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Divide-and-Conquer: A versatile strategy

Steps

Break a problem into

subproblems that are

smaller instances of the

same problem

Recursively solve these

subproblems

Combine these answers

to obtain the solution to

the problem

Benefits

Conceptual simplification

Speed up:

rapidly (exponentially) reduce problem

space

exploit commonalities in subproblem

solutions

Parallelism: Divide-and-conquer algorithms

are amenable to parallelization

Locality: Their depth-first nature increases

locality, extremely important for today’s

processors.
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Binary Search

Problem: Find a key k in an ordered collection

Examples: Sorted array A[n]: Compare k with A[n/2], then

recursively search in A[0 · · · (n/2− 1)] (if k < A[n/2]) or

A[n/2 · · · n] (otherwise)
Binary search tree T : Compare k with root(T ), based on the

result, recursively search left or right subtree of root.

B-Tree: Hybrid of the above two. Root stores an array M of m

keys, and has m+ 1 children. Use binary search on M to

identify which child can contain k, recursively search that

subtree.
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Exponentiation

How many multiplications are required to compute xn?

Can we use a divide-and-conquer approach to make it faster?

ExpBySquaring(n, x)

if n > 1

y = ExpBySquaring(�n/2�, x2)
if odd(n) y = x ∗ y
return y

else return x
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Merge Sort

function mergesort(a[1 . . . n])
Input: An array of numbers a[1 . . . n]
Output: A sorted version of this array

if n > 1:
return merge(mergesort(a[1 . . .�n/2�]), mergesort(a[�n/2�+ 1 . . . n]))

else:
return a
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Merge Sort (Continued)

function merge(x[1 . . . k], y[1 . . . l])
if k = 0: return y[1 . . . l]
if l = 0: return x[1 . . . k]
if x[1] ≤ y[1]:
return x[1] ◦ merge(x[2 . . . k], y[1 . . . l])

else:
return y[1] ◦ merge(x[1 . . . k], y[2 . . . l])
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Merge Sort Illustration

2 3 10 1 6 7 135

102 53 137 1 6

2 5 3 7 13 1 610

1 6 10 1332 5 7 .
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Merge sort time complexity

mergesort(A) makes two recursive invocations of itself, each with

an array half the size of A

merge(A, B) takes time that is linear in |A|+ |B|
Thus, the runtime is given by the recurrence

T (n) = 2T
�n
2

�
+ n

In divide-and-conquer algorithms, we often encounter recurrences

of the form

T (n) = aT
�n
b

�
+ O(nd)

Can we solve them once for all?
12 / 81



Warmup Sorting Selection Closest pair Multiplication FFT Mergesort Recurrences Fibonacci Numbers Quicksort Lower Bound

Master Theorem

If T (n) = aT
�
n
b

�
+O(nd) for constants a > 0, b > 1, and d ≥ 0, then

T (n) =





O(nd), if d > logb a

O(nd log n) if d = logb a

O(nlogb a) if d < logb a
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Proof of Master Theorem

Size 1

Size n/b2

Size n/b

Size n

Depth
logb n

Width alogb n = nlogb a

Branching factor a

Can be proved by induction, or by summing up the series where

each term represents the work done at one level of this tree.
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What if Master Theorem can’t be appplied?

Guess and check (prove by induction)

expand recursion for a few steps to make a guess

in principle, can be applied to any recurrence

Akra-Bazzi method (not covered in class)

recurrences can be much more complex than that of Master theorem
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More on time complexity: Fibonacci Numbers

function fib1(int n)

if n = 0 return 0;

if n = 1 return 1;

return fib1(n− 1) + fib1(n− 2)

Is this algorithm correct? Yes: follows the defintion of Fibonacci

What is its runtime?

T (n) = T (n− 1) + T (n− 2) + 3, with T (k) ≤ 2 for k < 2
Solution is an exponential function . . .

Prove this by induction!

Can we do better?
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Structure of calls to fib1

��

��

��

Fn−3

Fn−1

Fn−4

Fn−2

Fn−4

Fn−6Fn−5Fn−4

Fn−2 Fn−3

Fn−3 Fn−4 Fn−5Fn−5

Fn

Complete binary tree of depth n, contains 2n calls to fib1

But there are only n distinct Fibonacci numbers being computed!

Each Fibonacci number computed an exponential number of times!
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Improved Algorithm for Fibonacci

function fib2(n)

int f [max(2, n+ 1)];

f [0] = 0; f [1] = 1;

for (i = 2; i ≤ n; i++)

f [i] = f [i − 1] + f [i − 2];

return f [n]

Linear-time algorithm!

But wait! We are operating on very large numbers
nth Fibonacci number requires approx. 0.694n bits
Prove this by induction!

Operation on k-bit numbers require k operations

i.e., Computing Fn requires 0.694n log n operations
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Quicksort

qs(A, l, h) /*sorts A[l . . . h]*/

if l >= h return;

(h1, l2) =

partition(A, l, h);

qs(A, l, h1);

qs(A, l2, h)

partition(A, l, h)

k = selectPivot(A, l, h); p = A[k];

swap(A, h, k);

i = l − 1; j = h;

while true do

do i++ while A[i] < p;

do j−− while A[j] > p;

if i ≥ j break;

swap(A, i, j);

swap(A, i, h)

return (j, i + 1)
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Analysis of Runtime of qs

General case: Given by the recurrence T (n) = n+ T (n1) + T (n2)

where n1 and n2 are the sizes of the two sub-arrays after partition.

Best case: n1 = n2 = n/2. By master theorem, T (n) = O(n log n)

Worst case: n1 = 1, n2 = n− 1. By master theorem, T (n) = O(n2)

A fixed choice of pivot index, say, h, leads to worst-case behavior in
common cases, e.g., input is sorted.

Lucky/unlucky split: Alternate between best- and worst-case splits.

T (n) = n+ T (1)+ T(n-1) + n (worst case split)

= n+ 1+ (n-1) + 2T((n-1)/2) = 2n+ 2T ((n− 1)/2)

which has an O(n log n) solution.

Three-fourths split:

T (n) = n+ T (0.25n) + T (0.75n) ≤ n+ 2T (0.75n) = O(n log n)
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Average case analysis of qs

Define input distribution: All permutations equally likely

Simplifying assumption: all elements are distinct. (Nonessential assumption)

Set up the recurrence: When all permutations are qually likely, the selected

pivot has an equal chance of ending up at the i th position in the

sorted order, for all 1 ≤ i ≤ n. Thus, we have the following recurrence

for the average case:

T (n) = n+
1

n

n−1�

i=1

(T (i) + T (n− i))

Solve recurrence: Cannot apply the master theorem, but since it seems that

we get an O(n log n) bound even in seemingly bad cases, we can try

to establish a cn log n bound via induction.

21 / 81



Warmup Sorting Selection Closest pair Multiplication FFT Mergesort Recurrences Fibonacci Numbers Quicksort Lower Bound

Establishing average case of qs

Establish base case. (Trivial.)

Induction step involves summation of the form
�n−1

i=1 i log i .

Attempt 1: bound log i above by log n. (Induction fails.)
Attempt 2: split the sum into two parts:

n/2�

i=1

i log i +
n−1�

i=n/2+1

i log i

and apply the approx. to each half. (Succeeds with c ≥ 4.)
Attempt 3: replace the summation with the upper bound

n�

x=1

x log x =
x2

2

�
log x − 1

2

�����
n

x=1

(Succeeds with the constraint c ≥ 2.)
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Randomized Quicksort

Picks a pivot at random

What is its complexity?

For randomized algorithms, we talk about expected complexity, which

is an average over all possible values of the random variable.

If pivot index is picked uniformly at random over the interval [l, h],

then:

every array element is equally likely to be selected as the pivot

every partition is equally likely

thus, expected complexity of randomized quicksort is given by the

same recurrence as the average case of qs.
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Lower bounds for comparison-based sorting
Sorting algorithms can be depicted as trees: each leaf identifies the input

permutation that yields a sorted order.

3 2 1

Yes

a2 < a3?

a1 < a2?

a1 < a3?

a2 < a3? a1 < a3?

2 3 1

2 1 3

3 1 2 1 3 2

1 2 3

No

The tree has n! leaves, and hence a height of log n!. By Stirling’s

approximation, n! ≈
√
2πn

�
n
e

�n
, so, log n! = O(n log n)

No comparison-based sorting algorithm can do better!
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Bucket sort

Overview

Divide: Partition input into
intervals (buckets), based on key
values

Linear scan of input, drop
into appropriate bucket

Recurse: Sort each bucket

Combine: Concatenate bin

contents

Example

Images from Wikipedia commons
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Bucket sort (Continued)

Bucket sort generalizes quicksort to multiple partitions

Combination = concatenation

Worst case quadratic bound applies

But performance can be much better if input distribution is uniform.

Exercise: What is the runtime in this case?

Used by letter sorting machines in post o�ces
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Counting Sort

Special case of bucket sort where each bin corresponds to an

interval of size 1.

No need to recurse. Divide = conquered!

Makes sense only if range of key values is small (usually constant)

Thus, counting sort can be done in O(n) time!

Hmm. How did we beat the O(n log n) lower bound?
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Radix Sorting

Treat an integer as a sequence of digits

Sort digits using counting sort

LSD sorting: Sort first on least significant digit, and most

significant digit last. After each round of counting sort, results

can be simply concatenated, and given as input to the next

stage.

MSD sorting: Sort first on most significant digit, and least

significant digit last. Unlike LSD sorting, we cannot concatenate

after each stage.

Note: Radix sort does not divide inputs into smaller subsets

If you think of input as multi-dimensional data, then we break

down the problem to each dimension. 28 / 81
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Stable sorting algorithms

Stable sorting algorithms: don’t
change order of equal elements.

Merge sort and LSD sort are stable.
Quicksort is not stable.

Why is stability important?

E�ect of sorting on attribute A and
then B is the same as sorting on
�B, A�
LSD sort won’t work without this
property!

Other examples: sorting spread
sheets or tables on web pages

Images from Wikipedia Commons
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Sorting strings

Can use LSD or MSD sorting
Easy if all strings are of same length.

Requires a bit more care with variable-length strings.

Starting point: use a special terminator character t < a for all valid

characters a.

Easy to devise an O(nl) algorithm, where n is the number of
strings and l is the maximum size of any string.
But such an algorithm is not linear in input size.

Exercise: Devise a linear-time string algorithm.

Given a set S of strings, your algorithm should sort in O(|S|)
time, where

|S| =
�

s∈S
|s|
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Select kth largest element

Obvious approach: Sort, pick kth element — wasteful, O(n log n)

Better approach: Recursive partitioning, search only on one side

qsel(A, l, h, k)

if l = h return A[l];

(h1, l2) = partition(A, l, h);

if k ≤ h1
return qsel(A, l, h1, k)

else return qsel(A, l2, h, k)

Complexity

Best case: Splits are even:

T (n) = n+ T (n/2), which has an O(n)

solution.

Skewed 10%/90% T (n) ≤ n+ T (0.9n) —

still linear

Worst case: T (n) = n+ T (n− 1) —

quadratic!
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Worst-case O(n) Selection

Intuition: Spend a bit more time to select a pivot that ensures

reasonably balanced partitions

MoM Algorithm [Blum, Floyd, Pratt, Rivest and Tarjan 1973]
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O(n) Selection: MoM Algorithm

Quick select (qsel ) takes no time to pick a pivot, but then spends

O(n) to partition.

Can we spend more time upfront to make a better selection of the

pivot, so that we can avoid highly skewed splits?

Key Idea

Use the selection algorithm itself to choose the pivot.

Divide into sets of 5 elements

Compute median of each set (O(5), i.e., constant time)
Use selection recursively on these n/5 elements to pick their median
i.e., choose the median of medians (MoM) as the pivot

Partition using MoM, and recurse to find kth largest element.
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O(n) Selection: MoM Algorithm

Theorem: MoM-based split won’t be worse than 30%/70%

Result: Guaranteed linear-time algorithm!

Caveat: The constant factor is non-negligible; use as fall-back if

random selection repeatedly yields unbalanced splits.
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Selecting maximum element: Priority Queues

Heap

A tree-based data structure for priority
queues

Heap property: H is a heap if for every
subtree h of H

∀k ∈ keys(h) root(h) ≥ k

where keys(h) includes all keys
appearing within h

Note: No ordering of siblings or cousins

Supports insert , deleteMax and max.
Typically implemented using arrays, i.e.,
without an explicit tree data structure

Task of maintaining max
is distributed to subsets
of the entire set;
alternatively, it can be
thought of as
maintaining several
parallel queues with a
single head.

Images from Wikimedia Commons
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Binary heap

Array representation: Store heap elements in breadth-first order in

the array. Node i ’s children are at indices 2 ∗ i and 2 ∗ i + 1

Conceptually, we are dealing with a balanced binary tree

Max: Element at the root of the array, extracted in O(1) time

DeleteMax: Overwrite root with last element of heap. Fix heap –

takes O(log n) time, since only the ancestors of the last node need

to be fixed up.

Insert: Append element to the end of array, fix up heap

MkHeap: Fix up the entire heap. Takes O(n) time.

Heapsort: O(n log n) algorithm, MkHeap followed by n calls to

DeleteMax
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Matrix Multiplication

The product Z of two n× n matrices X and Y is given by

Zij =
n�

k=1

XikYkj — leads to an O(n3) algorithm.

X Y Z

i

j

(i, j)
× =
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Divide-and-conquer Matrix Multiplication

Divide X and Y into four n/2× n/2 submatrices

X =

�
A B

C D

�
and Y =

�
E F

G H

�

Recursively invoke matrix multiplication on these submatrices:

XY =

�
A B

C D

��
E F

G H

�
=

�
AE + BG AF + BH

CE + DG CF + DH

�

Divided, but did not conquer! T (n) = 8T (n/2) + O(n2), which is still

O(n3)
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Strassen’s Matrix Multiplication

Strassen showed that 7 multiplications are enough:

XY =

�
P6 + P5 + P4 − P2 P1 + P2

P3 + P4 P1 − P3 + P5 − P7

�
where

P1 = A(F − H) P5 = (A+ D)(E + H)

P2 = (A+ B)H P6 = (B − D)(G + H)

P3 = (C + D)E P7 = (A− C)(E + F )

P4 = D(G − E)
Now, the recurrence T (n) = 7T (n/2) + O(n2) has O(nlog2 7 = n2.81)

solution!

Best-to-date complexity is about O(n2.4), but this algorithm is not

very practical.
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Karatsuba’s Algorithm
Same high-level strategy as Strassen — but predates Strassen.

Divide: n-digit numbers into halves, each with n/2-digits:

a = a1 a0 = 2n/2a1 + a0

b = b1 b0 = 2n/2b1 + b0

ab = 2na1b1 + 2n/2(a1b0 + b1a0) + a0b0

Key point — Instead of 4 multiplications, we can get by with 3 since:

a1b0 + b1a0 = (a1 + a0)(b1 + b0)− a1b1 − a0b0

Recursively compute a1b1, a0b0 and (a1 + a0)(b1 + b0).

Recurrence T (n) = 3T (n/2) + O(n) has an O(nlog2 3 = n1.59) solution!
Note: This trick for using 3 (not 4) multiplications noted by Gauss

(1777-1855) in the context of complex numbers.
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Toom-Cook Multiplication

Generalize Karatsuba
Divide into n > 2 parts

Can be more easily understood when integer multiplication is
viewed as a polynomial multiplication.
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Integer Multiplication Revisited

An integer represented using digits

an−1 . . . a0
over a base d (i.e., 0 ≤ ai < d) is very similar to the polynomial

A(x) =
n−1�

i=0

aix
i

Specifically, the value of the integer is A(d).

Integer multiplication follows the same steps as polynomial
multiplication:

an−1 . . . a0 × bn−1 . . . b0 = (A(x)× B(x))(d)
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Polynomials: Basic Properties

Horner’s rule

An nth degree polynomial
�n

i=0 aix
i can be evaluated in O(n) time:

((· · · ((anx + an−1)x + an−2)x + · · ·+ a1)x + a0)

Roots and Interpolation

An nth degree polynomial A(x) has exactly n roots r1, ..., rn. In general,
ri ’s are complex and need not be distinct.
It can be represented as a product of sums using these roots:

A(x) =
n�

i=1

aix
i =

n�

i=0

(xi − ri)

Alternatively, A(x) can be specified uniquely by specifying n+ 1 points
(xi , yi) on it, i.e., A(xi) = yi .
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Operations on Polynomials

Representation Add Mult

Coe�cients O(n) O(n2)

Roots ? O(n)

Points O(n) O(n)

Note: Point representation is the best for computation! But usually,

only the coe�cients are given

Solution: Convert to point form by evaluating A(x) at selected

points.

But conversion defeats the purpose: requires O(n) evaluations, each

taking O(n) time, thus we are back to O(n2) total time.

Toom (and FFT) Idea: Choose evaluation points judiciously to speed

up evaluation 49 / 81
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Matrix representation of Polynomial Evaluation

Given a polynomial

A(x) =
n−1�

t=0

atx
n

choose m points x0, . . . , xm for its evaluation.

Evaluation can be expressed using matrix multiplication:


p0
p1
p2
...

pm



=




1 x0 x20 · · · xn−1
0

1 x1 x21 · · · xn−1
1

1 x2 x22 · · · xn−1
2

...
...

...
...

...

1 xm x2m · · · xn−1
m







a0
a1
...

an−1
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Multiplication using Point Representation

Let A(x) and B(x) be polynomials representing two numbers

Evaluate both polynomials at chosen points x0, ...xm

P = XA Q = XB

where P,X, A,Q and B denote matrices as in last page

Compute point-wise product


r0
...

rm


 =




p0 ∗ q0
...

pm ∗ qm




Compute polynomial C corresponding to R

R = XC ⇒ C = X−1R

To avoid overflow, m should be degree(A) + degree(B) + 1 for R
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Improving complexity ...

Key problem: Complexity of computing X and its inverse X−1

Toom strategy:
Use low-degree polynomials e.g., Toom-2 = Karatsuba uses degree 1.
represents an n-bit number as a 2-digit number over a large base d = 2n/2

Fix evaluation points for a given degree polynomial so that X and X−1

can be precomputed
For Toom-2, x0 = 0, x1 = 1, x2 = ∞. (Define A(∞) = an−1.)

Choose points so that expensive multiplications can be avoided while

computing P = XA,Q = XB and C = X−1R

Toom-N on n-digit numbers needs 2N − 1 multiplications on n/N

digit numbers:

T (n) = (2N − 1)T (n/N) + O(n)

which, by Master theorem, has a solution O(nlogN(2N−1)) solution
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Karatsuba revisited as Toom-2

Given evaluation points x0 = 0, x1 = 1, x2 = ∞,

X =




1 0 0

1 1 1

0 1 0


 XA =




1 0 0

1 1 1

0 1 0






a0
a1
0


 =




a0
a0 + a1
a1




Similarly

XB =




b0
b0 + b1
b1




Point-wise multiplication yields:

R =




a0b0
(a0 + a1)(b0 + b1)

a1b1




and so on ...
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Limitations of Toom

In principle, complexity can be reduced to n1+� for arbitrarily small

positive � by increasing N

In reality, the algorithm itself depends on the choice of N .

Specifically, constant factors involved increase rapidly with N .

As a practical matter, N = 4 or 5 is where we stop.

Question: Can we go farther?
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FFT and Schonhage-Strassen

Key idea: evaluate polynomial on the complex plane

Choose powers of Nth complex root of unity as the points for

evaluation

Enables sharing of operations in computing XA so that it can be

done in O(N logN) time, rather than O(N2) time needed for the

naive matrix-multiplication based approach
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FFT to the Rescue!

Matrix form of DFT and interpretation as polynomial evaluation:




s0
s1
...
sj
...

sN−1




=




1 1 1 · · · 1
1 ω ω2 · · · ωN−1

...
...

...
...

...
1 ωj ω2j · · · ωj(N−1)

...
...

...
...

...
1 ωN−1 ω2(N−1) · · · ω(N−1)(N−1)







a0
a1
...
aj
...

aN−1




Voila! FFT computes A(x) at N points (xi = ωi ) in O(N logN) time!

O(N logN) integer multiplication
Convert to point representation using FFT O(N logN)
Multiply on point representation O(N)
Convert back to coe�cients using FFT−1 O(N logN)
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FFT to the Rescue!




s0
s1
...
sj
...

sn−1




=




1 1 1 · · · 1
1 ω ω2 · · · ωn−1

...
...

...
...

...
1 ωj ω2j · · · ωj(n−1)

...
...

...
...

...
1 ωn−1 ω2(n−1) · · · ω(n−1)(n−1)







a0
a1
...
aj
...

an−1




FFT can be thought of as a clever way to choose points:

Evaluations at many distinct points “collapse” together

This is why we are left with 2T (n/2) work after division, instead of
4T (n/2) for a naive choice of points.
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FFT-based multiplication: More careful analysis ...

