggests, all the log events (for a specified period). These events are similar to the syscall or packet events, in that they also represent something that is going on in the system, albeit something that has happened in the past. These events have names (as in the logFileName) and data associated with them, much as a packet event has a network-interface and the packet data associated with it. The events can be summarized as follows:

 event Packet(interface if, byte data)

 event messageLog(byte data)

Note that this event description will hold good for all the log files over all the hosts. This would make it easy for the ASL detection agent to gather information over an interface, called the log file interface! 

1.21.3.   Log File Specification: Interface

For the log file specifications, there would be one interface per log file. All the events generated using that log-file can be at one place. Since the nature of the events generated in each of the different log files can differ significantly, we can treat each log file as analogous to a system call and hence one interface definition per log-file. 

The log-file specifications are slightly different from other above-mentioned specifications in that the events here are from a totally different source and that they are off-line. Therefore, the log files can mainly provide an analysis of what is going on in the system in a reactive basis rather than on a proactive basis. 

Observe that the below mentioned interface is similar in construction to the other interfaces that we have seen thus far. Thus, the programmer writing an ASL specification is not concerned with the hows and wheres of the data that are coming in. This positions ASL in unique light. In addition, another point to note here is that we can develop as many different log file-interfaces as there are log files. This adds to the flexibility of the language in that we can capture the unique information offered by a new kind of log file on the fly, without having to change the compiler for ASL! 

Message log file interface:

interface MessageLogFile {

class data{ 

ulong date();

ulong time()const;

ulong host()const;

string program()const;

string message()const;

int      successFlag()const;

}; // end of class definition

event messageLog(byte data);


}; // end of interface

IMPLEMENTATION Of ASL

After the design choices have been made in the ASL design, the implementation phase should make sure that they are being followed. In this chapter, the implementation details have been elaborately discussed. The lexical analyzer for ASL is implemented using the GNU lexer generator tool Flex. The parser is based on the GNU parser generator tool Bison. In addition, a Symbol Management mechanism, an Abstract Tree Generator and a Type Checker, all written in C++, complete the implementation of the front-end of ASL. Since there are significant departures in the design of ASL from C-like languages, the implementation calls for a slightly different approach too.  

1.22.  Lexical Analysis and Parsing

Lex is a lexical analyzer generator that produces C program from a lexical specification. For each token type in the ASL, the specification contains a regular expression and an action. The action communicates the token type (perhaps along with other information) to the next phase of the compiler. Since we are using an external tool for this phase of ASL, there is nothing more to add to this part. 

The ASL parser is responsible for parsing, instantiating the “type checking”, and “module instantiation” phases of the compiler. The parsing process translates the ASL definitions to an internal form called the abstract syntax tree (AST). A popular parsing tool, “GNU Bison”, has been used for this project. The relative precedence of the operators used in ASL and the code that generates AST are all embedded in the target portion of the grammar rules in the parser. The data structures for Symbol Table Management are accessed during subsequent stages of the target code generation.  

The AST is the central data structure in the compiler that is used by all subsequent phases of compilation. It consists of a base class called AstNode and many subclasses each of which correspond to an ASL construct such as expression, event pattern, reaction, etc. Subsequent phases of compilation (such as type checking, module instantiation) are implemented by a set of virtual functions declared in the AstNode class and implemented within each of the subclasses of AstNode.

This chapter is organized as follows:

· We delve into the internals of the Symbol Table Management. 

· After that, we talk about the Abstract Syntax Tree and its general structure in ASL.

· Following that, the implementation of Type Checker is discussed in detail.

1.23.  Symbol Management

Every common programming language permits a programmer to invent names for various entities that the compiler is to manipulate. Properties may be assigned to the programmer’s names through special language forma called declarations. These properties can then be used to define classes of operations for the named entities or to create new declarations. ASL supports a variety of types; both primitive types and user defined types. Symbol Management represents a critical task in the compiling process in that, the symbols declared by the programmer should be stored in an appropriate data structure for a fast and efficient lookup at later phases of compilation. The following section describes the approach taken in the ASL for the creation of such a system.

1.23.1.   General Structure of Symbol Management

The parser interacts with a data structure called Symbol Table Manager (STM). All the symbols are stored in the form of Symbol Table Entries (STE). STE has been sub-classed, depending on the kind of the Symbol. Each STE may consist of a Symbol Table in which all the symbols relating to the STE are inserted. The insertion and lookup functions are provided by the STM. The STM also takes care of the “scoping” of the symbols. 

