Dynamic Programming and Equation Solving

- The crux of a dynamic programming solution: set up equation to captures a problem's optimal substructure.

Dynamic Programming and Equation Solving

- The crux of a dynamic programming solution: set up equation to captures a problem's optimal substructure.

The equation implies dependencies on subproblem solutions.

Dynamic Programming and Equation Solving

- The crux of a dynamic programming solution: set up equation to captures a problem's optimal substructure.

The equation implies dependencies on subproblem solutions.

- Dynamic programming algorithm: finds a schedule that respects these dependencies

Dynamic Programming and Equation Solving

- The crux of a dynamic programming solution: set up equation to captures a problem's optimal substructure.

The equation implies dependencies on subproblem solutions.

- Dynamic programming algorithm: finds a schedule that respects these dependencies
- Typically, dependencies form a DAG: its topological sort yields the right schedule

Dynamic Programming and Equation Solving

- The crux of a dynamic programming solution: set up equation to captures a problem's optimal substructure.

The equation implies dependencies on subproblem solutions.

- Dynamic programming algorithm: finds a schedule that respects these dependencies
- Typically, dependencies form a DAG: its topological sort yields the right schedule
- Cyclic dependencies: What if dependencies don't form a DAG, but is a general graph.

Dynamic Programming and Equation Solving

- The crux of a dynamic programming solution: set up equation to captures a problem's optimal substructure.

The equation implies dependencies on subproblem solutions.

- Dynamic programming algorithm: finds a schedule that respects these dependencies
- Typically, dependencies form a DAG: its topological sort yields the right schedule
- Cyclic dependencies: What if dependencies don't form a DAG, but is a general graph.
- Key Idea: Use iterative techniques to solve (recursive) equations

Fixpoints

- A fixpoint is a solution to an equation:
- Substitute the solution on the rhs, it yields the Ihs.

Fixpoints

- A fixpoint is a solution to an equation:
- Substitute the solution on the rhs, it yields the lhs.
- Example 1: $y=y^{2}-12$.
- A fixpoint is $y=4$:

$$
y=y^{2}-\left.12\right|_{y=4}=4^{2}-12=4
$$

i.e., substituting $y=4$ on the rhs returns the same value for y.

- A second fix point is $y=-3$

Fixpoints (2)

- A fixpoint is a solution to an equation:
- Example 2: $7 x=2 y-4,2 x y=2 x^{3}+2 y+x$.
- First, rewrite it to expose the fixpoint structure better:

$$
x=(2 y-4) / 7, \quad y=x^{2}+y / x+0.5
$$

One fixpoint is $x=2, y=9$.

$$
\begin{gathered}
x=(2 y-4) /\left.7\right|_{x=2, y=9}=(18-4) / 7=2 \\
y=x^{2}+y / x+\left.0.5\right|_{x=2, y=9}=2^{2}+9 / 2+0.5=9
\end{gathered}
$$

Again, we get the same values after substitution, i.e., a fixpoint.

Fixpoints (2)

- A fixpoint is a solution to an equation:
- Example 2: $7 x=2 y-4,2 x y=2 x^{3}+2 y+x$.
- First, rewrite it to expose the fixpoint structure better:

$$
x=(2 y-4) / 7, \quad y=x^{2}+y / x+0.5
$$

One fixpoint is $x=2, y=9$.

$$
\begin{gathered}
x=(2 y-4) /\left.7\right|_{x=2, y=9}=(18-4) / 7=2 \\
y=x^{2}+y / x+\left.0.5\right|_{x=2, y=9}=2^{2}+9 / 2+0.5=9
\end{gathered}
$$

Again, we get the same values after substitution, i.e., a fixpoint.

- The term "fixpoint" emphasizes an iterative strategy.

Fixpoints (2)

- A fixpoint is a solution to an equation:
- Example 2: $7 x=2 y-4,2 x y=2 x^{3}+2 y+x$.
- First, rewrite it to expose the fixpoint structure better:

$$
x=(2 y-4) / 7, \quad y=x^{2}+y / x+0.5
$$

One fixpoint is $x=2, y=9$.

$$
\begin{gathered}
x=(2 y-4) /\left.7\right|_{x=2, y=9}=(18-4) / 7=2 \\
y=x^{2}+y / x+\left.0.5\right|_{x=2, y=9}=2^{2}+9 / 2+0.5=9
\end{gathered}
$$

Again, we get the same values after substitution, i.e., a fixpoint.

- The term "fixpoint" emphasizes an iterative strategy.
- Example techniques: Gauss-Seidel method (linear system of equations), Newton's method (finding roots), ...

Convergence

- Convergence is a major concern in iterative methods
- For real-values variables, need to start close enough to the solution, or else the iterative procedure may not converge.

Convergence

- Convergence is a major concern in iterative methods
- For real-values variables, need to start close enough to the solution, or else the iterative procedure may not converge.
- In discrete domains, rely on monotonicity and well-foundedness.