Computations on complex or real numbers can lose precision.

For integer operations, we should work in some other ring — usually,

we choose a ring based on modulo arithmetic.
Ex: in mod 33 arithmetic, 2 is the 10th root of 1, i.e., 210 ≡ 1 mod 33

More generally, 2 is the nth root of unity modulo (2n/2 + 1)

Point-wise additions and multiplications are not O(1).

We are adding up to n numbers (“digits”) — we need Ω(log n) bits

So, total cost increases by at least log n, i.e., O(n log2 n).

[Schonhage-Strassen ’71] developed O(n log n log log n) algorithm:

recursively apply their technique for “inner” operations.
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Integer Multiplication Summary

Algorithms implemented in libraries for arbitrary precision

arithmetic, with applications in public key cryptography, computer

algebra systems, etc.

GNU MP is a popular library, uses various algorithms based on

input size: naive, Karatsuba, Toom-3, Toom-4, or

Schonhage-Strassen (at about 50K digits).

Karatsuba is Toom-2. Toom-N is based on

Evaluating a polynomial at 2N points,

performing point-wise multiplication, and

interpolating to get back the polynomial, while

minimizing the operations needed for interpolation
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Fast Fourier Transformation

One of the most widely used algorithms — yet most people are

unaware of its use!

Solving di�erential equations: Applied to many computational

problems in engineering, e.g., heat transfer

Audio: MP3, digital audio processors, music/speech synthesizers,

speech recognition, ...

Image and video: JPEG, MPEG, vision, ...

Communication: modulation, filtering, radars, software-defined

radios, H.264, ...

Medical diagnostics: MRI, PET, ultrasound, ...

Quantum computing: See text Ch. 10

Other: Optics, data compression, seismology, ...
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Intro DFS Biconnectivity DAGs SCC BFS Paths and Matrices Overview

Overview

Graphs provide a concise representation of a range problems

Map coloring – more generally, resource contention problems

Networks — communication, tra�c, social, biological, ...

(b)

23
45

6

12

1

8

7

9

13
11

10
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Intro DFS Biconnectivity DAGs SCC BFS Paths and Matrices Overview

Definition and Representations

A graph G = (V , E), where V is a set of vertices, and E a set of edges. An

edge e of the form (v1, v2) is said to span vertices v1 and v2. The edges in a

directed graph are directed.

A G � = (V �, E �) is called a subgraph of G if V � ⊆ V and E � includes every

edge in E between vertices in V �.

Adjacency matrix

A graph (V = {v1, . . . , vn}, E) can be

represented by an n× n matrix a,

where aij = 1 i� (vi , vj) ∈ E

Adjacency list

Each vertex v is associated with a

linked list consisting of all vertices u

such that (v, u) ∈ E .

Note that adjacency matrix uses O(n2) storage, while adjacency list uses

O(|V |+ |E |) storage. Both can represent directed as well as undirected

graphs.
3 / 30



Intro DFS Biconnectivity DAGs SCC BFS Paths and Matrices

Depth-First Search (DFS)

A technique for traversing all vertices in the graph

Very versatile, forms the linchpin of many graph algorithms

dfs(V , E)

foreach v ∈ V do visited[v] = false
foreach v ∈ V do
if not visited[v] then explore(V , E , v)

explore(V , E , v)

visited[v] = true
previsit(v) /*A placeholder for now*/
foreach (v, u) ∈ E do
if not visited[u] then explore(G, V , u)
postvisit(v) /*Another placeholder*/
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Graphs, Mazes and DFS

A

C

B

F

D

H I J

K

E

G

L

H

G

DA

C

F
K
L

J

I

B

E

If a maze is represented as a graph, then DFS of the graph amounts

to an exploration and mapping of the maze.
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A graph and its DFS tree

A

C

B

F

D

H I J

E

G
I

E

J

C

F

B

A

D

G

H

DFS uses O(|V |) space and O(|E |+ |V |) time.
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DFS and Connected Components

(a)
A B C D

E F G H

I J K L

(b) A

B E

I

J G

K

FC

D

H

L

1,10

2,3

4,9

5,8

6,7

11,22 23,24

12,21

13,20

14,17

15,16

18,19

A connected component of a graph is a maximal subgraph where

there is path between any two vertices in the subgraph, i.e., it is a

maximal connected subgraph.
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DFS Numbering

Associate post and pre numbers with each visited node by defining

previsit and postvisit

previsit(v)

pre[v] = clock

clock++

postvisit(v)

post[v] = clock

clock++

Property

For any two vertices u and v, the intervals [pre[u], post[u]] and

[pre[v], post[v]] are either disjoint, or one is contained entirely within

another.
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DFS of Directed Graph

AB C

F DE

G H

A

H

B C

E D

F

G

12,15

13,14

1,16

2,11

4,7

5,6

8,9

3,10
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DFS and Edge Types
Ba

ck

Forward

Cross

Tree

A

B

C D

DFS tree

pre/post ordering for (u, v) Edge type

u v v u
Tree/forward

v u u v
Back

v uv u
Cross

No cross edges in undirected graphs!

Back and forward edges merge
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Directed Acyclic Graphs (DAGs)

A directed graph that contains no cycles.

Often used to represent (acyclic) dependencies, partial orders,...

Property (DAGs and DFS)

A directed graph has a cycle i� its DFS reveals a back edge.

In a dag, every edge leads to a vertex with lower post number.

Every dag has at least one source and one sink.
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Strongly Connected Components (SCC)

Analog of connected components for undirected graphs

Definition (SCC)

Two vertices u and v in a directed graph are connected if there is

a path from u to v and vice-versa.

A directed graph is strongly connected if any pair of vertices in the

graph are connected.

A subgraph of a directed graph is said to be an SCC if it is a

maximal subgraph that is strongly connected.

SCCs are also similar to biconnected components!

22 / 30



Intro DFS Biconnectivity DAGs SCC BFS Paths and Matrices

SCC Example

A

D E

C

F

B

HG

K

L

JI

(b)

A B,E C,F

D
J,K,L
G,H,I

The textbook describes an algorithm for computing SCC in

linear-time using DFS.
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Breadth-first Search (BFS)

Traverse the graph by “levels”

BFS(v) visits v first

Then it visits all immediate children of v

then it visits children of children of v , and so on.

As compared to DFS, BFS uses a queue (rather than a stack) to

remember vertices that still need to be explored
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BFS Algorithm

bfs(V , E , s)

foreach u ∈ V do visited[u] = false

q = {s}; visited[s] = true

while q is nonempty do

u = deque(q)

foreach edge (u, v) ∈ E do

if not visited[v] then

queue(q, v); visited[v] = true
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BFS Algorithm Illustration

B

E S

D C

A

Order Queue contents
of visitation after processing node

[S]
S [A C D E]
A [C D E B]
C [D E B]
D [E B]
E [B]
B [ ]

DA

B

C E

S
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Shortest Paths and BFS

BFS automatically computes shortest paths!

bfs(V , E , s)

foreach u ∈ V do dist[u] = ∞
q = {s}; dist[s] = 0

while q is nonempty do

u = deque(q)

foreach edge (u, v) ∈ E do

if dist[v] = ∞ then

queue(q, v); dist[v] = dist[u] + 1

But not all paths are created equal! We would like to compute

shortest weighted path — a topic of future lecture.
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Graph paths and Boolean Matrices

A graph and its boolean matrix representation

1 2 3

4

A =




0 1 0 0

1 0 1 1

0 0 0 1

0 0 0 0
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Graph paths and Boolean Matrices

Let A be the adjacency matrix for a

graph G , and B = A× A. Now, Bij = 1

i� there is path in the graph of length

2 from vi to vj

Let C = A+ B. Then Cij = 1 i� there is

path of length ≤ 2 between vi and vj

Define A∗ = A0 + A1 + A2 + · · · . If
D = A∗ then Dij = 1 i� vj is reachable

from vi .

A =




0 1 0 0

1 0 1 1

0 0 0 1

0 0 0 0




A2 =




1 0 1 1

0 1 0 1

0 0 0 0

0 0 0 0




A3 =




0 1 0 1

1 0 1 1

0 0 0 0

0 0 0 0
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Shortest paths and Matrix Operations

Redefine operations on matrix elements so that + becomes min,

and ∗ becomes integer addition.

D = A∗ then Dij = k i� the shortest path from vj to vi is of length

k
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Overview Kruskal Dijkstra Hu�man Compression

Overview

One of the strategies used to solve optimization problems

Multiple solutions exist; pick one of low (or least) cost

Greedy strategy: make a locally optimal choice, or simply, what

appears best at the moment

Often, locally optimality �⇒ global optimality

So, use with a great deal of care

Always need to prove optimality

If it is unpredictable, why use it?

It simplifies the task!
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Making change

Given coins of denominations 25c|, 10c|, 5c| and 1c|, make change for x

cents (0 < x < 100) using minimum number of coins.

Greedy solution

makeChange(x)

if (x = 0) return

Let y be the largest denomination that satisfies y ≤ x

Issue �x/y� coins of denomination y

makeChange(x mod y)

Show that it is optimal

Is it optimal for arbitrary denominations?

3 / 35



Overview Kruskal Dijkstra Hu�man Compression

When does a Greedy algorithm work?

Greedy choice property

The greedy (i.e., locally optimal) choice is always consistent with

some (globally) optimal solution

What does this mean for the coin change problem?

Optimal substructure

The optimal solution contains optimal solutions to subproblems.

Implies that a greedy algorithm can invoke itself recursively after

making a greedy choice.
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Knapsack Problem

A sack that can hold a maximum of x lbs

You have a choice of items you can pack in the sack

Maximize the combined “value” of items in the sack
item calories/lb weight

bread 1100 5

butter 3300 1

tomato 80 1

cucumber 55 2

0-1 knapsack: Take all of one item or none at all

Fractional knapsack: Fractional quantities acceptable

Greedy choice: pick item that maximizes calories/lb

Will a greedy algorithm work, with x = 5? 5 / 35
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Fractional Knapsack

Greedy choice property

Proof by contradiction: Start with the assumption that there is an

optimal solution that does not include the greedy choice, and show a

contradiction.

Optimal substructure

After taking as much of the item with jth maximal value/weight,

suppose that the knapsack can hold y more lbs.

Then the optimal solution for the problem includes the optimal

choice of how to fill a knapsack of size y with the remaining items.

Does not work for 0-1 knapsack because greedy choice property

does not hold.

0-1 knapsack is NP-hard, but a pseudo-polynomial algorithm is 6 / 35
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Spanning Tree

A subgraph of a graph G = (V , E) that includes:

All the vertices V in the graph

A subset of E such that these edges form a tree

We consider connected undirected graphs, where the second

condition for MST can be replaced by

A maximal subset of E such that the subgraph has no cycles

A subset of E with |V |− 1 edges such that the subgraph is

connected

A subset of E such that there is a unique path between any two

vertices in the subgraph
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Minimal Spanning Tree (MST)

A spanning tree with minimal cost. Formally:

Input: An undirected graph G = (V , E), a cost function w : E → R.

Output: A tree T = (V , E �) such that E � ⊆ E that minimizes�
e∈E � w(e)

A

B

C

D

E

F

4

1

4

3 4
2 5

6

4
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Minimal Spanning Tree (MST)

A

B

C

D

E

F

1

4

2 5
4

A

B

C

D

E

F

4

1

4

3 4
2 5

6

4

9 / 35



Overview Kruskal Dijkstra Hu�man Compression Minimal Spanning Tree Kruskal’s Algorithm

Kruskal’s algorithm

Start with the empty set of edges

Repeat: add lightest edge that doesn’t create a cycle

Adds edges B—C , C—D, C—F , A—D, E—F

B

A 6 5

3

42 FD

C E

5 41 24

B

A

FD

C E
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Kruskal’s algorithm

MST (V , E ,w)

X = φ

Q = priorityQueue(E) // from min to max weight

while Q is nonempty

e = deleteMin(Q)

if e connects two disconnected components in (V , X)

X = X ∪ {e}
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Kruskal’s: Correctness (by induction)

Induction Hypothesis: The first i edges selected by Kruskal’s algorithm are

included in some minimal spanning tree T

Base case: trivial — the empty set of edges is always in any MST.
Induction step: Show that i+1th edge chosen by Kruskal’s is in the MST T
from induction hypothesis, i.e., prove greedy choice property.

Let e = (v,w) be the edge chosen at i + 1th step of Kruskal’s.
T is a spanning tree: must include a unique path from v to w
At least one edge e� on this path is not in X , the set of edges chosen in
the first i steps by Kruskal’s. (Otherwise, v and w will already be
connected in X and so e won’t be chosen by Kruskal’s.)
Since neither e nor e� are in X , and Kruskal’s chose e, w(e�) ≥ w(e).
Replace e� by e in T to get another spanning tree T �. Either
w(T �) < w(T ), a contradiction to the assumption T is minimal; or
w(T �) = w(T ), and we have another MST T � consistent with X ∪ {e}. In
both cases, we have completed the induction step.
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Kruskal’s: Runtime complexity

MST (V , E ,w)

X = φ

Q = priorityQueue(E ,w) // from min to max weight

while Q is nonempty

e = deleteMin(Q)

if e connects two disconnected components in (V , X)

X = X ∪ {e}

Priority queue: O(log |E |) = O(log V ) per operation

Connectivity test: O(log V ) per check using a disjoint set data

structure

Thus, for |E | iterations, we have a runtime of O(|E | log |V |)
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MST: Applications

Network design: Communication networks, transportation networks,

electrical grid, oil/water pipelines, ...

Clustering: Application of minimum spanning forest (stop when

|X | = |V |− k to get k clusters

Broadcasting: Spanning tree protocol in Ethernets
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Shortest Paths

Input: A directed graph G = (V , E), a cost function l : E → R
assigning non-negative costs, source and destination vertices s

and t

Output: The shortest cost path from s to t in G .

Note:
Single source shortest paths: find shortest paths from s to all

every vertex. Can be solved using the same algorithm, with the

same complexity!

This algorithm constructs a spanning tree called shortest path

tree (SPT)

Applications: Routing protocols (OSPF, BGP, RIP, ...), Map routing

(flights, cars, mass transit), ...
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Dijkstra’s Algorithm: Outline

Base case: Start with explored = {s}
Inductive step:

Optimal substructure: After having computed the shortest path to

all vertices in explored ,

Greedy choice: extend explored with a v that can be reached

using one edge e from some u ∈ explored such that

dist(u) + l(e) is minimized

Finish: when explored = V
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Dijkstra’s: High-level intuition

s

v

u
�

����
�

e

Blue-colored region represents explored , i.e., we have already

computed shortest paths to these vertices.
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Dijkstra’s: High-level intuition

s

v

u
�

����
�

e

����

In each iteration, we extend explored to include the vertex v that is

the closest to any vertex in explored
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Dijkstra’s Algorithm

ShortestPathTree(V , E , l, s)

for v in V do

dist(v) = ∞, prev(v) = nil

dist(s) = 0

H = priorityQueue(V , dist)

while H is nonempty

v = deleteMin(H) // Note: explored = V − H

for �v,w� ∈ E do

if dist(w) > dist(v) + l(�v,w�)
dist(w) = dist(v) + l(�v,w�)
prev(w) = v

decreaseKey(H,w)
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Dijkstra’s Algorithm: Illustration

B

C

D

E

A

4

1 3

2

4

1

3

5

2

B

C

D

E

A
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4

1

3

5

2

1 3

A: 0 D:∞
B: 4 E:∞
C: 2

A: 0 D: 6
B: 3 E: 7
C: 2
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E

A

4

1 3

2

1
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2
3

4

A: 0 D: 5
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B: 3 E: 6
C: 2

B

C

D

E

A

2

1 3
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Dijkstra’s Algorithm: Correctness

Base case: Start with explored = ∅, so holds vacuously

Induction hypothesis: Tree Ti constructed so far (after i steps of

Dijkstra’s) is a subtree of an SPT T (Optimal substructure)

Induction step: By contradiction — similar to MST
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Dijkstra’s Algorithm: Correctness (2)

Let Vi = V − H , and Ei = {prev(v)|v ∈ Vi}. Note that Ti = (Vi , Ei)
Note that v ∈ H chosen to be added to explored has the lowest dist in
H . This means its dist must have been updated previously, and must
have prev(v) set to some u ∈ explored .
Note Ti+1 = (Vi ∪ {v}, Ei ∪ (u, v)). Need to show (u, v) ∈ T .
Since T is a tree, it must have a unique path P from s to v
P must have an edge (u� ∈ Vi , v � ∈ H) that bridges Vi and H .
If v � = v and u� = u we are done. Otherwise:

if v � �= v then note that dist(v �) ≥ dist(v) (by how v was selected) and
hence the so-called shortest path in T to v is longer than that in Ti+1

— a contradiction. (Assuming l(x, y) > 0∀x, y ∈ V .)
if u� �= u, then there is still a contradiction if
dist(u�) + l(u�, v) > dist(u) + l(u, v). Otherwise, the two sides should
be equal, in which case we can obtain another SPT T � from T by
replacing (u�, v) by (u, v). This completes the induction step, as we
have constructed an SPT consistent with Ti+1

22 / 35



Overview Kruskal Dijkstra Hu�man Compression

Dijkstra’s Algorithm: Runtime

while H is nonempty

v = deleteMin(H)

for �v,w� ∈ E do

if dist(w) > dist(v) + l(�v,w�)
dist(w) = dist(v) + l(�v,w�)
prev(w) = v

decreasKey(H,w)

O(|V |) iterations of
deleteMin: O(|V | log |V |)
Inner loop executes O(|E |)
times, each iteration takes

O(log V ) time

So, total time is

O((|E |+ |V |) log |V |)
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Information Theory and Coding

Information content

For an event e that occurs with probability p, its information content

is given by I(e) = − log p

“surprise factor” — low probability event conveys more

information; an event that is almost always likely (p ≈ 1) conveys

no information.

Information content adds up: for two events e1 and e2, their

combined information content is −(log p1 + log p2)
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Information theory: Entropy

Information entropy

For a discrete random variable X that can take a value xi with

probability pi , its entropy is defined as the expectation (“weighted

average”) over the information content of xi :

H(X) = E [I(X)] = −
n�

i=1

pi log pi

Entropy is a measure of uncertainty

Plays a fundamental role in many areas, including coding theory

and machine learning.
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Optimal code length

Shannon’s source coding theorem

A random variable X denoting chars in an alphabet Σ = {x1, . . . , xn}

cannot be encoded in fewer than H(X) bits.

can be encoded using at most H(X) + 1 bits

The first part of this theorem sets a lower bound, regardless of how
clever the encoding is.

Surprisingly simple proof for such a fundamental theorem! (See
Wikipedia.)

Hu�man coding: an algorithm that achieves this bound
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Variable-length encoding

Let Σ = {A, B,C ,D} with probabilities 0.55, 0.02, 0.15, 0.28.

If we use a fixed-length code, each character will use 2-bits.

Alternatively, use a variable length code

Let us use as many bits as the information content of a character

A uses 1 bit, B uses 6 bits, C uses 3 bits, and D uses 2 bits.

You get an average saving of 15%

0.55 ∗ 1+ 0.02 ∗ 6+ 0.15 ∗ 3+ 0.28 ∗ 2 = 1.68 bits

Lower bound (entropy)

−(.5 log2 .5+ .02 log2 .02+ .14 log2 .14+ .27 log2 .27) = 1.51 bits

27 / 35



Overview Kruskal Dijkstra Hu�man Compression

Variable-length encoding

Let Σ = {A, B,C ,D} with probabilities 0.55, 0.02, 0.15, 0.28.

Let us try fixing the codes, not just
their lengths:

A = 0,D = 11,C = 101, B = 100.

Note: enough to assign 3 bits to B,
not 6. So, average coding size
reduces to 1.62.

0

A [70]

1

[60]

C [20]B [3]

D [37]
[23]

Prefix encoding

No code is a prefix of another.

Necessary property to enable decoding.

Every such encoding can be represented using a full binary tree
(either 0 or 2 children for every node)
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Hu�man encoding

Build the prefix tree bottom-up

Start with a node whose children are

codewords c1 and c2 that occur least

often

Remove c1 and c2 from alphabet,

replace with c� that occurs with

frequency f1 + f2

Recurse

f1 f2

f3f5 f4

f1 + f2

How to make this algorithm fast?