When a new symbol is to be added to the Symbol Management system, the parser invokes the “insert” function of the STM. The STM then finds out if such a symbol already exists in the present scope and if not, allows the symbol to be inserted. The symbol is inserted into the Symbol Table (ST) of the current STE.

During the later phases (type checking, module instantiation) of the compilation process, when there is a need to fetch a symbol, the appropriate modules would call the “lookup” function of the STM. Symbol Table Manger searches in the scope of the present invocation, whether such a symbol exists and returns the result to the callee. 

1.23.2.   Symbol Table Manager

Symbol Table Manager (STM for short) manages all the symbol table entries (STE for short). It has insertion, lookup, and scope-change services available. Whenever a new symbol entry requests an addition of a symbol, the STM checks whether the request is valid, i.e., if such a symbol can be legally inserted in the current scope, then calls the appropriate symbol-table's insertion method. If such a symbol were making its appearance for the first time, the insertion would be a success, and then the insert function of STM returns an “OK” token back to the callee. Otherwise, it will return the appropriate error code. Similarly for lookup, the STM searches for a variable in the current-Scope and all of the parent scopes in this hierarchy. It returns the STE corresponding to the name of the request, else returns NULL.

1.23.3.   Symbol Table

SymbolTable (ST) is the actual place where STEs are stored. The speed with which the lookup of a particular STE is done is dependent on the selection of the data structure for the Symbol Table. Generally, Hash-tables do a good job of providing such a service. The following sections talk about the specifics of the implementation.

1.23.4.   Generic Symbol Table

This is the base class for storing the Symbols. It has functions such as lookup, insert. It also has a HashTable in which it stores the symbols.  Whenever an insertion request is received, the SymbolTable (ST) checks for the duplicity of the symbol and returns the appropriate ERROR-CODE.

1.23.5.   Rule Symbol Table

This special Symbol Table (RST) was derived from the above generic Symbol Table (ST) to cater to the specific needs for storing the symbols belonging to the Rules. As far as the Symbol Table Entries are concerned, (STEs are the ones that issue the insertion command), the process is totally transparent, meaning that they will not know where exactly the symbols are being stored. As for the Event-STEs, Rule-STEs, they can call some additional functions like delete, lookupAt, etc. The need for the additional ST stems from the fact that the type-checking phase of the compiler needs to delete certain symbols from the ST; that you may want to lookup for an element at a specific place in the ST. Because the generic ST doesn’t support this functionality, the need for a separate ST became imperative. Since it is mainly used for the Rules, hence the name. 

Rule Symbol Table is implemented as a list. Since there is no real reason to subclass this class, provision has not been made. All functions are final. In addition, the choice of the data structure of linked list over hash table because of simplicity. In addition to the additional functionality, we had to implement all the other functionality offered by the generic ST since we are storing in a different data structure.

1.23.6.   Symbol Table Entries

This is the place where the information about a specific symbol rests. The type information, information about the ST it holds, the name of the STE, the kind of the STE (like for e.g., Function Kind, Module Kind, etc) is all stored in the Symbol Table Entry. STE provides functionality like looking up the type, name kind etc. Since there are different kinds of STEs, each providing a different kind of functionality, they are subclassed with STE being the base class. For example, the ModuleEntry has functionality, which lets the users of this class start off the module instantiation. Since this is something that is specific to the modules, a separate class had to be designed. Similarly, other entries like Global entry, Variable entry, Function entry, Rule entry, Event entry, et al all have something specific to hold. 

1.24.  Abstract Syntax Tree

Abstract Syntax Tree is the generic structure, which holds information about the program being parsed. It acts as the base class for a variety of subclasses and allows for recursive function calls like typeCheck (), type () to be more fluid. The following sections give a closer insight into the workings of AST trees.

1.24.1.   General Structure of AST

Abstract Syntax Tree (AST) has some essential functions that allow it to be subclassed into a number of different classes. It acts as the base class for all the other specific classes such as Expression-Node, Statement-Node, etc., which will be discussed later in this chapter. Every node in AST should have a type associated with it after the type-checking phase. Therefore, the type of the node is stored within the generic base class. Also, the AST class offers a virtual function for type checking which would allow the type checker to proceed in an object oriented way. 