What is its complexity?
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Hu�man encoding: Example
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This sentence contains three a’s, three c’s, two d’s, twenty-six e’s, five f’s, three g’s, eight h’s, thirteen i’s,

two l’s, sixteen n’s, nine o’s, six r’s, twenty-seven s’s, twenty-two t’s, two u’s, five v’s, eight w’s, four x’s,

five y’s, and only one z. Images from Je� Erickson’s “Algorithms”

Uses about 650 bits, vs 850 for fixed-length (5-bit) code.
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Hu�man encoding: Optimality

Crux of the proof: Greedy choice property

Familiar exchange argument

Suppose the optimal prefix tree does not use longest path for two

least frequent codewords c1 and c2
Show that by exchanging c1 with the codeword using the longest path

in the optimal tree, you can reduce the cost of the “optimal code” — a

contradiction

Same argument holds for c2
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Hu�man Coding: Applications

Document compression

Signal encoding

As part of other compression algorithms (MP3, gzip, PKZIP, JPEG, ...)
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Lossless Compression

How much compression can we get using Hu�man?
It depends on what we mean by a codeword!
If they are English characters, e�ect is relatively small

if they are English words, or better, sentences, then much higher

compression is possible

To use words/sentences as codewords, we probably need to

construct document-specific codebook

Larger alphabet size implies larger codebooks!

Need to consider the combined size of codebook plus the encoded

document

Can the codebook be constructed on-the-fly?

Lempel-Ziv compression algorithms (gzip)
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gzip Algorithm [Lempel-Ziv 1977]

Key Idea: Use preceding W -bytes as the codebook (“sliding window”,

up to 32KB in gzip)

Encoding:

Strings previously seen in the window are replaced by the pair

(o�set, length)

Need to find the longest match for the current string

Matches should have a minimum length, or else they will be emitted

as literals

Encode o�set and length using Hu�man encoding

Decoding: Interpret (o�set, length) using the same window of

W -bytes of preceding text. (Much faster than encoding.)
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Greedy Algorithms: Summary

One of the strategies used to solve optimization problems

Frequently, locally optimal choices are NOT globally optimal, so use

with a great deal of care.

Always need to prove optimality. Proof typically relies on greedy choice

property, usually established by an “exchange” argument, and optimal

substructure.

Examples

MST and clustering

Shortest path

Hu�man encoding
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Overview

Another approach for optimization problems, more general and

versatile than greedy algorithms.

Optimal substructure The optimal solution contains optimal

solutions to subproblems.

Overlapping subproblems. Typically, the same subproblems are

solved repeatedly.

Solve subproblems in a certain order, and remember solutions for

later reuse.
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Topological Sort

A way to linearize DAGs while ensuring that for every vertex, all its

ancestors appear before itself.

Applications: Instruction scheduling, spreadsheet recomputation of

formulas, Make (and other compile/build systems) and Task

scheduling/project management.

Captures dependencies, and hence arises frequently in all types of

programming tasks, and of course, dynamic programming!
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Topological Sort

topoSort(V , E)

while |V | �= 0

if there is a vertex v in V with in-degree of 0

output v

V = V − {v}; E = E − {e ∈ E |e is incident on v})
else output “graph is cyclic”; break

return

B

DC

A

S E
1

2

4 1

6

3 1

2

S C A B D E4 6

3

1

2

1

1

2
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Topological Sort

topoSort(V , E)

while |V | �= 0

if there is a vertex v in V with in-degree of 0

output v

V = V − {v}; E = E − {e ∈ E |e is incident on v})
else output “graph is cyclic”; break

return

Correctness:

If there is no vertex with in-degree 0, it is not a DAG
When the algorithm outputs v, it has already output v ’s
ancestors

Performance: What is the runtime? Can it be improved?
6 / 56



Intro LIS LCS Knapsack Chain MM Fixpoints & Shortest Paths Overview Topological Sort DAGs and Dynamic Programming

Shortest paths in DAGs

SSPDag(V , E ,w, s)

for u in V do

dist(u) = ∞
dist(s) = 0

for v ∈ V − {s} in topological order do

dist(v) = min(u,v)∈E(dist(u) + w(u, v))

Thats all!
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DAGs and Dynamic Programming

Canonical way to represent dynamic programming

Nodes in the DAG represent subproblems

Edges capture dependencies between subproblems

Topological sorting solves subproblems in the right order

Remember subproblem solutions to avoid recomputation

Many bottom-up computations on trees/dags are instances of

dynamic programming

applies to trees of recursive calls (w/ duplication), e.g., Fib

For problems in other domains, DAGs are implicit, and topological

sort is also done implicitly

Can you think of a way to do topological sorting implicitly, without

modifying the dag at all?
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Longest Increasing Subsequence

Definition
Given a sequence a1, a2, . . . , an, its LIS is a

sequence ai1, ai2, . . . , aik that maximizes k

subject to ij < ij+1 and aij ≤ aij+1 .

5 2 8 6 3 6 9 7
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Casting LIS problem using a DAG

Nodes: represent elements in the sequence

Edges: connect an element to all followers that are larger

Topological sorting: sequence already topologically sorted

Remember: Using an array L[1..n]

5 2 8 3 9 766

10 / 56



Intro LIS LCS Knapsack Chain MM Fixpoints & Shortest Paths DAG Formulation Algorithm

Algorithm for LIS

LIS(E)

for j = 1 to n do

L[j] = 1+max(i,j)∈EL[i]

return maxnj=1L[j]

5 2 8 3 9 766

Correctness: Straight-forward

Complexity: What is it? Can it be improved?
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Key step in Dyn. Prog.: Identifying subproblems

i. The input is x1, x2, . . . , xn and a subproblem is x1, x2, . . . , xi.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

The number of subproblems is therefore linear.

ii. The input is x1, . . . , xn, and y1, . . . , ym. A subproblem is x1, . . . , xi and y1, . . . , yj.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

y1 y2 y3 y4 y5 y6 y7 y8

The number of subproblems is O(mn).

iii. The input is x1, . . . , xn and a subproblem is xi, xi+1, . . . , xj .

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

The number of subproblems is O(n2).

iv. The input is a rooted tree. A subproblem is a rooted subtree.
12 / 56



Intro LIS LCS Knapsack Chain MM Fixpoints & Shortest Paths Defn Towards Soln. Variations Seq. Alignment UNIX apps

Subsequence

Definition

A sequence a[1..m] is a subsequence of b[1..n] occurring at position

r if there exist i1, ..., ik such that a[r..(r+l − 1)] = b[i1]b[i2] · · · b[il ],
where ij < ij+1

The relative order of elements is preserved in a subsequence, but

unlike a substring, the elements needs not be contiguous.

Example: BDEFHJ is a subsequence of ABCDEFGHIJK
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Longest Common Subsequence

Definition (LCS)

The LCS of two sequences x[1..m] and y[1..n] is the longest sequence

z[1..k] that is a subsequence of both x and y.

Example: BEHJ is a common subsequence of ABCDEFGHIJKLM and

AABBXEJHJZ

By aligning elements of z with the corresponding elements of x and

y , we can compare x and y
x : P R O F − E S S O R

z : P R O F − E S − − R

y : P R O F Fins E S −del Usub R
to identify the edit operations (insert, delete, substitute) operations

needed to map x to y
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Edit (Levenshtein) distance

Definition (ED)

Given sequences x and y and functions I , D and S that associate

costs with each insert, delete and substitute operations, what is the

minimum cost of any the edit sequence that transforms x into y.

Applications

Spell correction (Levenshtein automata)

diff
In the context of version control, reconcile/merge concurrent

updates by di�erent users.

DNA sequence alignment, evolutionary trees and other

applications in computational biology
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Towards a dynamic programming solution (1)

What subproblems to consider?

Just like the LIS problem, we proceed from left to right, i.e.,

compute L[j] as j goes from1 to n

But there are two strings x and y for LCS, so the subproblems

correspond to prefixes of both x and y — there are O(mn) such

prefixes.

E X P O N E N T I A L

P O L Y N O M I A L

The subproblem above can be represented as E [7, 5].

E [i, j] represents the edit distance of x[1..i] and y[1..j]
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Towards a dynamic programming solution (2)

For E [k, l], consider the following possibilities:

x[k] = y[l]: in this case, E [k, l] = E [k − 1, l − 1] — the edit

distance has not increased as we extend the string by one

character, since these characters match

x[k] �= y[l]: Three possibilities

extend E[k − 1, l] by deleting x[k]: E[k, l] = E[k − 1, l] + DC(x[k])

extend E[k, l − 1] by inserting y[l]: E[k, l] = E[k, l − 1] + IC(y[l])

extend E[k − 1, l − 1] by substituting x[k] with y[l]:

E[k, l] = E[k − 1, l − 1] + SC(x[k], y[l])
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Towards a dynamic programming solution (3)

E [k, l] = min( E [k − 1, l] + DC(x[k]), // ↓
E [k, l − 1] + IC(y[l]), // →
E [k − 1, l − 1] + SC(x[k], y[l])) // �

E [0, l] =
�l

i=1 IC(y[i])

E [k, 0] =
�k

i=1 DC(x[i])

Edit distance = E [m, n]

(Recall: m and n are lengths of strings x and y)
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Towards a dynamic programming solution (4)

i

j − 1 j

i− 1

m GOAL

n P O L Y N O M I A L
0 1 2 3 4 5 6 7 8 9 10

E 1 1 2 3 4 5 6 7 8 9 10
X 2 2 2 3 4 5 6 7 8 9 10
P 3 2 3 3 4 5 6 7 8 9 10
O 4 3 2 3 4 5 5 6 7 8 9
N 5 4 3 3 4 4 5 6 7 8 9
E 6 5 4 4 4 5 5 6 7 8 9
N 7 6 5 5 5 4 5 6 7 8 9
T 8 7 6 6 6 5 5 6 7 8 9
I 9 8 7 7 7 6 6 6 6 7 8
A 10 9 8 8 8 7 7 7 7 6 7
L 11 10 9 8 9 8 8 8 8 7 6

E[k, l] = min(E[k − 1, l] + DC(x[k]), // ↓
E[k, l − 1] + IC(y[l]), // →
E[k − 1, l − 1] + SC(x[k], y[l])) // �
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Towards a dynamic programming solution (5)

P O L Y N O M A LI

E
X
P
O
N
E
N
T

A
L

I

E[k, l] = min(E[k−1, l]+DC(x[k]), E[k, l−1]+IC(y[l]), E[k−1, l−1]+SC(x[k], y[l]))
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Variations

Approximate prefix:

Is y approx. prefix of x? Decide based on

max1≤k≤mE [k, n]

Approximate su�x:

Initialize E [k, 0] = 0, use E [m, n] to determine if y is an

approximate su�x of x

Approximate substring:

Initialize E [k, 0] = 0, use max1≤k≤mE [k, n] to decide if y is an

approximate substring of x.
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More variations

Supporting transpositions:

Use a fourth term within min:

E [k − 2, l − 2] + TC(x[k − 1]x[k], y[l − 1]y[l])

where TC is a small value for transposed characters, and ∞
otherwise.
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Similarity Vs Edit-distance

Edit-distance cannot be interpreted on its own, and needs to take

into account the lengths of strings involved.

Similarity can stand on its own.
S[k, l] = max(S[k − 1, l]− DC(x[k]), // ↓

S[k, l − 1]− IC(y[l]), // →
S[k − 1, l − 1]− SC(x[k], y[l])) // �

S[0, l] = −�l
i=1 IC(y[i])

S[k, 0] = −�k
i=1 DC(x[i])

SC(r, r) should be negative, while IC and DC should be positive.

Formulations in biology are usually based on similarity
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LCS application: UNIX diff

Each line is considered a “character:”

Number of lines far smaller than number of characters

Di�erence at the level of lines is easy to convey to users

Much higher degree of confidence when things line up. Leads

to better results on programs.

But does not work that well on document types where line

breaks are not meaningful, e.g., text files where each paragraph

is a line.

Aligns lines that are preserved.

The edits are then printed in the familiar “di�” format.
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LCS applications: version control, patch,...

Software patches often distributed as “di�s.” Programs such as

patch can apply these patches to source code or any other file.

Concurrent updates in version control systems are resolved using

LCS.

Let x be the version in the repository

Suppose that user A checks it out, edits it to get version y

Meanwhile, B also checks out x, edits it to z.

If x −→ y edits target a disjoint set of locations from those

targeted by the x −→ z edits, both edits can be committed;

otherwise a conflict is reported.
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Recursive formulation of Dynamic programming

Recursive formulation can often simplify algorithm presentation,

avoiding need for explicit scheduling

Dependencies between subproblems can be left implicit an equation

such as K [w] = K [w − w[j]] + v[j]

A call to compute K [w] will automatically result in a call to compute

K [w − w[j]] because of dependency

Can avoid solving (some) unneeded subproblems

Memoization: Remember solutions to function calls so that repeat

invocations can use previously returned solutions
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Recursive 0-1 Knapsack Algorithm

BestVal01(u, j)

if u = 0 or j = 0 return 0

if w[j] > u return BestVal01(u, j−1)

else return max(BestVal01(u, j−1), v[j] + BestVal01(u−w[j], j−1))

Much simpler in structure than iterative version

Unneeded entries are not computed, e.g. BestVal01(3, _) when all

weights involved are even

Exercise: Write a recursive version of ChainMM.

Note: mi ’s give us the dimension of matrices, specifically, Mi is an

mi−1 ×mi matrix

Complexity: O(n3)
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Dyn. Prog. and Equation Solving

The crux of a dynamic programming solution: set up equation to

captures a problem’s optimal substructure.

The equation implies dependencies on subproblem solutions.

Dynamic programming algorithm: finds a schedule that respects

these dependencies

Typically, dependencies form a DAG: its topological sort yields the

right schedule

Cyclic dependencies: What if dependencies don’t form a DAG, but

is a general graph.

Key Idea: Use iterative techniques to solve (recursive) equations
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Fixpoints

A fixpoint is a solution to an equation:

Substitute the solution on the rhs, it yields the lhs.

Example 1: y = y2 − 12.

A fixpoint is y = 4, another is y = −3.

rhs
��
y=4 = 42 − 12 = 4 = lhs

��
y=4

— a fixpoint
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Fixpoints (2)

A fixpoint is a solution to an equation:
Example 2: 7x = 2y − 4, y = x2 + y/x + 0.5.
One fixpoint is x = 2, y = 9.

rhs1 |x=2,y=9 = 14 = lhs1|x=2,y=9

rhs2 |x=2,y=9 = 9 = lhs2|x=2,y=9

The term “fixpoint” emphasizes an iterative strategy.

Example techniques: Gauss-Seidel method (linear system of

equations), Newton’s method (finding roots), ...
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Convergence

Convergence is a major concern in iterative methods

For real-values variables, need to start close enough to the solution, or

else the iterative procedure may not converge.

In discrete domains, rely on monotonicity and well-foundedness.

Well-founded order: An order that has no infinite ascending chain (i.e.,

sequence of elements a0 < a1 < a2 < · · · where there is no

maximum)

Monotonicity: Successive iterations produce larger values with respect

to the order, i.e., rhs|soli ≥ soli
Result: Start with an initial guess S0, note Si = rhs|Si−1 .

Due to monotonicity, Si ≥ Si−1, and

by well-foundedness, the chain S0, S 1, . . . can’t go on forever.

Hence iteration must converge, i.e., ∃k ∀i > k Si = Sk
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Role of Iterative Solutions

Fixpoint iteration resembles an inductive construction

S0 is the base case, Si construction from Si−1 is the induction step.

Drawback of explicit fixpoint iteration: hard to analyze the number

of iterations, and hence the runtime complexity

So, algorithms tend to rely on inductive, bottom-up constructions

with enough detail to reason about runtime.

Fixpoint iteration thus serves two main purposes:

When it is possible to bound its complexity in advance, e.g.,

non-recursive definitions

As an intermediate step that can be manually analyzed to uncover

inductive structure explicitly.
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Shortest Path Problems

Graphs with cycles: Natural example where the optimal substructure

equations are recursive.

Single source: dv = minu|(u,v)∈E (du + luv)

All pairs: duv = minw|(w,v)∈E (duw + lwv)

or, alternatively, duv = minw∈V (duw + dwv)

Our study of shortest path algorithms is based on fixpoint formulation

Shows how di�erent shortest path algorithms can be derived from this
perspective

Highlights the similarities between these algorithms, making them easier
to understand/remember
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Single-source shortest paths

For the source vertex s, ds = 0. For v �= s, we have the following equation

that captures the optimal substructure of the problem. We use the

convention luu = 0 for all u, as it simplifies the equation:

dv = minu|(u,v)∈E (du + luv)

Expressing edge lengths as a matrix, this equation becomes:



d1
d2
...
dj
...
dn



=




l11 l21 · · · ln1
112 l22 · · · ln2
...

...
...

...
l1j l2j · · · ljn
...

...
...

...
l1n l2n · · · lnn







d1
d2
...
dj
...
dn




Matches the form of linear simultaneous equations, except that point-wise

multiplication and addition become the integer “+” and min operations

respectively.
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Single-source shortest paths

SSP, written as a recursive matrix equation is:

D = LD

Now, solve this equation iteratively:

D0 = Z (Z is the column matrix consisting of all ∞ except ds = 0)

D1 = LZ

D2 = LD1 = L(LZ) = L2Z

Or, more generally, Di = LiZ

L is the generalized adjacency matrix, with entries being edge weights

(aka edge lengths) rather than booleans.

Side note: In this domain, multiplicative identity I is a matrix with zeroes

on the main diagonal, and ∞ in all other places.

So, L = I+ L, and hence L∗ = limr→∞ Lr
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Single-source shortest paths

Recall the connection between paths and the entries in Li .

Thus, Di represents the shortest path using i or fewer edges!

Unless there are cycles with negative cost in the graph, all shortest

paths must have a length less than n, so:

Dn contains all of the shortest paths from the source vertex s

dni is the shortest path length from s to the vertex i .

Computing L× L takes O(n3), so overall SSP cost is O(n4).
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SSP: Improving E�ciency of Matrix Formulation

Compute the product from right: (L× (L× · · · (L× Z) · · · )
Each multiplication involves n× n and 1× n matrix, so takes O(n2)

instead of O(n3) time.

Overall time reduced to O(n3).

To compute L× dj , enough to consider neighbors of j , and not all n

vertices
dij = mink|(k,j)∈E(d

i−1
k + lkj)

Computes each matrix multiplication in O(|E |) time, so we have an

overall O(|E ||V |) algorithm.

We have stumbled onto the Bellman-Ford algorithm!
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Further Optimization on Iteration

dij = mink|(k,j)∈E(d
i−1
k + lkj)

Optimization 1: If none of the dk ’s on the rhs changed in the

previous iteration, then dij will be the same as di−1
j , so we can skip

recomputing it in this iteration.

Can be an useful improvement in practice, but asymptotic

complexity unchanged from O(|V ||E |)
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Optimizing Iteration

dij = mink|(k,j)∈E(d
i−1
k + lkj))

Optimization 2: Wait to update dj on account of dk on the rhs until

dk’s cost stabilizes

Avoids repeated propagation of min cost from k to j — instead

propagation takes place just once per edge, i.e., O(|E |) times

If all weights are non-negative, we can determine when costs

have stabilized for a vertex k

There must be at least r vertices whose shortest path from the

source s uses r or fewer edges.

In other words, if dik has the rth lowest value, then dik has stabilized

if r ≤ i

Voila! We have Dijkstra’s Algorithm!
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All pairs Shortest Path (I)

diuv = minw|(w,v)∈E(d
i−1
uw + lwv)

Note that duv depends on duw , but not on any dxy , where x �= u.

So, solutions for dxy don’t a�ect duv .

i.e., we can solve a separate SSP, each with one of the vertices as

source

i.e., we run Dijkstra’s |V | times, overall complexity O(|E ||V | log |V |)
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All pairs Shortest Path (II)

diuv = minw∈E (d
i−1
uw + di−1

wv )

Matrix formulation:
D = D×D

with D0 = L.

Iterative formulation of the above equation yields

Di = L2i

We need only consider paths of length ≤ n, so stop at i = log n.

Thus, overall complexity is O(n3 log n), as each step requires O(n3)

multiplication.

We have just uncovered a variant of Floyd-Warshall algorithm!

Typically used with matrix-multiplication based formulation.

Matches ASP I complexity for dense graphs (|E | = Θ(|V |2))
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Further Improving ASP II

Each step has O(n3) complexity as it considers all (u,w, v) combinations

Note: Blind fixpoint iteration “breaks” recursion by limiting path length.

Converts duv into diuv where i is the path length

Worked well for SSP & ASP I, not so well for ASP II

Can we break cycles by limiting something else, say, vertices on the path?

Floyd-Warshall: Define dkuv as the shortest path from u to v that only uses

intermediate vertices 1 to k.

dkuv = min(dk−1
uv , dk−1

uk + dk−1
kv )

Complexity: Need n iterations to consider k = 1, . . . , n but each iteration

considers only n2 pairs, so overall runtime becomes O(n3)

55 / 56



Intro LIS LCS Knapsack Chain MM Fixpoints & Shortest Paths Iterative Solving Shortest Path SSP ASP I ASP II

Summary

A versatile, robust technique to solve optimization problems

Key step: Identify optimal substructure in the form of an equation

for optimal cost

If equations are non-recursive, then either

identify underlying DAG, compute costs in topological order, or,

write down a memoized recursive procedure

For recursive equations, “break” recursion by introducing

additional parameters.