1.24.2.   Expression Nodes

This is a specific case of the AST node. This is so called because it provides additional functionality needed at a node and to differentiate all the nodes under it from nodes like Statement nodes. Nodes like Arith-Op-Node (which represents binary expressions like: (x+y), (v>7), etc.), Unary-Op-Node etc., come under the expression nodes. 

1.24.3.   Statement Nodes

As discussed earlier, the need for this node arose from the fact that distinction had to be made between nodes like Arith-Op-Node and If-Node. Hence, all the nodes that represent “statements” in ASL (like if-then-else, Assign, Return) have been clubbed under a common heading. 

1.25.  Semantic Analysis

ASL is designed with the idea that code generated from ASL specifications may be run within operating system kernel space. For this, ASL needs to be robust. Another factor is that a hacker planning to attack a host is likely to first try to cripple the survivability components on the host, and hence it is important to make these components very robust. Good language design principles, together with comprehensive semantic analysis, including static and dynamic type checking, play an important role in achieving robustness. We will discuss the type checking of all the important components that make up ASL in this section.

1.25.1.   Foreign Types

As mentioned earlier, ASL foreign types correspond to data that resides outside the detection engine.  As such, references to such data would have to be represented in ASL as pointers or handles into the memory space of a runtime system or a process being monitored.  This means that foreign data referenced by ASL may get overwritten, or may even become an invalid reference in between two events due to the operations taking place in the runtime system or the process that is being monitored. Moreover, this will happen without the detection engine having knowledge of these changes.  This factor may lead to memory access errors, or at the least, it will have unexpected effects on the specifications due to unanticipated changes
.  We therefore impose the restriction that foreign data cannot be stored in ASL variables across the delivery of multiple events. We also require that any external functions applied to foreign data should assure that this data would not be changed by the function.  If we wanted to really store one or more components of some foreign object in ASL, we need to use the appropriate assessor functions on this data to obtain its components of interest as ASL native types, and then store them. 

The above condition regarding foreign types is enforced at type checking time as follows. First, we do not permit state variables that can hold foreign data.  Second, we ensure that any temporary variables in event patterns that are bound to foreign data are not used across event boundaries; moreover, these variables are not passed as arguments to external functions unless the functions guarantee that they do not modify the argument.

Note that the above comments regarding foreign data may be applicable to records as well.  For instance, we may not want to refer to the data contained in a network packet across multiple packet delivery events since a runtime system may overwrite this data in between.  

1.25.2.   Expressions

With regard to expressions, ASL enforces the usual type rules that are enforced in strongly typed languages such as Pascal.  Examples of static checks include compatibility of types between the source and target of an assignment, type coercion to permit arithmetic and relational operations involving operands of different types, etc.  While evaluating boolean expressions, we use the Pascal-style semantics rather than C-style semantics as the former permits reordering of the evaluation of subexpressions. Runtime checks include array subscript and string size checks. Most of the type checking is routine, with distinctions as mentioned above.  

In ASL, we have to deal with the situation that some of the variables used within a rule may not be declared, and their types would have to be determined based on their use.  In particular, a new variable can be used as one of the operands in equality comparisons occurring in event patterns.  Such a use of a temporary variable is called as the binding occurrence or definition of the variable.  All other variables in the comparison should be state variables or temporary variables that have been defined earlier within an event pattern.  In this case, we set the type of the new variable to that of the other operand of the equality operator.  More on this is detailed in Event type check.

1.25.3.   Events

Event type checking is the most complicated of all the type-checking to implement. The process is illustrated via an example. Point of interest to note here is the design of the AST nodes. Both a single Event and multiple-events are separately sub-classed, since in the case of multiple events, the “operator” combining the two events should also be stored. 

1.25.3.1.   Type Checking of a Simple Event

Event | condition ( reaction;

This can be broken down into the type check for the Event, the type check for the condition and finally a type check on the reaction component. Here, after the L.H.S. of the arrow is done with its part of type check, we want all the variables visible on the L.H.S. side to be visible at the reaction component too. The following are the kinds of variables we are talking about:

· The arguments to the event.

· Temporary variables declared inside of the condition part.

· The above variables  can be made visible in the reaction part ONLY if  the variables are sent to external functions which guarantee that they would not change the value of the variable (with a const specifier) 

1.25.3.2.   Event-Call TypeCheck

Notice that in an event-call, the type of the parameters is not specified. This is fetched from the event-declaration from within the interface. After this stage, all the variables declared inside the Event-call have a type. These variables are also called binding variables since they bind with their formal parameter counterparts. Then the arity (number of parameters) is checked to match that of the number formal parameters. If this fails, the type checker will issue an error notice but will proceed with the rest of the type checking.

1.25.3.3.   Condition TypeCheck

This is also a recursive descent into the various branches of the condition nodes (expression nodes), to make sure that type is properly being propagated at each of these nodes. In addition, at this point, we make sure that if a foreign type is passed to an external function, it is deleted from the binding list, unless the function assures that it will not change the foreign type. Same holds for any of the variables held in the binding list.

1.25.3.4.   Reaction TypeCheck

Finally, the type checks for the reaction! The typecheck for the reaction involves type checking each statement written in the ASL (in the reaction part) to make sure that they are following the standard rules. Note that this is a routine step and so is not discussed in any more detail. 

1.25.3.5.   Multiple Events TypeCheck

Type checking of multiple events (patterns) holds the most challenge. For most part, whenever an event pattern is seen, the parameters in the event-call and the temporary variables declared in the condition part are inserted into the Rule SymbolTable. Exception comes when the operator joining two event-patterns is an “OR”. In this case, the typechecking proceeds the same way as above for the first event-pattern in the Events-node. But before the second event-pattern(pat2) is typeChecked, the symbols belonging to the first event-pattern (pat1) are deleted from the Rule SymbolTable and loaded into a temporary list. After the typechecking for pat2 is complete, only those symbols generated by pat2 are stored that correspond with the pat1’s symbols in both letter and type. The reason behind this is that the variables in the disjunction should not be visible in either scopes and should not be carried into the next phase. The only exception is when both the patterns have the same name and type in which case, the variable is kept in the Rule SymbolTable.

Note also that due to the critical nature of this job, a separate symbol table has been derived from the base symbol table. This symbol table consists of list of symbol table entries, instead of the hash table and so makes it easy to delete the variables occurring at specific places in the list. Since Rule symbol table is a subclass of symbol table class, as for the developer of ASL language, this is completely transparent.  

1.25.4.   Rules

Type checking for rules follows the usual type checking conditions used in expressions and assignments for strongly typed languages. The distinctions are as follows. A temporary variable that is defined in a subpattern occurring later in the event pattern cannot be accessed earlier.  For variables defined in earlier occurring subpattern, they can be accessed in subpatterns that occur later provided the definition is consistent across any disjunction between the defining subpattern and the accessing subpattern. For instance, consider the event pattern 
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. Finally, all of the temporary variables that are accessible at the end of the event pattern are also visible in the reaction component of the rule.

1.25.5.   Modules

Semantic checking of modules involves ensuring that module parameters and state variables are used as per their declaration. The main objective of module type checker is to kick off the type checkers for the individual rules (which in turn kick off the type checker for events and so on). An interesting point to be noted here is that module instances of some other modules themselves may be a part of the module definition. In this case, we need to do a type check on the module instances.  Finally, at the top level, we need to ensure that there exists a module named main.

1.25.6.   Module Instantiation

Module instantiation is the first step in translating the ASL specification program Mi into its corresponding C++ class definition Ci.  Operationally, module instantiation is similar to macro substitution, except that the instantiations ensure that type correctness is maintained, and variables in different modules are appropriately renamed to avoid conflicts because of instantiation.  Consider the following example specification: 

module a(int i) {


int j;


e1(x)|(x=i) -> j = 0;

}

module b(int k) {


int i,j;


a(k);


a(j);


e2(x)|(k=j) -> i=0;

}

module main() {


b(3);

}

We start by instantiating the module invocations at the top level (global scope). This process consists of two steps: instantiating the submodules of the top-level modules, and then adding the state variables and rules in these modules into a main module (a figurative module into which all the rules are put).  Thus we proceed to instantiate module b with the parameter 3, which in turn results in instantiation of module a with the parameter 3. Since module a has no submodules, its instantiation simply involves substituting the module formal parameters with actual parameters.  This yields the instantiated module body: 

int j;

e1(x)|(x=3) -> j = 0;

Now we add this to the body of current instantiation of b. (Note that module b itself is not being changed here, only its current instantiation.)  Before we do this, we need to rename the state variables of module a to ensure that they do not conflict with that of other modules. We suffix the names with a number that is unique for each module instantiation and thus obtain: 

int j$1;

e1(x)|(x=3) -> j$1 = 0;

Similarly, we proceed to instantiate a with parameter j and add the resulting state variables and rules to the current instantiation of b to obtain:

int j$2;

e1(x)|(x=j) -> j$2 = 0;

At this point, the instantiation of module b is completed. We now need to add the state variables and rules in this instantiation to the body of main, which will then become: 

int j$1;

int j$2;

int i$3,j$3;

e1(x)|(x=3) -> j$1 = 0;

e1(x)|(x=j$3) -> j$2 = 0;

e2(x)|(3=j$3) -> i$3=0;

After instantiation, an ASL specification consists of a list of patterns. The main purpose of doing this is to hand over this list to the next level of analysis. Now, using this list of rules, the packet detection algorithm would create a C++ module. Similarly, the same thing happens for the system calls. 