A fixpoint iteration can help expose such parameters.

Remember the choices made while computing the optimal cost,

use these to construct optimal solution.
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Intro Overview

Overview

A technique for modeling a diverse range of optimization problems

LP is more of a modeling technique: You are not being asked to

develop new “LP algorithms,” but to model existing problems using LP.

Existing solvers can solve these problems

We cover the intuition behind the solver, but not in great depth.
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Example 1: Profit Maximization
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400

0

x2

x1

(b)

100 200 300 400

100

200

300

400

0

c = 1500

c = 1200

c = 600

x2

x

Optimum point
Profit = $1900

Product P1 generates $1/unit, P2 generates $6/unit Max x1 + 6x2

Max 200 units of P1 and 300 of P2 can be sold x1 ≤ 200, x2 ≤ 300

Company can produce a total of 400 units x1 + x2 ≤ 400

(Cannot produce negative number of units!) x1, x2 ≥ 0

Note: It is easy to see that a maximum should be at a vertex
3 / 14



Intro Overview

Simplex Method

100

300

200

100 2000
$0 $200

$1400

Applicable to convex problems, i.e.,
conjunctions, and linear constraints, i.e.,
no squaring/multiplication of variables.

Feasible regions are convex polygons

Simplex

Start at the origin

Switch to neighboring vertex if objective
function f (x̄) is higher

Repeat until you reach a local maxima

which will be a global maxima
Consider the line f (x̄) = c passing
through the vertex. Rest of the polygon
must be below this line.
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Simplex Algorithm

“Pebble falling down:”

If you rotate the axes so that the normal to the hyperplane

represented by the objective function faces down,

then simplex operation resembles that of a pebble starting from

one vertex, sliding down to the next vertex down and the next

vertex down,

until it reaches the minimum.

For simplicity, we consider only those cases where there is a unique

solution, i.e., ignore degenerate cases.
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Simplex Algorithm

What is the space of feasible solutions?

A convex polyhedron in n-dimensions (n = number of variables)

What is a vertex?

A point of intersection of n inequalities (“hyperplanes”)

What is a neighboring vertex?

Two vertices are neighbors if they share n− 1 inequalities.

Vertex found by solving n simultaneous equations

How many times can it fall?

There are m inequalities and n variables, so

�
m+ n

n

�
vertices can be

there.

This is an exponential number, but simplex works exceptionally well in

practice. 12 / 14
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History and Main LP Algorithms

Fourier (1800s) Informal/implicit use

Kantorovich (1930) Applications to problems in Economics

Koopmans (1940) Application to shipping problems

Dantzig (1947) Simplex method.

Nobel Prize (1975) Kantorovich and Koopmans, not Dantzig

Khachiyan (1979) Ellipsoid algorithm, polynomial time but not competitive in

practice.

Karmarkar (1984) Interior point method, polynomial time, good practical

performance.
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Intro Overview

Overview

Network flows model important real-world problems

Oil pipelines, water and sewage networks, ...

Electricity grids

Communication networks

In addition, several graph problems can be solved using maxflow

algorithms

Bipartite matching, weighted bipartite matching, assignment

problems,...

Can be solved using linear programming

But we will study more e�cient algorithms
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Example 1: Maximizing Oil Flow
(a)

s

a

b

c

d

e

t3

3

4

10

1

2

5

5

2

1

1

(b)

s

a

b

c

d

e

t

5

2

0

102

1

4

5

2

1

A pipeline network (a) and an assignment of flows (b)

Edge capacities cannot be exceeded: 0 ≤ fe ≤ ce

Except for the source and sink nodes, incoming oil = outgoing oil:�

(w,u)∈E
fwu =

�

(u,z)∈E
fuz

Maximize flow from s to t subject to these constraints.

3 / 17



Intro Overview

Solving Oil Flow

Can be posed as an LP problem:
Objective: maximize the sum of flows on edges out of s
One variable per edge, with capacity constraint
Conservation conditions become equality constraints

Advantage of studying a powerful technique:
Even in situations where it may not most e�cient, we can use it to
solve many problems
By studying this solution, we can gain insight that enable us to develop
a direct algorithm that is more e�cient.

So, how does Simplex solve flow problems?
Start at the origin, i.e., zero flow
move to next corner: push max flow through one s—t path
repeat until no more paths can be added.
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Simplex in Action
(a)

s

b

a

t
11

1 1

1

(b)

s

a

t

(c)

s

b

t

(d)

s

b

a

t
11

1 1

0

A pipeline network (a), steps taken by Simplex (b), (c), and the final

assignment of flows (d)
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But what happens if you pick the wrong path?

s

b

a

t
1

1

1
s

b

a

t
1

1

1

Incorrect path selected: left or right

It seems we are stuck! What does Simplex do?

Simplex can increase a variable, but decrease later, so not stuck!

Will pick (left) and then (right), thus getting to maxflow

Flows in opposite directions in the middle edge cancel out

Can we model this directly in a graph algorithm?

Construct a residual graph, with edges representing positive or

negative changes that can be made to the current assignment.
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Intro Overview

Augmented Graph Gf

Residual vertices: Same as G

Residual Edges: Edges representing left over capacities cf

If an edge e is not at full capacity in G , then cf = ce − fe
There is also an edge in opposite direction to each edge with a

capacity fe
Represents the fact we can cut back current flow to zero.
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Maxflow Algorithm Illustration (1)

Current flow Residual graph

(a)

s

a

b

c

d

e

t s

a

b

c

d

e

t3

3

4

10 1

2

1

5

1

2

5

Initial assignment is zero flows on all edges

So, the residual graph Gf is exactly the same as G

Thick edges show a possible new path P for additional flow

The algorithm sends a flow of mine∈P(c
f
e) on this path
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Maxflow Algorithm Illustration (2)

(b)

s

a

b

c

d

e

t

1

1

1

1

1

s

a

b

c

d

e

t3

4

10 1

1 1

21
2

1

1

1

4

1
4

Note addition of back edges in Gf on the right for each forward

edge given a flow (see left)

Capacity of a forward edge shrunk by amount of current flow

Full forward edges disappear, e.g., (d, c)

Thick edges show the next possible path P for additional flow

The algorithm sends a flow of mine∈P(c
f
e) on this path
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Maxflow Algorithm Illustration (3)

(c)
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e
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Maxflow Algorithm Illustration (4)

(d)
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Maxflow Algorithm Illustration (5)

Current Flow Residual Graph

(e)
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e
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2
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Maxflow Algorithm Illustration (6)

(f)

s

a

b

c

d

e

t1

2

2

54

5

21

1 s

a

b

c

d

e

t

10 1

1 1

2

2

54

5

2

2
1

1

No path from s to t in Gf : means we are done.

Graph highlights a cut-set to show

Gf is disconnected, so no more flow can be sent

The very same (but inverted) edges in original graph form a minimal

cut-set that proves we have maximized the flow
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Max-flow min-cut theorem

s

a

b

c

d

e

t3

3

4

10 1

2

1

5

1

2

5

L R

Theorem: The size of maximum flow in a network equals the

capacity of the smallest (s.t)-cut.

The dual of maximizing flow: finding a minimum cut-set

A solution to dual problem is an optimality proof of primal

Exercise: Find the cutset e�ciently in the final Gf .

14 / 17



Intro Overview

Runtime of Max-flow Algorithm

Each path-finding step takes O(E), say, using DFS or BFS

Gf can be recomputed in the same amount of time

Each iteration adds at least one unit of flow

Total runtime: O(C |E |) where C is the maximum flow computed.

Note that C can be large.

Unfortunately, this worst-case behavior can arise in some graphs if

paths are chosen without care

If paths are chosen carefully, say, using BFS, number of iterations is

O(|V | · |E |)
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Bipartite Matching

Alice

Beatrice

Carol

Danielle

GIRLS

Chet

Dan

Bob

Al

BOYS

Bipartite: Two disjoint vertex sets, no edges within each set

Matching: Pair each vertex on left with one on right.

Maximal matching: Pairs as many vertices as possible

Exercise: Find an e�cient algorithm for this problem
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Bipartite Matching and Max-flow

s t

Dan

Bob

Chet

Danielle

Beatrice

Alice

Carol

Al

Integral solutions are a must for bipartite matching, but not a real
issue for max-flow in general

As it turns out, Max-flow algorithm does guarantee to produce
integral solutions when capacities are integers
But in general integer optimization problems are much harder
then non-integral versions
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Intro Decentralize Taming distribution Probabilistic Algorithms

Example 1: Routing

What is the best way to route a packet from X to Y , esp. in high

speed, high volume networks

A: Pick the shortest path from X to Y

B: Send the packet to a random node Z , and let Z route it to Y

(possibly using a shortest path from Z to Y )

Valiant showed in 1981 that surprisingly, B works better!

Turing award recipient in 2010
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Intro Decentralize Taming distribution Probabilistic Algorithms

Example 2: Transmitting on shared network

What is the best way for n hosts to share a common a network?

A: Give each host a turn to transmit

B: Maintain a queue of hosts that have something to transmit, and

use a FIFO algorithm to grant access

C: Let every one try to transmit. If there is contention, use

random choice to resove it.

Which choice is better?
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Topics

1. Intro

2. Decentralize

Medium Access

Coupon Collection

Birthday

Balls and Bins

3. Taming distribution

Quicksort

Caching

Closest pair

Hashing

Universal/Perfect hash

4. Probabilistic Algorithms

Bloom filter

Rabin-Karp

Prime testing

Min-cut
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Simplify, Decentralize, Ensure Fairness

Randomization can often:

Enable the use of a simpler algorithm

Cut down the amount of book-keeping

Support decentralized decision-making

Ensure fairness

Examples:

Media access protocol: Avoids need for coordination — important

here, because coordination needs connectivity!

Load balancing: Instead of maintaining centralized information

about processor loads, dispatch jobs randomly.

Congestion avoidance: Similar to load balancing
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A Randomized Protocol for Medium Access

Suppose n hosts want to access a shared medium

If mutiple hosts try at the same time, there is contention, and the

“slot” is wasted.

A slot is wasted if no one tries.

How can we maximize the likelihood of every slot being utilized?

Suppose that a randomized protocol is used.

Each host transmits with a probability p

What should be the value of p?

We want the likelihood that one host will attempt access

(probability p), while others don’t try (probability (1− p)n−1)

Find p that maximizes p(1− p)n−1

Using di�erentiation to find maxima, we get p = 1/n
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A Randomized Protocol for Medium Access

Maximum probability (when p = 1/n)

1

n

�
1− 1

n

�n−1

Note
�
1− 1

n

�n−1
converges to 1/e for reasonably large n

About 5% o� e at n = 10.

So, let us simplify the expression to 1/ne for future calculations

What is the e�ciency of the protocol?

The probability that some host gets to transmit is n · 1/ne = 1/e

Is this protocol a reasonable choice?

Wasting almost 2/3rd of the slots is rarely acceptable

7 / 68



Intro Decentralize Taming distribution Probabilistic Algorithms Medium Access Coupon Collection Birthday Balls and Bins

A Randomized Protocol for Medium Access

How long before a host i can expect to transmit successfully?

The probability it fails the first time is (1− 1/ne)

Probability i fails in k attempts: (1− 1/ne)k

This quantity gets to be reasonably small (specifically, 1/e) when k = ne

For larger k, say k = ne · c ln n, the expression becomes

((1− 1/ne)ne)c ln n = (1/e)c ln n = (eln n)−c = n−c

So, a host has a reasonable success chance in O(n) attempts

This becomes a virtual certainty in O(n ln n) attempts
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A Randomized Protocol for Medium Access

What is the expected wait time?

“Average” time a host can expect to try before succeeding.

E[X ] =
∞�

j=0

j · Pr[X = j]

For our protocol, expected wait time is given by

1 · p+ 2 · (1− p)p+ 3 · (1− p)2p · · · = p
∞�

i=1

i · (1− p)i−1

How do we sum the series
�
ixi−1?

Note that
�∞

i=1 x
i = 1

(1−x) . Now, di�erentiate both sides:
∞�

i=1

ixi−1 = − 1

(1− x)2
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A Randomized Protocol for Medium Access

Expected wait time is

p
∞�

i=1

i · (1− p)i−1 =
p

p2
= 1/p

We get an intuitive result — a host will need to wait 1/p = ne

slots on the average

Note: The derivation is a general one, applies to any event with

probability p; it is not particular to this access protocol
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A Randomized Protocol for Medium Access

How long will it be before every host would have a high probability

of succeeding?

We are interested in the probability of

S(k) =
n�

i=1

S(i, k)

Note that failures are not independent, so we cannot say that

Pr[S(k)] =
n�

i=1

Pr[S(i, k)]

but certainly, the rhs is an upper bound on Pr[F (k)].

We use this approximate union bound for our asymptotic analysis
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A Randomized Protocol for Medium Access

If we use k = ne, then
n�

i=1

Pr[S(i, k)] =
n�

i=1

1

e
= n/e

which suggests that the likelihood some hosts failed within ne

attempts is rather high.

If we use k = cn ln n then we get a bound:
n�

i=1

Pr[S(i, k)] =
n�

i=1

n−c/e = n(e−c)/e

which is relatively small — O(n−1) for c = 2e.

Thus, it is highly likely that all hosts will have succeeded in

O(n ln n) attempts.
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A Randomized Protocol: Conclusions

High school probability background is su�cient to analyze simple

randomized algorithms

Carefully work out each step

Intuition often fails us on probabilities

If every host wants to transmit in every slot, this randomized

protocol is a bad choice.

63% wasted slots is unacceptable in most cases.

Better o� with a round-robin or queuing based algorithm.

How about protocols used in Ethernet or WiFi?

Optimistic: whoever needs to transmit will try in the next slot
Exponential backo� when collisions occur
Each collision halves p
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Coupon Collector Problem

Suppose that your favorite cereal has a coupon inside. There are n

types of coupons, but only one of them in each box. How many

boxes will you have to buy before you can expect to have all of the

n types?

What is your guess?

Let us work out the expectation. Let us say that you have so far

j − 1 types of coupons, and are now looking to get to the jth type.

Let Xj denote the number of boxes you need to purchase before

you get the j + 1th type.
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Coupon Collector Problem

Note E [Xj ] = 1/pj , where pj is the probability of getting the jth

coupon.

Note pj = (n− j)/n, so, E [Xj ] = n/(n− j)

We have all n types when we finish the Xn−1 phase:

E [X ] =
n−1�

i=0

E [Xj ] =
n−1�

i=0

n/(n− j) = nH(n)

Note H(n) is the harmonic sum, and is bounded by ln n

Perhaps unintuitively, you need to buy ln n cereal boxes to obtain

one useful coupon.

Abstracts the media access protocol just discussed!
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Birthday Paradox

What is the smallest size group where there are at least two

people with the same birthday?

365

183

61

25

16 / 68



Intro Decentralize Taming distribution Probabilistic Algorithms Medium Access Coupon Collection Birthday Balls and Bins

Birthday Paradox

The probability that the i + 1th person’s birthday is distinct from

previous i is approx.1

pi =
N − i

N

Let Xi be the number of duplicate birthdays added by i :

E [Xi ] = 0 · pi + 1 · (1− pi) = 1− pi =
i

N

Sum up Ei ’s to find the # of distinct birthdays among n:

E [X ] =
n�

i=1

E [Xi ] =
n�

i=1

i

N
=
n(n− 1)

2N

Thus, when n ≈ 27, we have one duplicate birthday2

1We are assuming that i − 1 birthdays are distinct: reasonable if n� N
2More accurate calculation will yield n = 24.6
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Birthday Paradox Vs Coupon Collection

Two sides of the same problem

Coupon Collection: What is the minumum number of samples

needed to cover every one of N values

Birthday problem: What is the maximum number of samples that

can avoid covering any value more than once?

So, if we want enough people to ensure that every day of the year

is covered as a birthday, we will need 365 ln 365 ≈ 2153 people!

Almost 100 times as many as needed for one duplicate birthday!
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Balls and Bins

If m balls are thrown at random into n bins:

What should m be to have more than one ball in some bin?

Birthday problem

What should m be to have at least one ball per bin?

Coupon collection, media access protocol example

What is the maximum number of balls in any bin?

Such problems arise in load-balancing, hashing, etc.
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Balls and Bins: Max Occupancy

Probability p1,k that the first bin receives at least k balls:

Choose k balls in
�m
k

�
ways

These k balls should fall into the first bin: prob. is (1/n)k

Other balls may fall anywhere, i.e., probability 1:3�
m

k

��
1

n

�k

=
m · (m− 1) · · · (m− k + 1)

k!nk
≤ mk

k!nk

Let m = n, and use Sterling’s approx. k! ≈
√
2πk(k/e)k :

Pk =
n�

i=1

pi,k ≤ n · 1

k!
≤ n ·

�e
k

�k

Some arithmetic simplification will show that Pk < 1/n when

k =
3 ln n

ln ln n
3This is actually an upper bound, as there can be some double counting.
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Balls and Bins: Summary of Results

m balls are thrown at random into n bins:

Min. one bin with expectation of 2 balls: m =
√
2n

No bin expected to be empty: m = n ln n

Expected number of empty bins: ne−m/n

Max. balls in any bin when m = n:

Θ(ln n/ ln ln n)

This is a probabilistic bound: chance of finding any bin with higher

occupancy is 1/n or less.

Note that the absolute maximum is n.
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Randomized Quicksort

Picks a pivot at random. What is its complexity?

If pivot index is picked uniformly at random over the interval [l, h],

then:

every array element is equally likely to be selected as the pivot

every partition is equally likely

thus, expected complexity of randomized quicksort is given by:

T (n) = n+
1

n

n−1�

i=1

(T (i) + T (n− i))

Summary: Input need not be random

Expected O(n log n) performance comes from externally forced

randomness in picking the pivot
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Cache or Page Eviction

Caching algorithms have to evict entries when there is a miss

As do virtual memory systems on a page fault

Optimally, we should evict the “farthest in future” entry

But we can’t predict the future!

Result: many candidates for eviction. How can be avoid making

bad (worst-case) choices repeatedly, even if input behaves badly?

Approach: pick one of the candidates at random!
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Closest pair

We studied a deterministic divide-an-conquer algorithm for this

problem.

Quite complex, required multiple sort operations at each stage.

Even then, the number of cross-division pairs to be considered seemed

significant

Result: deterministic algorithm di�cult to implement, and likely slow in

practice.

Can a randomized algorithm be simpler and faster?
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Randomized Closest Pair: Key Ideas

Divide the plane into small squares, hash points into them

Pairwise comparisons can be limited to points within the squares very

closeby

Process the points in some random order

Maintain min. distance δ among points processed so far.

Update δ as more points are processed

At any point, the “small squares” have a size of δ/2

At most one point per square (or else points are closer than δ)
Points closer than δ will at most be two squares from each other
Only constant number of points to consider

Requires rehashing all processed points when δ is updated.
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Randomized Closest Pair: Analysis

Correctness is relatively clear, so we focus on performance

Two main concerns

Storage: # of squares is 1/δ2, which can be very large

Use a dictionary (hash table) that stores up to n points, and maps

(2xi/δ, 2yi/δ) to {1, ..., n}
To process a point (xj , yj )
look up the dictionary at (xj/δ ± 2, yj/δ ± 2)

insert if it is not closer than δ

Rehashing points: If closer than δ — very expensive.

Total runtime can all be “charged” to insert operations,

incl. those performed during rehashing

so we will focus on estimating inserts.
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Randomized Closest Pair: # of Inserts

Theorem

If random variable Xi denotes the likelihood of needing to rehash

after processing k points, then

Xi ≤
2

i

Let p1, p2, . . . , pi be the points processed so far, and p and q be

the closest among these

Rehashing is needed while processing pi if pi = p or pi = q

Since points are processed in random order, there is a 2/i

probability that pi is one of p or q
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Randomized Closest Pair: # of Inserts

Theorem

The expected number of inserts is 3n.

Processing of pi involves

i inserts if rehashing takes place, and 1 insert otherwise

So, expected inserts for processing pi is

i · Xi + 1 · (1− Xi) = 1+ (i − 1) · Xi = 1+
2(i − 1)

i
≤ 3

Upper bound on expected inserts is thus 3n

Look Ma! I have a linear-time randomized closest pair

algorithm—And it is not even probabilistic!
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Hash Tables

A data structure for implementing:

Dictionaries: Fast look up of a record based on a key.

Sets: Fast membership check.

Support expected O(1) time lookup, insert, and delete

Hash table entries may be:

fat: store a pair (key, object))

lean: store pointer to object containing key

Two main questions:

How to avoid O(n) worst case behavior?

How to ensure average case performance can be realized for arbitrary

distribution of keys?
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Hash Table Implementation

Direct access: A fancy name for arrays. Not applicable in most cases

where the universe U of keys is very large.

Index based on hash: Given a hash function h (fixed for the entire

table) and a key x, use h(x) to index into an array A.

Use A[h(x) mod s], where s is the size of array

Sometimes, we fold the mod operation into h.