CONCLUSIONS

Warding off intrusions and keeping the system resources from being compromised calls for a robust technique to counter intrusion attempts on a constant basis. Several techniques have been developed for intrusion detection recently [Anderson95, Forrest97, Ilgun93, Kumar94, Ko96, Lunt93]. Our project makes a significant departure from these earlier research efforts by focussing on preventing intrusions as well as automating the response to intrusions. Our approach is based on developing a specification language called ASL for describing expected behaviors of system components characterized in terms of interaction along well-defined interfaces such as the process-to-operating system and host-to-network interfaces. Deviations from these specifications are deemed to indicate intrusions. Our specification language  enables us to capture the responses to be taken when the assertions are violated. This helps in integrating the automated response function with the detection function. 

Our work in this thesis is focussed on the following aspects of ASL design and implementation. First, we developed the interface definition component of ASL, which decouples ASL implementation from the specifics of each interface from which our detection/response system may acquire data. In order to do this without compromising the robustness of the specification language, we developed a strong type system for the language. We then implemented the front-end of the ASL compiler, which includes the lexical analyzer, parser, type-checker and module instantiator. Currently, this front-end of ASL is fully operational. This front-end, when given an ASL specification, detects type errors and performs module instantiation.  The output at this stage is a list of ASL rules represented in the form of an internal data structure. The compiler back-end, translates these rules into C++ code that can be compiled and linked with a runtime system to produce an intrusion detection/response system.  Currently, two such backends have been developed, one that deals with system calls [Cai98] and another for dealing with network packets [Guang98]. 

APPENDIX GRAMMAR RULES

(in extended BNF)

Input
=
Definitions ;

Definitions
=
Definition , {Definition} ;

Definition
=
(InterfaceDefn | ModuleDefn | FunctionDefn | DataDefn) , [‘;’] ;

InterfaceDefn
=
InterfaceHdr , ‘{‘ , [ClassDefns] , EventTypes,‘}’;

InterfaceHrd
=
“interface” , Ident ;

ClassDefns
=
ClassDefn , ‘;’ , {ClassDefn , ‘;’} ;

ClassDefn
=
ClassHdr , ‘{‘ , FunctionHeaders , ‘}’ ;

FunctionHeaders
=
FunctionHead , {FunctionHead} ; 

EventTypes
=
EventType , {EventType} ;

EventType
=
(EventDefn | FunctionHead) , ‘;’ ;

EventDefn
=
EventNameDecl , FunctionArgDecl ;

EventNameDecl
=
“event” , Ident ;

FunctionDefn
=
FunctionHead , ‘{‘ , FuncBody , ‘}’ ;

FunctionHead
=
FunctionNameDecl , FunctionArgDecl , [“const”] ; 

FunctionNameDecl
=
Type , Ident ;

FunctionArgDecl
=
‘{‘ , ParameterList , ‘}’ ;

FuncBody
=
[VarDecls] , Statements ;

FunctionCall
=
Ident , ‘{‘ , ActualParamList , ‘}’ ;

ActualParamList
=
{} | NEActualParamList ;

NEAtualParamList
=
Expr , {‘,’ , Expr} ;

ParameterList
=
{} | NEParameterList ;

NEParameterList
=
SingleVarDecl , {‘,’ , SingleVarDecl} ;

ModuleDefn
=
ModuleNameDecl,FunctionArgDecl,‘{‘,ModuleBody,‘}’;

ModuleNameDecl
=
“module” , Ident ;

ModuleBody
=
((Decls | Rules) , [‘;’]) | (Decls [‘;’] Rules)  ;

Decls
=
Decl , {‘;’ , Decl} ;

Decl
=
VarDecl | ModuleInstance ;

ModuleInstance
=
FunctionCall ;

VarDecl
=
SingleVarDecl , [{‘,’ , Ident}] ; 