Array elements typically called buckets

Collisions bound to occur since s � |U|
Either h(x) = h(y), or

h(x) �= h(y) but h(x) ≡ h(y) (mod s)
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Collisions in Hash tables

Load factor α: Ratio of number of keys to number of buckets

If keys were random:

What is the max α if we want ≤ 1 collisions in the table?

If α = 1, what is the maximum number of collisions to expect?

Both questions can be answered from balls-and-bins results:

1/
√
n, and O(ln n/ ln ln n)

Real world keys are not random. Your hash table

implementation needs to achieve its performance goals

independent of this distribution.
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Chained Hash Table

Each bucket is a linked list.

Any key that hashes to a bucket is inserted into that bucket.

What is the average search time, as a function of α?
It is 1+ α if:
you assume that the distribution of lookups is independent of the table

entries, OR,

the chains are not too long (i.e., α is small)
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Open addressing

If there is a collision, probe other empty slots

Linear probing: If h(x) is occupied, try h(x) + i for i = 1, 2, ...

Binary probing: Try h(x)⊕ i , where ⊕ stands for exor.

Quadratic probing: For ith probe, use h(x) + c1i + c2i2

Criteria for secondary probes

Completeness: Should cycle through all possible slots in table

Clustering: Probe sequences shouldn’t coalesce to long chains

Locality: Preserve locality; typically conflicts with clustering.

Average search time can be O(1/(1− α)2) for linear probing, and

O(1/(1− α)) for quadratic probing.
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Chaining Vs Open Addressing

Chaining leads to fewer collisions

Clustering causes more collisions w/ open addressing for same α

However, for lean tables, open addressing uses half the space of

chaining, so you can use a much lower α for same space usage.

Chaining is more tolerant of “lumpy” hash functions

For instance, if h(x) and h(x + 1) are often very close, open hashing

can experience longer chains when inputs are closely spaced.

Hash functions for open-hashing having to be selected very carefully

Linked lists are not cache-friendly

Can be mitigated w/ arrays for buckets instead of linked lists

Not all quadratic probes cover all slots (but some can)
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Resizing

Hard to predict the right size for hash table in advance

Ideally, 0.5 ≤ α ≤ 1, so we need an accurate estimate

It is stupid to ask programmers to guess the size

Without a good basis, only terrible guesses are possible

Right solution: Resize tables automatically.

When α becomes too large (or small), rehash into a bigger (or smaller)

table

Rehashing is O(n), but if you increase size by a factor, then amortized

cost is still O(1)

Exercise: How to ensure amortized O(1) cost when you resize up as

well as down?
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Average Vs Worst Case

Worst case search time is O(n) for a table of size n

With hash tables, it is all about avoiding the worst case, and

achieving the average case

Two main chalenges:

Input is not random, e.g., names or IP addresses.

Even when input is random, h may cause “lumping,” or non-uniform

dispersal of U to the set {1, . . . , n}

Two main techniques

Universal hashing

Perfect hashing
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Universal Hashing
No single hash function can be good on all inputs

Any function U → {1, . . . , n} must map |U|/n inputs to same value!

Note: |U| can be much, much larger than n.
Definition

A family of hash functions H is universal if

Prh∈H[h(x) = h(y)] =
1

n
for all x �= y

Meaning: If we pick h at random from the family H, then,

probability of collisions is the same for any two elements.

Contrast with non-universal hash functions such as

h(x) = ax mod n, (a is chosen at random)

Note y and y + kn collide with a probability of 1 for every a.
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Universal Hashing Using Multiplication

Observation (Multiplication Modulo Prime)

If p is a prime and 0 < a < p

{1a, 2a, 3a, . . . , (p− 1)a} = {1, 2, . . . , p− 1} (mod p)
∀a ∃b ab ≡ 1 (mod p)

Prime multiplicative hashing

Let the key x ∈ U , p > |U| be prime, and 0< r<p be random. Then

h(x) = (rx mod p) mod n

is universal.

Prove: Pr[h(x) = h(y)] = 1
n , for x �= y
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Universality of prime multiplicative hashing
Need to show Pr[h(x) = h(y)] = 1

n , for x �= y

h(x) = h(y) means (rx mod p) mod n = (ry mod p) mod n

Note a mod n = bmod n means a = b+ kn for some integer k.

Using this, we eliminate mod n from above equation to get:

rx mod p = kn+ ry mod p, where k ≤ �p/n�
rx ≡ kn+ ry (mod p)

r(x − y) ≡ kn (mod p)

r ≡ kn(x − y)−1 (mod p)

So, x, y collide if r = n(x−y)−1, 2n(x−y)−1, . . . , �p/n�n(x−y)−1

In other words, x and y collide for p/n out of p possible values of

r , i.e., collision probability is 1/n
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Binary multiplicative hashing

Faster: avoids need for computing modulo prime

When |U| < 2w , n = 2l and a an odd random number

h(x) =

�
ax mod 2w

2w−l

�

Can be implemented e�ciently if w is the wordsize:

(a*x) >> (WORDSIZE-HASHBITS)

Scheme is near-universal: collision probability is O(1)/2l
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Prime Multiplicative Hash for Vectors

Let p be a prime number, and the key x be a vector [x1, . . . , xk]

where 0 ≤ xi < p. Let

h(x) =
k�

i=1

rixi (mod p)

If 0 < ri < p are chosen at random, then h is universal.

Strings can also be handled like vectors, or alternatively, as a

polynomial evaluated at a random point a, with p a prime:

h(x) =
l�

i=0

xia
i mod p
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Universality of multiplicative hashing for vectors

Since x �= y , there exists an i such that xi �= yi

When collision occurs,
�k

j=1 rjxj =
�k

j=1 rjyj (mod p)

Rearranging,
�

j �=i rj(xj − yj) = ri(yi − xi) (mod p)

The lhs evaluates to some c, and we need to estimate the

probability that rhs evaluates to this c

Using multiplicative inverse property, we see that

ri = c(yi − xi)−1 (mod p).

Since yi , xi < p, it is easy to see from this equation that the

collision-causing value of ri is distinct for distinct yi .

Viewed another way, exactly one of p choices of ri would cause a

collision between xi and yi , i.e., Prh[h(x) = h(y)] = 1/p
42 / 68



Intro Decentralize Taming distribution Probabilistic Algorithms Quicksort Caching Closest pair Hashing Universal/Perfect hash

Perfect hashing

Static: Pick a hash function (or set of functions) that avoids collisions

for a given set of keys

Dynamic: Keys need not be static.

Approach 1: Use O(n2) storage. Expected collision on n items is 0.

But too wasteful of storage.

Don’t forget: more memory usually means less performance

due to cache e�ects.

Approach 2: Use a secondary hash table for each bucket of size

n2i , where ni is the number of elements in the bucket.

Uses only O(n) storage, if h is universal
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Hashing Summary

Excellent average case performance

Pointer chasing is expensive on modern hardware, so improvement

from O(log n) of binary trees to expected O(1) for hash tables is

significant.

But all benefits will be reversed if collisions occur too often

Universal hashing is a way to ensure expected average case even when

input is not random.

Perfect hashing can provide e�cient performance even in the

worst case, but the benefits are likely small in practice.
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Probabilistic Algorithms

Algorithms that produce the correct answer with some probability

By re-running the algorithm many times, we can increase the

probability to be arbitrarily close to 1.0.
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Bloom Filters

To resolve collisions, hash tables have to store keys: O(mw) bits,

where w is the number of bits in the key

What if you want to store very large keys?

Radical idea: Don’t store the key in the table!

Potentially w-fold space reduction
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Bloom Filters

To reduce collisions, use multiple hash functions h1, ..., hk

Hash table is simply a bitvector B[1..m]

To insert key x, set B[h1(x)], B[h2(x)], ..., B[hk(x)]

Images from Wikipedia Commons

Membership check for y: all B[hi(y)] should be set

No false negatives, but false positives possible

No deletions possible in the current algorithm.
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Bloom Filters: False positives

Prob. that a bit is not set by h1 on inserting a key is (1− 1/m)

The probability it is not set by any hi is (1− 1/m)k

The probability it is not set after r key inserts is (1− 1/m)kr ≈ e−kr/m

Complementing, the prob. p that a certain bit is set is 1− e−kr/m

For a false positive on a key y , all the bits that it hashes to should

be a 1. This happens with probability
�
1− e−kr/m

�k
= (1− p)k
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Bloom Filters

Consider �
1− e−kr/m

�k

Note that the table can potentially store very large number of

entries with very low false positives

For instance, with k = 20, m = 109 bits (12M bytes), and a false positive

rate of 2−10 = 10−3, can store 60M keys of arbitrary size!

Exercise: What is the optimal value of k to minimize false positive

rate for a given m and r?

But large k values introduce high overheads

Important: Bloom filters can be used as a prefilter, e.g., if actual

keys are in secondary storage (e.g., files or internet repositories)
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Using arithmetic for substring matching

Problem: Given strings T [1..n] and P[1..m], find occurrences of P in

T in O(n+m) time.

Idea: To simplify presentation, assume P, T range over [0-9]

Interpret P[1..m] as digits of a number

p = 10m−1P[1] + 10m−2P[2] + · · · 10m−mP[m]
Similarly, interpret T [i..(i +m− 1)] as the number ti
Note: P is a substring of T at i i� p = ti
To get ti+1, shift T [i] out of ti , and shift in T [i +m]:

ti+1 = (ti − 10m−1T [i]) · 10+ T [i +m]

We have an O(n+m) algorithm. Almost: we still need to figure out

how to operate on m-digit numbers in constant time!
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Rabin-Karp Fingerprinting

Key Idea

Instead of working with m-digit numbers,

perform all arithmetic modulo a random prime number q,

where q > m2 fits within wordsize

All observations made on previous slide still hold

Except that p = ti does not guarantee a match

Typically, we expect matches to be infrequent, so we can use O(m)

exact-matching algorithm to confirm probable matches.
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Carter-Wegman-Rabin-Karp Algorithm

Di�culty with Rabin-Karp: Need to generate random primes, which is not

an e�cient task.

New Idea: Make the radix random, as opposed to the modulus
We still compute modulo a prime q, but it is not random.

Alternative interpretation: We treat P as a polynomial

p(x) =
m�

i=1

P[m− i] · xi

and evaluate this polynomial at a randomly chosen value of x

Like any probabilistic algorithm we can increase correctness probability by
repeating the algorithm with di�erent randoms.
Di�erent prime numbers for Rabin-Karp
Di�erent values of x for CWRK

52 / 68



Intro Decentralize Taming distribution Probabilistic Algorithms Bloom filter Rabin-Karp Prime testing Min-cut

Carter-Wegman-Rabin-Karp Algorithm

p(x) =
m�

i=1

P[m− i] · xi

Random choice does not imply high probability of being right.

You need to explicitly establish correctness probability.

So, what is the likelihood of false matches?

A false match occurs if p1(x) = p2(x), i.e.,

p1(x)− p2(x) = p3(x) = 0.

Arithmetic modulo prime defines a field, so an mth degree

polynomial has m+ 1 roots.

Thus, (m+ 1)/q of the q (recall q is the prime number used for

performing modulo arithmetic) possible choices of x will result in

a false match, i.e., probability of false positive = (m+ 1)/q
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Primality Testing

Fermat’s Theorem

ap−1 ≡ 1 (mod p)

Recall {1a, 2a, 3a, . . . , (p− 1)a} ≡ {1, 2, . . . , p− 1} (mod p)

Multiply all elements of both sides:

(p− 1)!ap−1 ≡ (p− 1)! (mod p)

Canceling out (p− 1)! from both sides, we have the theorem!
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Primality Testing

Given a number N , we can use Fermat’s theorem as a probabilistic

test to see if it is prime:

if aN−1 �≡ 1 (mod N) then N is not prime

Repeat with di�erent values of a to gain more confidence

Question: If N is not prime, what is the probability that the above

procedure will fail?

For Carmichael’s numbers, the probability is 1 — but ignore this for

now, since these numbers are very rare.

For other numbers, we can show that the above procedure works with

probability 0.5
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Primality Testing

Lemma

If aN−1 �≡ 1 (mod N) for a relatively prime to N, then it holds for at

least half the choices of a < N.

If there is no b such that bN−1 ≡ 1 (mod N), then we have

nothing to prove.

Otherwise, pick one such b, and consider c ≡ ab.

Note cN−1 ≡ aN−1bN−1 ≡ aN−1 �≡ 1

Thus, for every b for which Fermat’s test is satisfied, there exists a

c that does not satisfy it.

Moreover, since a is relatively prime to N , ab �≡ ab� unless b ≡ b�.

Thus, at least half of the numbers x < N that are relatively prime
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Primality Testing

Is aN−1 ≡ 1 mod N?Pick some a

“prime”

“composite”
Fermat’s test

Pass

Fail

When Fermat’s test returns “prime” Pr[N is not prime] < 0.5

If Fermat’s test is repeated for k choices of a, and returns “prime”

in each case, Pr[N is not prime] < 0.5k

In fact, 0.5 is an upper bound. Empirically, the probability has

been much smaller.
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Primality Testing
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Fermat test
(base a = 2)

Composites

Pass

Fail

≈ 109 primes
≈ 20,000 composites

Before primality test:
all numbers ≤ 25 × 109 After primality test

Primes

Empirically, on numbers less than 25 billion, the probability of

Fermat’s test failing to detect non-primes (with a = 2) is more like

0.00002

This probability decreases even more for larger numbers.
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Prime number generation

Lagrange’s Prime Number Theorem

For large N , primes occur approx. once every logN numbers.

Generating Primes

Generate a random number

Probabilistically test it is prime, and if so output it

Otherwise, repeat the whole process

What is the complexity of this procedure?
O(log2 N) multiplications on logN bit numbers

If N is not prime, should we try N + 1,N + 2, etc. instead of
generating a new random number?
No, it is not easy to decide when to give up.
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Rabin-Miller Test

Works on Carmichael’s numbers

For prime number test, we consider only odd N , so N − 1 = 2tu

for some odd u

Compute
au, a2u, a4u, . . . , a2

t u = aN−1

If aN−1 is not 1 then we know N is composite.

Otherwise, we do a follow-up test on au, a2u etc.

Let a2
ru be the first term that is equivalent to 1.

If r > 0 and a2
r−1u �≡ −1 then N is composite

This combined test detects non-primes with a probability of at

least 0.75 for all numbers.
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Power of Two Random Choices

If a single random choice yields unsatisfactory results, try making

two choices and pick the better of two.

Example applications

Balls and bins: Maximum occupancy comes down from

O(log n/ log log n) to O(log log n)

Quicksort: Significantly increase odds of a balanced split if you pick

three random elements and use their median as pivot

Load balancing: Random choice does not work well if di�erent tasks

take di�erent time. Making two choices and picking the lighter

loaded of the two can lead to much better outcomes
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Amortized Analysis

Amortization

The spreading out of capital expenses for intangible assets over a

specific period of time (usually over the asset’s useful life) for

accounting and tax purposes.

A clever trick used by accountants to average large one-time costs

over time.

In algorithms, we use amortization to spread out the cost of

expensive operations.

Example: Re-sizing a hash table.
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Topics

1. Intro

Motivation

2. Aggregate

3. Charging

4. Potential

5. Table resizing

Amortized Rehashing

Vector and String Resizing

6. Disjoint sets

Inverted Trees

Union by Depth

Threaded Trees

Path compression
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Summation or Aggregate Method

Some operations have high worst-case cost, but we can show that

the worst case does not occur every time.

In this case, we can average the costs to obtain a better bound

Summation

Let T (n) be the worst-case running time for executing a sequence of

n operations. Then the amortized time for each operation is T (n)/n.

Note: We are not making an “average case” argument about inputs.

We are still talking about worst-case performance.
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Summation Example: Binary Counter

Incr(B[0..])

i = 0

while B[i]= 1

B[i] = 0

i ++

B[i] = 1

What is the worst-case runtime of incr?

Simple answer: O(log n), where n = # of incr ’s

performed

What is the amortized runtime for n incr ’s?

Easy to see that an incr will touch B[i] once every

2i operations.

Number of operations is thus

n
log n�

i=0

1

2i
= 2n

Thus, amortized cost per incr is O(1)
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Charging Method

Certain operations charge more than their cost so as to pay for other

operations. This allows total cost to be calculated while ignoring the

second category of operations.

In the counter example, we charge 2 units for each operation to

change a 0-bit to 1-bit.

Pays for the cost of later flipping the 1-bit to 0-bit.
Important: ensure you have charged enough.
We have satisfied this: a bit can be flipped from 1 to 0 only once after it is

flipped from 0 to 1.

Now we ignore costs of 1 to 0 flips in the algorithm

There is only one 0-to-1 bit flipping per call of incr !

So, incr only costs 2 units for each invocation!
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Stack Example

Consider a stack with two operations:

push(x): Push a value x on the stack

pop(k): Pop o� the top k elements

What is the cost of a mix of n push and pop operations?

Key problem: Worst-case cost of a pop is O(n)!

Solution:

Charge 2 units for each push: covers the cost of pushing, and also the

cost of a subsequent pop

A pushed item can be popped only once, so we have charged enough

Now, ignore pop’s altogther, and trivially arrive at O(1) amortized cost

for the sequence of push/pop operations!
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Potential Method

Define a potential for a data structure that is initially zero, and is

always non-negative. The amortized cost of an operation is the cost

of the operation minus the change in potential.

Analogy with “potential” energy. “Potential” is prepaid cost that

can be used subsequently

as the data structure changes and “releases” stored energy

A more sophisticated technique that allows “charges” or “taxes” to

be stored within nodes in a data structure and used subsequently

at a later time.
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Potential Method: Illustration

Stack:

Each push costs 2 units because a push increases potential

energy by 1.

Pops can use the energy released by reduction in stack size!

Counter:

Define potential as the number one 1-bits

Changing a 0 to 1 costs 2 units, one for the operation and one

to pay for increase in potential

Changes of 1 to 0 can now be paid by released potential.
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Hash Tables

To provide expected constant time access, collisions need to be

limited

This requires hash table resizing when they become too full

But this requires all entries to be deleted from current table and

inserted into a table that is larger — a very expensive operation.

Options:

1. Try to guess the table size right; if you guessed wrong, put up with the

pain of low performance.

2. Quit complaining, bite the bullet, and rehash as needed;

3. Amortize: Rehash as needed, and prove that it does not cost much!
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Amortized Rehashing

Amortize the cost of rehashing over other hash table operations

Approach 1: Rehash after a large number (say, 1K) operations.

Total cost of 1K ops = 1K for the ops + 1K for rehash = 2K

Note: We may have at most 1K elements in the table after 1K

operations, so we may need to rehash at most 1K times.

So, amortized cost is just 2!

Are we done?
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Amortized Rehash (2)

Are we done?

Consider total cost after 2K, 3K, and 4K operations:

T (2K) = 2K + 1K (first rehash) + 2K (second rehash) = 5K

T (3K) = 3K + 1K (1st rehash) + 2K (2nd rehash) + 3K (3rd ...) = 9K

T (4K) = 4K + 1K + 2K + 3K + 4K = 14K

Hmmm. This is growing like n2, so amortized cost will be O(n)

Need to try a di�erent approach.
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Amortized Rehash (3)

Approach 2: Double the hash table whenever it gets full

Say, you start with an empty table of size N . For simplicity, assume

only insert operations.

You invoke N insert operations, then rehash to a 2N table.

T (N) = N + N (rehashing N entries) = 2N

Now, you can insert N more before needing rehash.

T (2N) = T (N) + N + 2N (rehashing 2N entries) = 5N

Now, you can insert 2N more before needing rehash:

T (4N) = T (2N) + 2N + 4N (rehashing 4N entries) = 11N

The general recurrence is T (n) = T (n/2) + 1.5n, which is linear.

So, amortized cost is constant!
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Amortized Rehash (4)

Alternatively, we can think in terms of charging.

Each insert operation can be charged 3 units of cost:

One for the insert operation

One for rehashing of this element at the end of this run of inserts

One for rehashing an element that was already in the hash table

when this run began

A run contains as many elements as the hash table at the beginning

of run — so we have accounted for all costs.

Thus, rehashing

increases the costs of insertions by a factor of 3.

lookup costs are unchanged.
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Amortized Rehash (5)

Alternatively, we can think in terms of potential.

Hash table as a spring: as more elements are inserted, the spring

has to be compressed to make room.

Let |H| denote the capacity and α the occupancy of H

Define potential as 0 when α ≤ 0.5 and 2(α− 0.5)|H| otherwise.
Immediately after resize, let the hash table capacity be k. Note

α ≤ 0.5 so potential is 0.

Each insert (after α reaches 0.5) costs 3 units: one for the

operation, and 2 for the increase in potential.

When α reaches 1, the potential is 2k. After resizing to 2k, potential

falls to 0, and the released 2k cost pays for rehashing 2k elements.
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Amortized Rehash (6)

What if we increase the size by a factor less than 2?

Is there a threshold t > 1 such that expansion by a factor less than t

won’t yield amortized constant time?

What happens if we want to support both deletes and inserts, and

want to make sure that the table never uses more than k times the

actual number of elements?

Is there a minimum value of k for which this can be achieved?

Do you need a di�erent threshold for expansion and contraction? Are

there any constraints on the relationship between these two thresholds

to ensure amortized constant time?
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Amortized performance of Vectors vs Lists
Linked lists: Data structures of choice if you don’t know the total

number of elements in advance.

Space ine�cient: 2x or more memory for very small objects.

Poor cache performance: Pointer chasing is cache unfriendly.

Sequential access: No fast access to kth element.

Vectors: Dynamically-sized arrays have none of these problems. But

resizing is expensive.

Is it possible to achieve good amortized performance?

When should the vector be expanded/contracted?

What operations can we support in constant amortized time?

Inserts? insert at end? concatenation?

Strings: We can raise similar questions as Vectors.
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Disjoint Sets

Represent disjoint sets as “inverted trees”

Each element has a parent pointer π

To compute the union of set A with B, simply make B’s root the

parent of A’s root.

A directed-tree representation of two sets {B,E} and {A,C,D,F,G,H}.

E H

B C F

A

D

G
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Disjoint Sets (2)

procedure makeset(x)
π(x) = x
rank(x) = 0

function find(x)
while x �= π(x) : x = π(x)

return x

��������� �����(x, y)

rx = ����(x)

ry = ����(y)

π(ry) = rx

Complexity

������� takes O(1) time

���� takes time equal to depth of

set: O(n) in the worst case.

����� takes O(1) time on a root

element; in the worst case, its

complexity matches ����.

Amortized complexity

Can you construct a worst-case

example, where N operations take

O(N2) time?

Can we improve this?
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Disjoint Sets with Union by Depth

procedure makeset(x)
π(x) = x
rank(x) = 0

function find(x)
while x �= π(x) : x = π(x)

return x

procedure union(x, y)
rx = find(x)
ry = find(y)
if rx = ry: return
if rank(rx) > rank(ry):

π(ry) = rx
else:

π(rx) = ry
if rank(rx) = rank(ry) :

rank(ry) = rank(ry) + 1

rank of a node is the height of subtree rooted at that node.
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Disjoint Sets with Union by Depth (2)

Figure 5.6 A sequence of disjoint-set operations. Superscripts denote rank.

After makeset(A),makeset(B), . . . ,makeset(G):

A0 B0 C0 D0 E0 F0 0G

After union(A,D),union(B,E),union(C,F ):

A0 B0 C0

G0F1E1D1
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Disjoint Sets with Union by Depth (3)
After union(C,G),union(E,A):

B

1

F1

C 0G

0

E

D2

A0 0

After union(B,G):

A

G0

FE1

0

C0

D2

B0

1
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Complexity of disjoint sets w/ union by depth

Asymptotic complexity of ������� unchanged.

����� has become a bit more expensive, but only modestly.

What about ����?

A sequence of N operations can create at most N elements

So, maximum set size is O(N)

With union by rank, each increase in rank can occur only after a

doubling of elements in the set

Observation

The number of nodes of rank k never exceeds N/2k

So, height of trees is bounded by logN
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Complexity of disjoint sets w/ union by depth (2)

Height of trees is bounded by logN

Thus we have a complexity of O(logN) for ����

Question: Is this bound tight?

From here on, we limit union operations to only root nodes, so

their cost is O(1).

This requires find to be moved out of union into a separate

operation, and hence the total number of operations increases,

but only by a constant factor.
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Improving ���� performance

Idea: Why not force depth to be 1? Then ���� will have O(1)

complexity!

Approach: Threaded Trees

a

b c d

p

q r

a

p q r b c d

Problem: Worst-case complexity of ����� becomes O(n)

Solution:

Merge smaller set with larger set

Amortize cost of ����� over other operations
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Sets w/ threaded trees: Amortized analysis

Other than cost of updating parent pointers, ����� costs O(1)

Idea: Charge the cost of updating a parent pointer to an element.

Key observation: Each time an element’s parent pointer

changes, it is in a set that is twice as large as before

So, with n operations, you can at most O(log n) parent pointer updates

per element

Thus, amortized cost of n operations, consisting of some mix of

�������, ���� and ����� is at most n log n
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Further improvement

Can we combine the best elements of the two approaches?
Threaded trees employ an eager approach to ����� while the original
approach used a lazy approach
Eager approach is better for ����, while being lazy is better for �����.

So, why not use lazy approach for ����� and eager approach for ����?

Path compression: Retains lazy �����, but when a �������

is called, eagerly promotes x to the level beloe the root

Actually, we promote x,π(x),π(π(x)),π(π(π(x))) and so on.

As a result, subsequent calls to find x or its parents become cheap.

From here on, we let rank be defined by the union algorithm

For root node, rank is same as depth
But once a node becomes a non-root, its rank stays fixed,
even when path compression decreases its depth.
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Disjoint sets w/ Path compression: Illustration

����(I) followed by ����(K)

B0

D0

I0 J0 K0

H0

C1

1 G1

A3

F

E2

−→
B0

0D

K0

J0

I0

H0

C1 F1

G1

A3

E2

−→ B0

D H0 J0

I0 K0 G1C1 F1E2

A

0

3
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Sets w/ Path compression: Amortized analysis

Amortized cost per operation of n set operations is O(log∗ n) where

log∗ x = smallest k such that log(log(· · · log� �� �
k times

(x) · · · )) = 1

Note: log∗(x) ≤ 5 for virtually any n of practical relevance.

Specifically,

log∗(265536) = log∗(22
22
2

) = 5

Note that 265536 is approximately a 20, 000 digit decimal number.

We will never be able to store input of that size, at least not in our

universe. (Universe contains may be 10100 elementary particles.)

So, we might as well treat log∗(n) as O(1).
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String Matching

Strings provide the primary means of interfacing to machines.

programs, documents, ...

Consequently, string matching is central to numerous, widely-used
systems and tools

Compilers and interpreters, command processors (e.g., bash),
text-processing tools (sed, awk, ...)

Document searching and processing, e.g., grep, Google, NLP tools, ...

Editors and word-processors

File versioning and compression, e.g., rcs, svn, rsync, ...

Network and system management, e.g., intrusion detection, performance
monitoring, ...

Computational biology, e.g., DNA alignment, mutations, evolutionary
trees, ...
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Topics

1. Intro

Motivation

Background

2. RE

Regular expressions

3. FSA

DFA and NFA

4. To DFA

RE Derivatives

McNaughton-Yamada

5. Trie

Tries

Using Derivatives

KMP

Aho-Corasick

Shift-And

7. agrep

Levenshtein Automaton

8. Fing.print

Rabin-Karp

Rolling Hashes

Common Substring and rsync

9. Su�x trees

Overview

Applications
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Terminology

String: List S[1..i] of characters over an alphabet Σ.

Substring: A string P[1..j] such that for P[1..j] = S[l+1..l+j] for some

l .

Prefix: A substring P of S occurring at its beginning

Su�x: A substring P of S occurring at its end

Subsequence: Similar to substring, but the the elements of P need

not occur contiguously in S.

For instance, bcd is a substring of abcde, while de is a su�x, abcd

is a prefix, and acd is a subsequence. A substring (or

prefix/su�x/subsequence) T of S is said to be proper if T �= S.
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String Matching Problems

Given a “pattern” string p and another string s:

Exact match: Is p a substring of s?

Match with wildcards: In this case, the pattern can contain wildcard

characters that can match any character in s

Regular expression match: In this case, p is regular expression

Substring/prefix/su�x: Does a (su�ciently long)

substring/prefix/su�x of p occur in s?

Approximate match: Is there a substring of s that is within a certain

edit distance from p?

Multi-match: Instead of a single pattern, you are given a set p1, .., pn
of patterns. Applies to all above problems.
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String Matching Techniques

Finite-automata and variants: Regexp matching, Knuth-Morris-Pratt,

Aho-Corasick

Seminumerical Techniques: Shift-and, Shift-and with errors,

Rabin-Karp, Hash-based

Su�x trees and su�x arrays: Techniques for finding substrings,

su�xes, etc.
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Language of Regular Expressions

Notation to represent (potentially) infinite sets of strings over

alphabet Σ.

Let R be the set of all regular expressions over Σ. Then,

Empty String : � ∈ R

Unit Strings : α ∈ Σ ⇒ α ∈ R

Concatenation : r1, r2 ∈ R ⇒ r1r2 ∈ R

Alternative : r1, r2 ∈ R ⇒ (r1 | r2) ∈ R

Kleene Closure : r ∈ R ⇒ r∗ ∈ R
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Regular Expression

a : stands for the set of strings {a}
a | b : stands for the set {a, b}

Union of sets corresponding to REs a and b

ab : stands for the set {ab}
Analogous to set product on REs for a and b

(a|b)(a|b): stands for the set {aa, ab, ba, bb}.

a∗ : stands for the set {�, a, aa, aaa, . . .} that contains all strings of

zero or more a’s.

Analogous to closure of the product operation.
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Regular Expression Examples

(a|b)∗ : Set of strings with zero or more a’s and zero or more b’s:

{�, a, b, aa, ab, ba, bb, aaa, aab, . . .}

(a∗b∗) : Set of strings with zero or more a’s and zero or more b’s
such that all a’s occur before any b:

{�, a, b, aa, ab, bb, aaa, aab, abb, . . .}

(a∗b∗)∗ : Set of strings with zero or more a’s and zero or more b’s:

{�, a, b, aa, ab, ba, bb, aaa, aab, . . .}
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Semantics of Regular Expressions

Semantic Function L: Maps regular expressions to sets of strings.

L(�) = {�}
L(α) = {α} (α ∈ Σ)

L(r1 | r2) = L(r1) ∪ L(r2)
L(r1 r2) = L(r1) · L(r2)
L(r∗) = {�} ∪ (L(r) · L(r∗))
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Finite State Automata

Regular expressions are used for specification, while FSA are used for

computation.

FSAs are represented by a labeled directed graph.

A finite set of states (vertices).

Transitions between states (edges).

Labels on transitions are drawn from Σ ∪ {�}.
One distinguished start state.

One or more distinguished final states.
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Finite State Automata: An Example

Consider the Regular Expression (a | b)∗a(a | b).
L((a | b)∗a(a | b)) = {aa, ab, aaa, aab, baa, bab,

aaaa, aaab, abaa, abab, baaa, . . .}.
The following (non-deterministic) automaton determines whether an

input string belongs to L((a | b)∗a(a | b):

a

a

b
b

a

1 2 3
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Determinism

(a | b)∗a(a | b):

Nondeterministic:

(NFA)

a

a

b
b

a

1 2 3

Deterministic:

(DFA)
a

a

b

b

a

a

b

b

1 2

3

4
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Acceptance Criterion

A finite state automaton (NFA or DFA) accepts an input string x

. . . if beginning from the start state

. . . we can trace some path through the automaton

. . . such that the sequence of edge labels spells x

. . . and end in a final state.

Or, there exists a path in the graph from the start state to a final

state such that the sequence of labels on the path spells out x
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Recognition with an NFA

Is abab ∈ L((a | b)∗a(a | b))?

a

a

b
b

a

1 2 3

Input: a b a b
Path 1: 1 1 1 1 1

Path 2: 1 1 1 2 3 Accept

Path 3: 1 2 3 ⊥ ⊥

Accept
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Recognition with a DFA

Is abab ∈ L((a | b)∗a(a | b))?

a

a

b

b

a

a

b

b

1 2

3

4

Input: a b a b
Path: 1 2 4 2 4 Accept
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NFA vs. DFA

For every NFA, there is a DFA that accepts the same set of strings.

NFA may have transitions labeled by �.

(Spontaneous transitions)

All transition labels in a DFA belong to Σ.

For some string x, there may be many accepting paths in an NFA.

For all strings x, there is one unique accepting path in a DFA.

Usually, an input string can be recognized faster with a DFA.

NFAs are typically smaller than the corresponding DFAs.
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NFA vs. DFA

n = Size of Regular Expression (pattern)

m = Length of Input String (subject)

NFA DFA

Size of

Automaton
O(n) O(2n)

Recognition time

per input string
O(n×m) O(m)
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Converting RE to FSA

NFA: Compile RE to NFA (Thompson’s construction [1968]), then

match.

DFA: Compile to DFA, then match

(A) Convert NFA to DFA (Rabin-Scott construction), minimize

(B) Direct construction: RE derivatives [Brzozowski 1964].

More convenient and a bit more general than (A).

(C) Direct construction of [McNaughton Yamada 1960]

Can be seen as a (more easily implemented) specialization of (B).

Used in Lex and its derivatives, i.e., most compilers use this

algorithm.
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Converting RE to FSA

NFA approach takes O(n) NFA construction plus O(nm) matching,

so has worst case O(nm) complexity.

DFA approach takes O(2n) construction plus O(m)match, so has

worst case O(2n +m) complexity.

So, why bother with DFA?

In many practical applications, the pattern is fixed and small, while the

subject text is very large. So, the O(mn) term is dominant over O(2n)

For many important cases, DFAs are of polynomial size

In many applications, exponential blow-ups don’t occur, e.g., compilers.
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Derivative of Regular Expressions

The derivative of a regular expression R w.r.t. a symbol x, denoted

∂x[R] is another regular expression R� such that L(R) = L(xR�)

Basically, ∂x[R] captures the su�xes of those strings that match R

and start with x.

Examples

∂a[a(b|c)] = b|c
∂a[(a|b)cd] = cd

∂a[(a|b)∗ cd] = (a|b)∗ cd
∂c[(a|b)∗ cd] = d

∂d [(a|b)∗ cd] = ∅
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Definition of RE Derivative (1)

inclEps(R): A predicate that returns true if � ∈ L(R)
inclEps(a) = false, ∀a ∈ Σ

inclEps(R1|R2) = inclEps(R1) ∨ inclEps(R2)
inclEps(R1R2) = inclEps(R1) ∧ inclEps(R2)
inclEps(R∗) = true

Note inclEps can be computed in linear-time.
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Definition of RE Derivative (2)

∂a[a] = �

∂a[b] = ∅
∂a[R1|R2] = ∂a[R1]|∂a[R2]
∂a[R∗] = ∂a[R]R ∗

∂a[R1R2] = ∂a[R1]R2|∂a[R2] if inclEps(R1)

= ∂a[R1]R2 otherwise

Note: L(�) = {�} �= L(∅) = {}
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DFA Using Derivatives: Illustration

Consider R1 = (a|b)∗ a(a|b)
∂a[R1] = R1|(a|b) = R2
∂b[R1] = R1
∂a[R2] = R1|(a|b)|� = R3
∂b[R2] = R1|� = R4
∂a[R3] = R1|(a|b)|� = R3
∂b[R3] = R1|� = R4
∂a[R4] = R1|(a|b) = R2
∂b[R4] = R1

a

a

b

b

a

a

b

b

1 2

3

4
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McNaughton-Yamada Construction

Can be viewed as a simpler way to represent derivatives

Positions in RE are numbered, e.g., 0(a1|b2)∗ a3(a4|b5)$6.
A derivative is identified by its beginning position in the RE

Or more generally, a derivative is identified by a set of positions

Each DFA state corresponds to a position set (pset)

R1 ≡ {1, 2, 3}
R2 ≡ {1, 2, 3, 4, 5}
R3 ≡ {1, 2, 3, 4, 5, 6}
R4 ≡ {1, 2, 3, 6}

a

a

b

b

a

a

b

b

1 2

3

4
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McNaughton-Yamada: Definitions

first(P): Yields the set of first symbols of RE denoted by pset P

Determines the transitions out of DFA state for P

Example: For the RE (a1|b2)∗ a3(a4|b5)$6,
first({1, 2, 3}) = {a, b}

P|s: Subset of P that contain s, i.e., {p ∈ P | R contains s at p}
Example: {1, 2, 3}|a = {1, 3}, {1, 2, 4, 5}|b = {2, 5}

follow(P): Yields the set of positions that immediately follow P .

Note: follow(P) =
�
p∈P follow({p})

Definition is very similar to derivatives

Example: follow({3, 4}) = {4, 5, 6}
follow({1}) = {1, 2, 3}
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McNaughton-Yamada Construction (2)

BuildMY (R, pset)

Create an automaton state S labeled pset

Mark this state as final if $ occurs in R at pset

foreach symbol x ∈ first(pset)− {$} do

Call BuildMY (R, follow(pset|x)) if hasn’t previously been called

Create a transition on x from S to

the root of this subautomaton

DFA construction begins with the call BuildMY (R, follow({0})). The
root of the resulting automaton is marked as a start state.
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BuildMY Illustration on R = 0(a1|b2)∗ a3(a4|b5)$6
Computations Needed

follow({0}) = {1, 2, 3}
follow({1}) = follow({2}) = {1, 2, 3}
follow({3}) = {4, 5}
follow({4}) = follow({5}) = {6}

{1, 2, 3}|a = {1, 3}, {1, 2, 3}|b = {2}
follow({1, 3}) = {1, 2, 3, 4, 5}

{1, 2, 3, 4, 5}|a = {1, 3, 4}
{1, 2, 3, 4, 5}|b = {2, 5}
follow({1, 3, 4}) = {1, 2, 3, 4, 5, 6}
follow({2, 5}) = {1, 2, 3, 6}

{1, 2, 3, 4, 5, 6}|a = {1, 3, 4}
{1, 2, 3, 4, 5, 6}|b = {2, 5}
{1, 2, 3, 6}|a = {1, 3} {1, 2, 3, 6}|b = {2}

Resulting Automaton

a

a

b

b

a

a

b

b

1 2

3

4

State Pset

1 {1,2,3}

2 {1,2,3,4,5}

3 {1,2,3,4,5,6}

4 {1,2,3,6}
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McNaughton-Yamada (MY) Vs Derivatives

Conceptually very similar

MY takes a bit longer to describe, and its correctness a bit harder

to follow.

MY is also more mechanical, and hence is found in most

implementations

Derivatives approach is more general

Can support some extensions to REs, e.g., complement operator
Can avoid some redundant states during construction
Example: For ac|bc, DFA built by derivative approach has 3 states, but the

one built by MY construction has 4 states

The derivative approach merges the two c’s in the RE, but with MY, the two

c’s have di�erent positions, and hence operations on them are not shared.
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Avoiding Redundant States

Automata built by MY is not optimal

Automata minimization algorithms can be used to produce an optimal

automaton.

Derivatives approach associates DFA states with derivatives, but

does not say how to determine equality among derivatives.

There is a spectrum of techniques to determine RE equality

MY is the simplest: relies on syntactic identity
At the other end of the spectrum, we could use a complete decision
procedure for RE equality.
In this case, the derivative approach yields the optimal RE!

In practice we would tend to use something in the middle
Trade o� some power for ease/e�ciency of implementation
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RE to DFA conversion: Complexity

Given DFA size can be exponential in the worst case, we obviously

must accept worst-case exponential complexity.

For the derivatives approach, it is not immediately obvious that it
even terminates!
More obvious for McNaughton-Yamada approach, since DFA states
correspond to position sets, of which there are only 2n.

Derivative computation is linear in RE size in the general case.

So, overall complexity is O(n2n)

Complexity can be improved, but the worst-case 2n takes away
some of the rationale for doing so.
Instead, we focus on improving performance in many frequently
occurring special cases where better complexity is achievable.
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RE Matching: Summary

Regular expression matching is much more powerful than

matching on plain strings (e.g., prefix, su�x, substring, etc.)

Natural that RE matching algorithms can be used to solve plain

string matching

But usually, you pay for increased power: more complex algorithms,

larger runtimes or storage.

We study the RE approach because it seems to not

only do RE matching, but yield simpler, more e�cient

algorithms for matching plain strings.
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String Lookup

Problem: Determine if s equals any of the strings p1, ..., pk .

Equivalent to the question: does the RE p1|p2| · · · |pk match s?

We can use the derivative approach, except that derivatives are

very easy to compute.

Or, we can use BuildMY — once again, follow() sets are very easy to

compute for this class of regular expressions.

Results in an FSA that is a tree

More commonly known as a trie
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Trie Example

R0 = top|tool|tooth|at|sunk|sunny
R1 = ∂t [R0] = op|ool|ooth
R2 = ∂o[R1] = p|ol|oth
R3 = ∂p[R2] = �

R4 = ∂o[R2] = l|th
R5 = ∂l [R4] = �

R6 = ∂t [R4] = h, R7 = ∂h[R6] = �

R8 = ∂a[R0] = t, R9 = ∂t [R8] = �

R10 = ∂s[R0] = unk|unny
R11 = ∂u[R10] = uk|nny
R12 = ∂n[R11] = k|ny
R13 = ∂k[R12] = �

R14 = ∂n[R12] = y, R15 = ∂y [R14] = �

 0 

1

 t 

8

 a 

10

 s 

2

 o 

3

 p 

4

 o 

5

 l 

6

 t 

7

 h 

9

 t 

11

 u 

12

 n 

13

 k 

14

 n 

15

 y 
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Trie Summary

A data structure for e�cient lookup

Construction time linear in the size of keywords

Search time linear in the size of the input string

Can also support maximal common prefix (MCP) query

Can also be used for e�cient representation of string sets

Takes O(|s|) time to check if s belongs to the set
Set union/intersection are linear in size of the smaller set
Sublinear in input size when one input trie is much larger than the other

Can compute set di�erence as well — with same complexity.
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Implementing Transitions

How to implement transitions?