SingleVarDecl
=
[“const”] , Type , Ident ;

Rules
=
Rule , {Rule} ;

Rule
=
“rule:” , Events , ‘-->’ , Stmt ; 

Events
=
(Event) 

|(Events ,(‘&&’ | ‘||’ | ‘..’  | ‘;’ | ‘*’ | ‘->’ | ..->),Events) 

|(Events ,( (‘{‘ , Expr , ‘}’) 

|(Events ,( (‘{‘ , ‘,’ , Expr, ‘}’)

|(Events ,( (‘{‘, Expr , ‘,’ , ‘}’)

|(Events ,( (‘{‘, Expr , ‘,’ , Expr , ‘,’ , ‘}’)

| (‘{‘ , Events , ‘}’)

| (Events , ‘*’) ;

Event
=
[‘!’] , Event1 ;

Event1
=
[(Event1 , ‘||’)] , (EventCall , [ ‘|’ , Expr]) ; 

EventCall
=
Ident , ‘(‘ , BindingList , ‘)’ ; 

BindingList
=
{} | NEBindingList ;

NEBindingList
=
SingleVarWithoutType, {‘,’ , SingleVarWithoutType};

SingleVarWithoutType
=
Ident ;

Stmt
=
‘;’ | (AssignmentStmt | ReturnStmt | Expr) , ‘;’ 

| IfthenElseStmt | (‘{‘ Statements ‘}’) ; 

Statements
=
Stmt , {Stmt} ;

AssignmentStmt
=
RefExpr , ‘=’ , Expr ;

ReturnStmt
=
“return” , Expr ;

IfThenElseStmt
=
“if” , Expr , “then” , Stmt , [“else” , Stmt] ;

Expr
=
(‘(‘ , Expr , ‘)’) | (RefExpr|Literal|FunctionCall)

|(“sizeof , ‘(‘ , Ident , ‘)’ )

| (Expr , (‘&’ | ‘|’ | ‘>’ | ‘<’ | ‘>=’ | ‘<=’ | ‘!=’ | ‘==’ | ‘%’ | ‘*’ | ‘/’ | ‘+’ | ‘-‘) , Expr )

| (‘!’ | ‘-‘ | ‘~’) Expr ; 

RefExpr
=
Ident | (RefExpr , ((‘.’ , FunctionCall)|(‘[‘ , Expr , ‘]’ ) | (‘.’ , Ident))) ;

Literal
=
(digits , [‘.’ , digits])

| (letters , {letters|digits} ) ;

(*Here, letters and digits have the usual meaning and are not explicitly defined. *)

DataDefn
=
StructDefn ;

StructDefn
=
StructHeader2 , [“with”] , ‘{‘ , StructBody , ‘}’ ; 

StructHeader2
=
StructHeader1 , [‘:’ , Ident] ;

StructBody
=
{} | {StructMemDecl , [;] } ;

StructMemDecl
=
Type , Ident , [ ‘[‘ , Expr , ‘]’ , [“with”]];

Type
=
“int” | “double” | “short” | “long” | “bit” | “void” | “string” | Ident ; 

Ident
=
letter , { [‘_’] letters | digits } ;
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interface nameOfTheInterface {


//Foreign Type.


class  nameOfTheClass {


		Function Declaration;


		Function Declaration;


};


// more ‘class’ types could be declared ….


// Event declarations associated with this interface


event nameOfTheEvent1(type parameter1, ……, type parametern);


// more ‘event’ declarations go here. Observe that there is NO return type.


// External Function declarations go here …


ouputParameter FunctionName(parameters);


//more external function definitions can go here …


};








module  ExampleModule(){


// Declaration of State Variables


…….


// Module Instantiation (if any) 


…….


// Rules


rule: SequenceOfEvents  ( {  reaction; }


// More Rules …


}; // End of Module


where,


SequenceOfEvents  = SingleEvent OR A SeriesOfEvents


SingleEvent       = someEvent(eventParameters_withoutType)


                    | (patterns)


pattern           = conditions that can be connected 


                    by any of the conditional 


 connectives such as  OR, AND, EQ, etc.








� EMBED PBrush  ���

















� The problem is similar to that of multiple processes trying to access a shared variable without using appropriate synchronization primitives.


� The specification pertains to the GNU finger program, and in particular, the finger daemon running as the master server. 





� The problem is similar to that of multiple processes trying to access a shared variable without using appropriate synchronization primitives.
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