Array: E�cient, but unacceptable space when |Σ| is large
Linked list: Space-e�cient, but slow

Hash tables: Mid-way between the above two options, but noticeably

slower than arrays. Collisions are a concern.

But customized hash tables for this purpose can be developed.

Alternatively, since transition tables are static, we can look for

perfect hash functions

Specialized representations: For special cases such as exact search,

we could develop specialized alternatives that are more e�cient

than all of the above.
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Exact Search

Determine if a pattern P[1..n] occurs within text S[1..m]

Find j such that P[1..n] = S[j..(j+n−1)]

An RE matching problem: Does Σ∗PΣ∗ match S?

Note: Σ∗ matches any arbitrary string (incl. �)

We consider Σ∗p since it can identify all matches

A match can be reported each time a final state is reached.

In contrast, an automaton for Σ∗PΣ∗ may not report all matches
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Exact Search Example

Consider R0 = (Σ0)∗a1a2b3a4b5a6a7$8

We use McNaughton-Yamada. Recall that with
this technique:

States are identified by position sets.

A position denotes a derivative starting at
that position

A position set indicates the union of REs
corresponding to each position.

For instance, position set {0, 2, 3} represents

R0|a2b3a4b5a6a7|b3a4b5a6a7

1  b 

12

 a  b 

123

 a 

 a 

14

 b 

 b 

125

 a 

 a 

16

 b 

 b 

127

 a 

 b 

1238

 a 

 a 

 b 
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Exact Search: Complexity

Positives:

Matching is very fast, taking only O(m) time.

Only linear (rather than exponential) number of states

Downsides:

Construction of psets for each state takes up to O(n) time
Thus, overall complexity of automata construction is O(n2)
Can be O(n2|Σ|) since each state may have up to |Σ| transitions

Question: Can we do better?
Faster construction
O(n) instead of O(n2)?

More e�cient representation for transitions.
constant number of transitions per state?
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Improving Exact Search: Observations

The DFA has a linear structure, with states 1 to n+ 1:

State i is reached on matching the prefix P[1..i − 1]

The largest element of pset(i) is i

If you are in state i after scanning S[k]:

Let P � = P[1..i−1] = S[k − i + 2..k]
“Unwinding” of Σ∗: A prefix of S[k − i + 2..k] can be
matched with Σ∗, with the rest matching P[1..j−1]

So, pset(i) includes every j such that
S[k − i + 2..k] = P[1..j−1] = P[..i−1]

S a a b a b a a
Viable match 1 a1 a2 b3 a4 b5 a6 a7 $8

Viable match 2 Σ Σ Σ Σ Σ a1 a2 b3

Viable match 3 Σ Σ Σ Σ Σ Σ a1 a2

Viable match 4 Σ Σ Σ Σ Σ Σ Σ a1

(Σ0)∗a1a2b3a4b5a6a7$8

1  b 

12

 a  b 

123

 a 

 a 

14

 b 

 b 

125

 a 

 a 

16

 b 

 b 

127

 a 

 b 

1238

 a 

 a 

 b 
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Improving Exact Search: Key Ideas

Main Idea

Remember only the largest j < i in pset(i)

You can look at pset(j) for the next smaller element

Add failure links from state i to j for this purpose

Two positions per pset =⇒ O(n) construction

time

(Σ0)∗a1a2b3a4b5a6a7$8

1  b 

12

 a  b 

123

 a 

 a 

14

 b 

 b 

125

 a 

 a 

16

 b 

 b 

127

 a 

 b 

1238

 a 

 a 

 b 
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Exact Search: KMP Automaton

Only two positions per state: {j, i}
Two trans per state: forward and fail

If the symbol at both positions is the
same, then the next state has the pset
{j + 1, i + 1}
Otherwise, the match at j cannot advance
on the symbol at i . So, we use the fail link
to identify the next shorter prefix that can
advance:

Follow fail link to state u with pset {k, j}
and see if that match can advance
Otherwise, follow the fail link from u
and so on.

Failure link chase is amortized O(1) time,
while other steps are O(1) time.

1  b 

12

 a  b 

123

 a 

 a 

14

 b 

 b 

125

 a 

 a 

16

 b 

 b 

127

 a 

 b 

1238

 a 

 a 

 b 

1

12

 a 

23

 a 

14

 b 

25

 a 

16

 b 

27

 a 

38

 a 
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KMP Algorithm

BuildAuto(P[1..m])
j = 0

for i = 1 to m do

fail[i] = j

while j > 0 and P[i] �= P[j] do

j = fail[j]

j ++

KMP(P[1..m], S[1..n])

j = 0; BuildAuto(P)

for i = 1 to n do

while j > 0 and T [i] �= P[j] do

j = fail[j]

j ++

if j > m then return i −m+ 1

Simple, avoids explicit representation of states/transitions.

Each state has two transitions: normal and failure.
Normal transition at state i is on P[i]
Fail links are stored in an array fail

BuildAuto is like matching pattern with itself!

Algorithm is unbelievably short and simple!
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Multi-pattern Exact Search
Can we extend KMP to support multiple patterns?

Yes we can! It is called Aho-Corasick (AC) automaton
Note that AC algorithm was published before KMP!

Today, many systems use AC (e.g., grep, snort), but not KMP.

KMP looks like a linear automaton plus failure links.
Aho-Corasick looks like a trie extended with failure links.

Failure links may go to a non-ancestor state

Failure link computations are similar

McNaughton-Yamada and the derivatives algorithms build an
automaton similar to AC, just as they did for KMP.
One can understand Aho-Corasick as a specialization of these

algorithms, as we did in the case of KMP,

Or, as a generalization of KMP
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Aho-Corasick Automaton

As with KMP, we can think of AC as a specialization of MY.

Retain just the largest two numbers i and j in the pset.

Use the value of j as target for failure link, and to find j � in the

successor state’s pset {j �, i + 1}
But there is an extra wrinkle:

With KMP, there is one pattern; we keep two positions from it.
With AC, we have multiple patterns, so a state’s pset will contain
positions from multiple patterns.
If two patterns share a prefix, the automaton state reached by this prefix

will contain the next positions from both patterns.

We will simply retain one one of these positions, say, from the higher

numbered pattern.

To avoid clutter in our example, we omit numbering of positions that

will be dropped this way.
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Aho-Corasick Example

Consider RE

(Σ0)∗(t 1o2p3$4|too5l6$7|toot8h9$a
|pbecnd$e|of pgehni$j |ookzlem$n)

To reduce clutter, positions

that occur with previously

numbered positions are not

explicitly numbered, e.g.,

o’s in tooth (occurs with

the o’s in tool )

Figure omits failure links

that go to start state.

1

2

 t 

c

 p 

k

 o 

k3

 o 

l8

 o 
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 l 
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kl
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 e 
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 z 

n

 e 
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Alternative Approaches for Exact Search

DFA approach had significant preprocessing (“compiling”) costs,

but optimized runtime — exactly m comparisons.

KMP reduces compile-time1 by shifting more work (up to 2m

comparisons) to runtime.

DFA states contain information about all matching prefixes, but KMP

states retain just the two longest ones.

Other prefixes are essentially being computed at runtime by folowing

fail links.

Can we remember even less in automaton states?

Can we leave all matching prefixes to be computed at runtime?

1while also simplifying automaton structure
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Approximate Search

Approach 1: Use edit-distance algorithm

Expensive

Does not allow for multiple patterns

Unless you try the patterns one-by-one

Approach 2: Levenshtein Automaton

Can be much faster, especially when p is small.

Supports multiple patterns

Enables applications such as spell-correction
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Levenshtein Automaton

T00 T1
 a T2

 a T3
 b T4

 a T5
 b T6

 a T7
 a 

No errors permitted.
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Levenshtein Automaton

U0 U1
 a U2

 a U3
 b U4

 a U5
 b U6

 a U7
 a 

T0

ε

T1
 a 

ε

T2
 a 

ε

T3
 b 

ε

T4
 a 

ε

T5
 b 

ε

T6
 a 

ε

T7
 a 

Up to one missing character (deletion).
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Levenshtein Automaton

U0 U1
 a U2

 a U3
 b U4

 a U5
 b U6

 a U7
 a 

T0

Σ
ε

T1
 a 

Σ
ε

T2
 a 

Σ
ε

T3
 b 

Σ
ε

T4
 a 

Σ
ε

T5
 b 

Σ
ε

T6
 a 

Σ
ε

T7
 a 

Σ

Up to one deletion and one insertion.
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Levenshtein Automaton

U0 U1
 a U2

 a U3
 b U4

 a U5
 b U6

 a U7
 a 

T0

Σ

ε

Σ

T1
 a 

Σ

ε

Σ

T2
 a 

Σ

ε

Σ

T3
 b 

Σ

ε

Σ

T4
 a 

Σ

ε

Σ

T5
 b 

Σ

ε

Σ

T6
 a 

Σ

ε

Σ

T7
 a 

Σ

Up to one deletion, or insertion, or substitution
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Levenshtein Automaton

V0 V1
 a V2

 a V3
 b V4

 a V5
 b V6

 a V7
 a 

U0

Σ

ε

Σ

U1
 a 

Σ

ε

Σ

U2
 a 

Σ

ε

Σ

U3
 b 

Σ

ε

Σ

U4
 a 

Σ

ε

Σ

U5
 b 

Σ

ε

Σ

U6
 a 

Σ

ε

Σ

U7
 a 

Σ

T0

Σ

ε

Σ

T1
 a 

Σ

ε

Σ

T2
 a 

Σ

ε

Σ

T3
 b 

Σ

ε

Σ

T4
 a 

Σ

ε

Σ

T5
 b 

Σ

ε

Σ

T6
 a 

Σ

ε

Σ

T7
 a 

Σ

Up to a total of two deletions, insertions, or substitution
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Levenshtein Automaton

V0 V1
 a V2

 a V3
 b V4

 a V5
 b V6

 a V7
 a 

U0

Σ

ε

Σ

U1
 a 

Σ

ε

Σ

U2
 a 

Σ

ε

Σ

U3
 b 

Σ

ε

Σ

U4
 a 

Σ

ε

Σ

U5
 b 

Σ

ε

Σ

U6
 a 

Σ

ε

Σ

U7
 a 

Σ

T0

Σ

ε

Σ

T1
 a 

Σ

ε

Σ

T2
 a 

Σ

ε

Σ

T3
 b 

Σ

ε

Σ

T4
 a 

Σ

ε

Σ

T5
 b 

Σ

ε

Σ

T6
 a 

Σ

ε

Σ

T7
 a 

Σ

Compare with:
Structure of cost matrix for edit-distance problem

Finding least-cost paths from T0 to T7, U7 or V7

Illustrates the relationship between shortest path and edit-distance

problem
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Matching Using Levenshtein Automaton

V0 V1
 a V2

 a V3
 b V4

 a V5
 b V6

 a V7
 a 

U0

Σ

ε

Σ

U1
 a 

Σ

ε

Σ

U2
 a 

Σ

ε

Σ

U3
 b 

Σ

ε

Σ

U4
 a 

Σ

ε

Σ

U5
 b 

Σ

ε

Σ

U6
 a 

Σ

ε

Σ

U7
 a 

Σ

T0

Σ

ε

Σ

T1
 a 

Σ

ε

Σ

T2
 a 

Σ

ε

Σ

T3
 b 

Σ

ε

Σ

T4
 a 

Σ

ε

Σ

T5
 b 

Σ

ε

Σ

T6
 a 

Σ

ε

Σ

T7
 a 

Σ

Convert to DFA (subset construction)

Potentially O(nk) states, where k is the max edit distance permitted

Adapt Shift-and algorithm

We already know how to maintain T [0..n]

Need to extend to compute U from T , V from U and so on.
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Levenshtein automaton and spell-correction

When a word w is misspelled, we want to find the closest

matching word in the dictionary

Or, list all matches within an edit distance of l

Approach:

Build Levenshtein automaton for w with l + 1 “layers”

Run the dictionary trie through the automaton

List all matches

Alternatively, a DFA for the Levenshtein automaton could be built,

and the trie run through this DFA.

The DFA could be directly constructed as well, without going through

an NFA and powerset construction.
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Rolling Hashes

RK and CWRK are examples of rolling hashes

Hash computed on text within a sliding window

Key point: Incremental computation of hash as the window slides.

Polynomial-based hashes are easy to compute incrementally:

ti+1 = (ti − xn−1T [i]) · x + T [i + n]

Complexity:

xn−1 is fixed once the window size is chosen

Takes just two multiplications, one modulo per symbol

O(m+ n) multiplication/modulo operations in total
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Other Rolling Hashes

In some contexts, multiplication/modulo may be too expensive.

Alternatives:

Use shifts, cyclic shifts, substitution maps and xor operations,

avoiding multiplications altogether

Need considerable research to find good fingerprinting functions.

Example: Adler32 — used in zlib (used everywhere) and rsync.

Al = 1+
l−1�

k=0

ti+k mod 65521

B =
n�

k=1

Ak = n+
n−1�

k=0

(n− k)ti+k mod 65521

H = (B � 16) + A
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Rolling Hash and Common Substring Problem

To find a common substring of length l or more
Compute rolling hashes of P and T with window size l
Takes O(n+m) time.

O(nm) comparisons, so expected number of collisions increases.
Unless collision probability is O(1/nm), expected runtime can be nonlinear

Can find longest common substring (LCS) using a binary-search

like process, with a total complexity of O((n+m) log(n+m))

71 / 84



Intro RE FSA To DFA Trie grep agrep Fing.print Su�x trees Rabin-Karp Rolling Hashes Common Substring and rsync

zlib/gzip, rsync, binary di�, etc.

rsync: Synchronizes directories across network

Need to minimize data transferred
A di� requires entire files to be copied to client side first!

Uses timestamps (or whole-file checksums) to detect unchanged files
For modified files, uses Adler-32 to identify modified regions
Find common substrings of certain length, say, 128-bytes

Relies on stronger MD-5 hash to verify unmodified regions

gzip: Uses rolling hash (Adler-32) to identify text that repeated from
previous 32KB window

Repeating text can be replaced with a “pointer:” (o�set, length).

Binary di�: Many programs such as xdelta and svn need to perform di�s
on binaries; they too rely on rolling hashes.

diff depends critically on line breaks, so does poorly on binaries
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Su�x Trees [Weiner 1973]

A versatile data structure with wide applications in string search

and computational biology

“Compressed” trie of all su�xes of a string appended with “$”
Linear chains in the trie are compressed
Edges can now be substrings.

Each state has at least two children.

Leaves identify starting position of that su�x.

Key point: Can be constructed in linear time!

Supports sublinear exact match queries, and linear LCS queries

With linear-time preprocessing on the text (to build su�x tree),

yields better runtime than techniques discussed so far.

Applicable to single as well as multiple patterns or texts!
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Su�x Tree Example

Key Property Behind Su�x Trees

Substrings are prefixes of su�xes

Failure links used only

during construction

Uses end-marker “$”

Leaves identify starting

position of su�x

Typically, it is the text we

preprocess, not the pattern.
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Finding Substrings and Su�xes

Is p a substring of t?

Example: Is anan a substring of
banana?

Solution:

Follow path labeled p from root
of su�x tree for t.

If you fail along the way, then
“no,” else “yes”

p is a su�x if you reach a leaf at
the end of p

O(|p|) time, independent of |t|
— great for large t
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Counting # of Occurrences of p

How many times does “an”

occur in t?

Solution:

Follow path labeled p from

root of su�x tree for t .

Count the number of leaves

below.

O(|p|) time if additional

information (# of leaves

below) maintained at internal

nodes.
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Self-LCS (Or, Longest Common Repeat)

What is the longest substring

that repeats in t?

Solution:

Find the deepest non-leaf

node with two or more

children!

In our example, it is ana.
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LC extension of i and j

Longest Common Extension

Longest common prefix of su�xes starting at i and j

Locate leaves labeled i and j .

Find their least common

ancestor (LCA)

The string spelled out by the

path from root to this LCA is

what we want.
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LCS with another string p

We can use the same procedure

as LCR, if su�xes of p were also

included in the su�x tree

Leads to the notion of

generalized su�x tree
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Generalized Su�x Trees

Su�x trees for multiple strings p1, ..., pn
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Generalized Su�x Tree: Applications

LCS of p and t: Build GST for s and t , find deepest node that has

descendants corresponding to s and t

LCS of p1, ..., pk : Build GST for p1 to pk , find deepest node that has

descendants from all of p1, ..., pn

Find strings in database containing q:

Build a su�x tree of all strings in the database

follow path that spells q

q occurs in every pi that appears below this node.
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Su�x Arrays [Manber and Myers 1989]

Drawbacks of su�x trees:
Multiple pointers per internal node: significant storage costs

Pointer-chasing is not cache-friendly

Su�x arrays address these drawbacks.
Requires same asymptotic storage (O(n)) but constant factors a lot

smaller — 4x or so.
Instead of navigating down a path in the tree, relies on binary search
Increases asymptotic cost by O(log n), but can be faster in practice due to

better cache performance etc.
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Intro P and NP Hard problems

Search and Optimization Problems

Many problems of our interest are search problems with

exponentially (or even infinitely) many solutions

Shortest of the paths between two vertices

Spanning tree with minimal cost

Combination of variable values that minimize an objective

We should be surprised we find e�cient (i.e., polynomial-time)

solutions to these problems

It seems like these should be the exceptions rather than the norm!

What do we do when we hit upon other search problems?
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Intro P and NP Hard problems

Hard Problems: Where you find yourself ...

I can’t find an e�cient algorithm, I guess I’m just too dumb.

Images from “Computers and Intractability” by Garey and Johnson
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Intro P and NP Hard problems

Search and Optimization Problems

What do we do when we hit upon hard search problems?

Can we prove they can’t be solved e�ciently?
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Intro P and NP Hard problems

Hard Problems: Where you would like to be ...

I can’t find an e�cient algorithm, because no such algorithm is possible.

Images from “Computers and Intractability” by Garey and Johnson
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Search and Optimization Problems

Unfortunately, it is very hard to prove that e�cient algorithms are

impossible

Second best alternative:

Show that the problem is as hard as many other problems that have

been worked on by a host of brilliant scientists over a very long time

Much of complexity theory is concerned with categorizing hard

problems into such equivalence classes
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P , NP , Co-NP , NP-hard and NP-complete
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Intro P and NP Hard problems

Nondeterminism and Search Problems

Nondeterminism is an oft-used abstraction in language theory

Non-deterministic FSA

Non-deterministic PDA

So, why not non-deterministic Turing machines?
Acceptance criteria is analogous to NFA and NPDA
if there is a sequence of transitions to an accepting state, an NDTM will

take that path.

What does nondeterminism, a theoretical construct, mean in

practice?

You can think of it as a boundless potential to search for and identify

the correct path that leads to a solution

So, it does not change the class of problems that can be solved, just

the time/space needed to solve.
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Class NP : Non-deterministic Polynomial Time

How they operate:

Guess a solution

verify correctness in polynomial time

Polynomial time verifiability is the key property of NP .

This is how you build a path from P to NP .

Ideal formulation for search problems, where correct solutions

are hard to find but easy to recognize.

Example: Boolean formula satisfiability (SAT )

Given a boolean formula in CNF, find an assignment of {�����

�����} to variables that makes it true.

Why not DNF?

9 / 38



Intro P and NP Hard problems

What are the bounds of NP?

Only Decision problems:

Problems with an “yes” or “no” answer
Optimization problems are generally not in NP
But we can often find optimal solutions using “binary search”

“No” answers are usually not verifiable in P-time

So, complement of NP problems are often not NP .

UNSAT — show that a CNF formula is false for all truth assignments1

Key point: You cannot negate nondeterministic automata.

So, we are unable to convert an NDTM for SAT to solve UNSAT in

NP-time.

1Whether UNSAT ∈ NP is unknown!
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What are the bounds of NP?

Existentially quantified vs Universally quantified formulas

NP is good for ∃x P(x): guess a value for x and check if P(x) holds.
NP is not good for ∀x P(x):
Guessing does not seem to help if you need to check all values of x.

Negation of existential formula yields a universal formula.

No surprise that complement of NP problems are typically not in NP .

UNSAT : ∀x¬P(x) where P is in CNF

VALID: ∀xP(x), where P is in DNF

NP seems to be a good way to separate hard problems from even

harder ones!
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Co-NP: Problems whose complement is in NP

Decision problems that have a polynomially checkable proof when

the answer is “no”

�

������

What we think the world looks like.

Biggest open problem: Is P = NP?

Will also imply co-NP = P
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The class Co-NP ∩ NP

Often, problems that are in NP ∩ co-NP are in P

It requires considerable insight and/or structure in the problem to

show that something is both NP and co-NP

This can often be turned into a P-time algorithm

Examples
Linear programming [1979]
Obviously in NP . To see why it is in co-NP , we can derive a lower bound

by multiplying the constraints by a suitable (guessed) number and adding.

Primality testing [2002]
Obviously in co−NP; See “primality certificate” for proof it is NP

Integer factorization?

13 / 38



Intro P and NP Hard problems

NP-hard and NP-complete

A problem Π is NP-hard if the availability of a polynomial solution

to Π will allow NP-problems to be solved in polynomial time.

Π is NP-hard ⇔ if Π can be solved in P-time, P = NP

NP-complete = NP-hard ∩ NP

�

������

�������

�����������

More of what we think the world looks like.
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Polynomial-time Reducibility

Show that a problem A could be transformed into problem B in

polynomial time

Called a polynomial-time reduction of A to B

The crux of proofs involving NP-completeness

Implication: if B can be solved in P-time, we can solve A in P-time

An NP-complete problem is one to which any problem in NP can

be reduced to.

Never forget the direction: To prove a problem Π is

NP-complete, need to show how all other NP problems can be

solved using Π, not vice-versa!
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Wait! How can I reduce every NP to my problem?

If a particular NP-problem A is given to you, then you can think of

a way to reduce it to your problem B

But how do you go about proving that every NP problem X can be

reduced to B

You don’t even know X — indeed, the class NP is infinite!

If you already knew an NP-complete problem, your task is easy!

Simply reduce this NP-complete problem to B, and by transitivity, you

have a reduction of every X ∈ NP to B

So, who will bell the cat?

Stephen Cook [1970] and Leonid Levin [1973] managed to do this!

Cook was denied reappointment/tenure in 1970 at Berkeley, but won

the T ing d in 1982!
16 / 38



Intro P and NP Hard problems

The first NP-complete problem: SAT

How do you show reducibility of arbitrary NP-problems to SAT ? You

start from the definition, of course!

The class NP is defined in terms of an NDTM

X is in NP if there is an NDTM TX that solves X in polynomial time

Use this NDTM as the basis of proof.

Specifically, show that acceptance by an NDTM can be encoded in

terms of a boolean formula

Model TX tape contents, tape heads, and finite state at each step

as a vector of boolean variables

Need (p(n))2 variables, where p(n) is the (polynomial) runtime of TX

Model each transition as a boolean formula
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Intro P and NP Hard problems

Thanks to Cook-Levin, you can say ...

I can’t find an e�cient algorithm, but neither can all these famous people.

Thanks to NP-completeness results, you can say this even if you have been

working on an obscure problem that no one ever looked at!
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Some Hard Decision Problems
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Traveling Salesman Problem

4

5

6

3

3 3

2
4

1

2 3

Given n vertices and n(n− 1)/2 distances between them, is there a

tour (i.e., cycle) of length b or less that passes through all vertices?
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Hamiltonian Cycle

Simpler than TSP

Is there a cycle that passes through every vertex in the graph?

Earliest reference, posed in the context of chess boards and

knights (“Rudrata cycle”)

Longest path is another version of the same problem

When posed as a decision problem, becomes the same as Hamiltonian

path problem
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Balanced Cuts

Does there exist a way to partition vertices V in a graph into two

sets S and T such that

there are at most b edges between S and T , and

|S| ≥ |T | ≥ |V |/3
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Integer Linear Programming (ILP) and

Zero-One Equations (ZOE)

ILP: Linear programing, but solutions are limited to integers

Many problems are easy to solve over real numbers but much

harder for integers.

Examples:

Knapsack

solutions to equations such as xn + yn = zn

ZOE: A special case of ILP, where the values are just 0 or 1.

Find x such that Ax = 1 where 1 is a column matrix consisting

of 1’s.
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3d-Matching

Given triples of compatibilities between men, women and pets,

find perfect, 3-way matches.

Armadillo Bobcat

Carol

Beatrice

AliceChet

Bob

Al

Canary
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Independent set, vertex cover, and clique

Independent set: Does this graph

contain a set of at least k

vertices with no edge between

them?

Vertex cover: Does this graph

contain a set of at least k

vertices that cover all edges?

Clique: Does this graph contain

at least k vertices that are fully

connected among themselves?
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Intro P and NP Hard problems

Easy Vs Hard Problems

Hard Easy

3SAT 2SAT, HORN SAT

TSP MST

Longest path Shortest path

3d-matching bipartite match

Independent set Indep. set on trees

ILP Linear programming

Hamiltonian cycle Euler path,

Knights tour

Balanced cut Min-cut
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NP-completeness: Polynomial-time Reductions

Show that a known NP-complete problem A could be transformed

into problem B in polynomial time

I
Instance Instance f(I)f

Algorithm for A

for B
Algorithm

Solution S of f(I)

No solution to f(I)
No solution to I

h(S) of I
Solution

h

Implication: if B can be solved in P-time, we can solve A in P-time

Never forget the direction:

We are proving that B is NP-complete here.
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NP-completeness Reductions

3D MATCHING

RUDRATA CYCLESUBSET SUM

TSP

ILP

ZOE

All of NP

SAT

3SAT

VERTEX COVER

INDEPENDENT SET

CLIQUE
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Reducing all of NP to SAT

We already discussed this

Show how to reduce acceptance by an NDTM to the SAT problem.

Exercise: Show how to transform acceptance by an FSA into an

instance of SAT
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Reducing SAT to 3SAT

3SAT : A special case of SAT where each clause has ≤ 3 literals

Reduction involves transforming a disjunction with many literals

into a CNF of disjunctions with ≤ 3 literals per term

The transformation below at most doubles the problem size.

Key Idea: Introduce additional variables:

Example: l1 ∨ l2 ∨ l3 ∨ l4 can be transformed into:

(l1 ∨ l2 ∨ y1) ∧ (y1 ∨ l3 ∨ l4)
For this conjunction to be true, one of {l1, ..., l4} must be true:
So a solution to the transformed problem is a solution to the original —

simply discard assignments for the new variables yi .
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Reducing 3SAT to Independent set

Nontrivial reduction, as the problems are quite di�erent in nature

Idea: Model each of k clauses of 3SAT by a “triangle” in a graph

The graph corresponding to (x ∨ y ∨ z) (x ∨ y ∨ z) (x ∨ y ∨ z) (x ∨ y).

y y y

x z x z xz x

y

Independent set of size k must contain one literal from each clause
By setting that literal to true, we obtain a solution for 3SAT

Key point: Avoid conflicts, e.g., assigning true to both x and x
ensure using edges between every variable and its complement
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Reducing Independent set to Vertex Cover

If S is an independent set then V − S is a vertex cover

Consider any edge e in the graph

Case 1: Both ends of e are in V − S

Case 2: At least one end of e is S. The other end of e cannot be in S

or else S won’t be independent.

Thus, in both cases, at least one side of e must go to V − S.

In other words V − S is a vertex cover

Thus, we have reduced independent set to vertex cover problem.
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Reducing Independent set to Clique

If S is an independent set then S is clique in G = (V , E)
For any pair v1, v2 ∈ S there is no edge in E
means that there is an edge between any such pair in G �

i.e, S is a clique in G

Thus, we have reduced independent set to the clique problem,

while only using polynomial time and space.

33 / 38



Intro P and NP Hard problems

NP-completeness Reductions
We have discussed the left half of this picture

We won’t discuss the right half, since the proofs are similar in
many ways, but are more involved.
You can find those reductions in the text book.

3D MATCHING

RUDRATA CYCLESUBSET SUM

TSP

ILP

ZOE

All of NP

SAT

3SAT

VERTEX COVER

INDEPENDENT SET

CLIQUE
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Beyond NP: PSPACE

PSPACE: The class of problems that can be solved using only

polynomial amount of space.

It is OK to take exponential (or super-exponential) time.

Key point: Unlike time, space is reusable.
Result: many exponential algorithms are in PSPACE.
Consider universal formulas. We can check them in polynomial space by

rerunning the same computation (say, check(v)) for each v.

The space used for check is recycled, but the time adds up for di�erent v ’s.

Note: SAT is in PSPACE

Try every possible truthe assignment for variables.

Thus, all NP-complete problems are in PSPACE.
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PSPACE-hard and PSPACE-complete

PSPACE-hard: A problem Π is PSPACE-hard if for any problem Π� in

PSPACE there is a P-time reduction to Π.

PSPACE-complete: PSPACE-hard problems that are in PSPACE.

Examples:

QBF: Quantified boolean formulae

NFA totality: Does this NFA accept all strings?

Is NP � PSPACE?

We think so, but we can’t even prove P � PSPACE
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Intro Backtracking Branch and Bound Approximation

Coping with NP-Completeness

Sometimes you are faced with hard problems — problems for

which no e�cient solutions exist.

Step 1: Try to show that the problem is NP-complete

This way, you can avoid wasting a lot of time on a fruitless search for

an e�cient algorithm

Step 2a: Sometimes, you may be able to say “let us solve a

di�erent problem”

you may be able leverage some special structure of your problem

domain that enables a more e�cient solution

Step 2b: Other times, you are stuck with a di�cult problem and

you need to make the best of it.

We discuss di�erent coping strategies in such cases.
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Intro Backtracking Branch and Bound Approximation

Intelligent Exhaustive Search

Exhaustive search will work for almost any problem

Hamiltonian Tour: Consider an edge e.

Either e = (u, v) is part of the tour, in which case you can complete

the tour by finding a path from u to v in G − e.

Or, e is not part of the tour, in which case you can find the tour by

searching G − e.

Either case leads to a recurrence T (m) = 2T (m− 1), i.e.,

T (m) = O(2m). (Here m is the number of edge in G .)

SAT: Try all 2n possible truth assignments to the n variables in

your formula.

The key point is to be intelligent in the way this search is

conducted, so that the algorithm is faster than 2n in practice.
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Intro Backtracking Branch and Bound Approximation

Backtracking

Depth-first approach to perform exhaustive search
In the above example, first try to find a solution that includes e
Looking down further, the algorithm will make additional choices of edges

to include: e1, e2, ..., ek

Only when all paths that include e fail to be Hamiltonian, we consider

the alternative (i.e., Hamiltonian path that doesn’t include e)

Key goal is to recognize and prune failing paths as quickly as

possible.
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Intro Backtracking Branch and Bound Approximation

Backtracking Approach for SAT

(), (y ∨ z)(y ∨ z), (y), (y ∨ z)

(z), (z)

(x ∨ y), (y ∨ z), (z), (z)

(x ∨ y), (y), ()(x ∨ y), ()

(w ∨ x ∨ y ∨ z), (w ∨ x), (x ∨ y), (y ∨ z), (z ∨ w), (w ∨ z)

(x ∨ y ∨ z), (x), (x ∨ y), (y ∨ z)

x = 1

()

z = 0 z = 1

()

()

y = 1

z = 1z = 0

y = 0

w = 1w = 0

x = 0
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Intro Backtracking Branch and Bound Approximation

Branch and Bound

Generalization of backtracking to support optimization problems

Requires a lower bound on the cost of solutions that may result

from a partial solution

If the cost is higher than that of a previously encountered solution,

then this subproblem need not be explored further.

Sometimes, we may rely on estimates of cost rather than strict

lower bounds.
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Intro Backtracking Branch and Bound Approximation

Branch and Bound for TSP

Begin with a vertex a — the goal is to compute a TSP that begins

and ends at a.

We begin the search by considering an edge from a to its neighbor

x, another edge from x to a neighbor of x, and so on.

Partial solutions represent a path from a to some vertex b, passing

through a set S ⊂ V of vertices.

Completing a partial solution requires the computation of a low

cost path from b to a using only vertices in V − S
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Intro Backtracking Branch and Bound Approximation

Lower bound on costs of partial TSP solutions

To complete the path from b to a, we must incur at least the

following costs

Cost of going from b to a vertex in V − S, i.e, the minimum weight

edge from b to a vertex in V − S

Cost of going from a V − S vertex to a, i.e, the minimum weight edge

from a to a vertex in V − S
Minimal cost path in V − S that visits all v ∈ V − S
Note: Lower bound is the cost of MST for V − S

By adding the above three cost components, we arrive at a lower

bound on solutions derivable from a partial solution.
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Intro Backtracking Branch and Bound Approximation

Illustration of Branch-and Bound for TSP
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Intro Backtracking Branch and Bound Approximation Intro Bin packing Set Cover Vertex Cover k-Cluster TSP Knapsack:

Approximation Algorithms

Relax optimality requirement: permit approximate solutions

Solutions that are within a certain distance from optimum

Not heuristics: Approximate algorithms guarantee that solutions

are within a certain distance from optimal

Di�ers from heuristics that can sometimes return very bad solutions.

How to define “distance from optimal?”

Additive: Optimal solution SO and the Solution SA returned by

approximation algorithm di�er only by a constant.

Quality of approximation is extremely good, but unfortunately, most

problems don’t admit such approximations

Factor: SO and SA are related by a factor.

Most known approximation algorithms fall into this category.
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Approximation Factors

Constant: SA ≤ kSO for some fixed constant k.

Examples: Vertex cover, Facility location, ...

Logarithmic: SA ≤ O(logk n) · SO.
Examples: Set cover, dominating set, ...

Polynomial: SA ≤ O(nk) · SO.
Examples: Max Clique, Independent set, graph coloring, ...

PTAS: SA ≤ (1+ �) · SO for any � > 0.

(“Polynomial-time approximation scheme”)

FPTAS: PTAS with runtime O(�−k) for some k. (“Fully PTAS”)

Examples: Knapsack, Bin-packing, Euclidean TSP, ...
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Bin Packing

Problem

Pack objects of di�erent weight into bins that have a fixed capacity

in such a way that minimizes bins used.

Obvious similarity to Knapsack

Bin-packing is NP-hard

Very good (and often very simple) approximation algorithms exist
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First-fit Algorithm

A simple, greedy algorithm

FirstFit(x[1..n])

for i = 1 to n do

Put x[i] into the first open bin large enough to hold it

Theorem

All open bins, except possibly one, are more than half-full

Proof: Suppose that there are two bins b and b� that are less than

half-full. Then, items in b� would have fitted into b, and so the FF

algorithm would never have opened the bin b� — a contradiction

Theorem

First-fit is optimal within a factor of 2: specifically, SA < 2SO + 1.
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Best-Fit Algorithm

Another simple, greedy algorithm

Instead of using the first bin that will can hold x[i], use the open

bin whose remaining capacity is closest to x[i]

Prefers to keep bins close to full.

Factor-2 optimality can established easily.
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Other algorithms for Bin-packing

First-fit decreasing strategy first sorts the items so that

x[i] ≥ x[i + 1] and then runs first-fit.

Best-fit decreasing strategy first sorts the items so that

x[i] ≥ x[i + 1] and then runs best-fit.

Both FFD and BFD achieve approximation factors of 11/9SO + 6/9.

Due to the additive term, bin-packing cannot have a PTAS unless

P = NP .

But SA = (1+ �)SO + 1 is easy to achieve for any � > 0
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Set Cover

Problem

Given a collection S1, ..., Sm of subsets of B, find a minimum

collection Si1 , . . . , Sik such that
�k
j=1 Sij = B

Greedy Set Cover Algorithm

GSC(S, B)

cover = ∅; covered = ∅
while covered �= B do

Let new be the set in S − cover containing

the maximum number of elements of B − covered

add new to cover ; covered = covered ∪ new
return cover
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Analysis of Greedy Set Cover

Theorem

Greedy set cover is approximate with a factor of ln n, where n = |B|

Proof:

Let k be the size of optimal cover, and nt be the number of elements
left uncovered after t steps of GSC

These nt elements are covered by k sets in optimal cover ⇒ each of
these k sets must cover at least nt/k uncovered elements.

Thus, GSC will find at least one set that covers nt/k elements.

This yields the recurrence for bounding uncovered elements:
U(t + 1) = nt − nt/k = nt(1− 1/k) = U(t)(1− 1/k)

The solution to recurrence is n(1− 1/k)t < ne−t/k

Thus, after t = k ln n steps, less than 1 (i.e., no) elements uncovered

Thus, GSC computes a cover at most ln n times the optimal cover.
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Vertex Cover

Note that a vertex cover is a set cover for (S, E), where
S = {{(v, u)|v ∈ V and (v, u) ∈ E}|v ∈ V},
S contains a set for each vertex; this set lists all edges incident on v

Thus GSC is an approximate algorithm for vertex cover.

But ln n is not a factor to be thrilled about — can we do better?

Actually, we can do much better! That too with a very simple algorithm.
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Vertex Cover

Consider any edge (u, v).

Either u or v must belong to any vertex cover.

If we accept SA = 2SO , then we can avoid the guesswork by simply

picking both vertices!

Approximate Vertex Cover Algorithm

AVC(G = (V , E))

C = ∅
while G is not empty

pick any (u, v) ∈ E

C = C ∪ {u, v}
G = G − {u, v}

return C
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k-Cluster

Problem

Given X = {x1, . . . , xn} and distances between xi , partition X into k

clusters in a way that minimizes maximum cluster diameter.

Approximate k-Cluster Algorithm (AC)

Pick any point µ1 ∈ X as the first cluster center

for i = 2 to k do

Choose µi to be the farthest point from µ1, . . . , µi−1

Create k clusters Ci = {x ∈ X |µi is the closest center to x}
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Analysis of k-Cluster

Let x be the farthest point from µ1, . . . , µk , and let r the distance to

its closest center. Then, we can say:

Cluster diameter of C1, . . . ,Ck is at most 2r

The distance between any 2 points in {x, µ1, . . . , µk} is at least r .

This follows from:

how µi ’s was chosen to be the farthest point from µj for j < i ,

this distance to µi must decrease with i , and

when i = k + 1, this distance is r

Thus, any k-Cluster must have a diameter of at least r

With k circles, at least two of k + 1 points must be within one of them.

This circle’s diameter must hence be r or greater

Thus, AC is approximate within a factor of 2.
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Euclidean TSP

Our starting point is once again the MST

Note that no TSP solution can be smaller than MST

Deleting an edge from TSP solution yields a spanning tree

Simple algorithm:

Start with the MST
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Approximating Euclidean TSP: An Illustration
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Start with the MST

Make a tour that uses each MST edge twice (forward and

backward)

This tour is like TSP in ending at the starting node, and di�ers from

TSP by visiting some vertices and edges twice
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Approximating Euclidean TSP: An Illustration (2)
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Avoid revisits by short-circuiting to next unvisited vertex

By triangle inequality, short-circuit distance can only be less than

the distance following MST edges.

Thus, tour length less than 2xMST, i.e., approximate within a factor 2.
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Knapsack

Knap01(w, v, n,W )

V =
�n

j=0 v[j]

K [0, v] = 0, ∀0 ≤ v ≤ V

for j = 1 to n do

for v = 1 to V do

if v[j] > v then K [j, v] = K [j−1, v]

else K [j, v] = min(K [j−1, v], K [j−1, v−v[j], ] + w[j])

return maximum v such that K [n, v] ≤ W

Computes minimum weight of knapsack for a given value.

Iterates over all possible items and all possible values: O(nV )

we derive a polynomial time approximate algorithm from this
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FPTAS for 0-1 Knapsack

Knap01FPTAS(w, v, n,W , �)

v �i =
�

vi
max1≤j≤n vj

· n
�

�
, for 1 ≤ i ≤ n

Knap01(w, v �, n,W )

Rescaling consists of two steps:

Express value of each item relative to the most valuable item
If we worked with real values, this step won’t change the optimal solution

Multiply relative values by a factor n/� to get an integer

Floor operation introduces an error ≤ 1 in v�i (e.g., �3.99� = 3)

Error in Knap01 output = error in
�
v �i , which is at most n · 1

We scale each v �i by n/�, so relative error is n/(n/�) = �

Thus we have achieved the desired approximation. 28 / 29
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FPTAS for 0-1 Knapsack: Runtime

Knap01FPTAS(w, v, n,W , �)

v �i =

�
vi

max1≤j≤n vj
· n
�

�
, for 1 ≤ i ≤ n

Knap01(w, v �, n,W )

Note that we are using Knap01 with rescaled values, so the
complexity is O(nV �).

Note: V � =
�n

1 v
�
i ≤ n ·max1≤j≤n v �j

It is easy to see from definition of v �i that max1≤j≤n v
�
j = n/�.

Substituting this into the above equation yields a complexity of:

O(nV �) ≤ O(n(n ·max1≤i≤n v �i )) = O(n(n · (n/�))) = O(n3/�)

By varying �, we can trade o� accuracy against runtime.
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