Convergence

- Convergence is a major concern in iterative methods
- For real-values variables, need to start close enough to the solution, or else the iterative procedure may not converge.
- In discrete domains, rely on monotonicity and well-foundedness.

Well-founded order: An order that has no infinite ascending chain (i.e., sequence of elements $a_{0}<a_{1}<a_{2}<\cdots$ where there is no maximum)

Convergence

- Convergence is a major concern in iterative methods
- For real-values variables, need to start close enough to the solution, or else the iterative procedure may not converge.
- In discrete domains, rely on monotonicity and well-foundedness.

Well-founded order: An order that has no infinite ascending chain (i.e., sequence of elements $a_{0}<a_{1}<a_{2}<\cdots$ where there is no maximum)
Monotonicity: Successive iterations produce larger values with respect to the order, i.e., $\left.r h s\right|_{s_{s o l}^{i}} \geq \operatorname{sol}_{i}$
Result: Start with an initial guess S^{0}, note $S^{i}=\left.r h s\right|_{S^{i-1}}$.

Convergence

- Convergence is a major concern in iterative methods
- For real-values variables, need to start close enough to the solution, or else the iterative procedure may not converge.
- In discrete domains, rely on monotonicity and well-foundedness.

Well-founded order: An order that has no infinite ascending chain (i.e., sequence of elements $a_{0}<a_{1}<a_{2}<\cdots$ where there is no maximum)
Monotonicity: Successive iterations produce larger values with respect to the order, i.e.,

$$
\left.r h s\right|_{s o l_{i}} \geq \operatorname{sol}_{i}
$$

Result: Start with an initial guess S^{0}, note $S^{i}=\left.r h s\right|_{S^{i-1}}$.

- Due to monotonicity, $S^{i} \geq S^{i-1}$, and

Convergence

- Convergence is a major concern in iterative methods
- For real-values variables, need to start close enough to the solution, or else the iterative procedure may not converge.
- In discrete domains, rely on monotonicity and well-foundedness.

Well-founded order: An order that has no infinite ascending chain (i.e., sequence of elements $a_{0}<a_{1}<a_{2}<\cdots$ where there is no maximum)
Monotonicity: Successive iterations produce larger values with respect to the order, i.e.,

$$
\left.r h s\right|_{s o l_{i}} \geq \operatorname{sol}_{i}
$$

Result: Start with an initial guess S^{0}, note $S^{i}=\left.r h s\right|_{S^{i-1}}$.

- Due to monotonicity, $S^{i} \geq S^{i-1}$, and
- by well-foundedness, the chain S^{0}, S^{1}, \ldots can't go on forever.

Convergence

- Convergence is a major concern in iterative methods
- For real-values variables, need to start close enough to the solution, or else the iterative procedure may not converge.
- In discrete domains, rely on monotonicity and well-foundedness.

Well-founded order: An order that has no infinite ascending chain (i.e., sequence of elements $a_{0}<a_{1}<a_{2}<\cdots$ where there is no maximum)
Monotonicity: Successive iterations produce larger values with respect to the order, i.e.,

$$
\left.r h s\right|_{s o l_{i}} \geq \operatorname{sol}_{i}
$$

Result: Start with an initial guess S^{0}, note $S^{i}=\left.r h s\right|_{S^{i-1}}$.

- Due to monotonicity, $S^{i} \geq S^{i-1}$, and
- by well-foundedness, the chain S^{0}, S^{1}, \ldots can't go on forever.
- Hence iteration must converge, i.e., $\exists k \forall i>k \quad S^{i}=S^{k}$

Role of Iterative Solutions

- Fixpoint iteration resembles an inductive construction
- S^{0} is the base case, S^{i} construction from S^{i-1} is the induction step.

Role of Iterative Solutions

- Fixpoint iteration resembles an inductive construction
- S^{0} is the base case, S^{i} construction from S^{i-1} is the induction step.
- Drawback of explicit fixpoint iteration: hard to analyze the number of iterations, and hence the runtime complexity

Role of Iterative Solutions

- Fixpoint iteration resembles an inductive construction
- S^{0} is the base case, S^{i} construction from S^{i-1} is the induction step.
- Drawback of explicit fixpoint iteration: hard to analyze the number of iterations, and hence the runtime complexity
- So, algorithms tend to rely on inductive, bottom-up constructions with enough detail to reason about runtime.

Role of Iterative Solutions

- Fixpoint iteration resembles an inductive construction
- S^{0} is the base case, S^{i} construction from S^{i-1} is the induction step.
- Drawback of explicit fixpoint iteration: hard to analyze the number of iterations, and hence the runtime complexity
- So, algorithms tend to rely on inductive, bottom-up constructions with enough detail to reason about runtime.
- Fixpoint iteration thus serves two main purposes:

Role of Iterative Solutions

- Fixpoint iteration resembles an inductive construction
- S^{0} is the base case, S^{i} construction from S^{i-1} is the induction step.
- Drawback of explicit fixpoint iteration: hard to analyze the number of iterations, and hence the runtime complexity
- So, algorithms tend to rely on inductive, bottom-up constructions with enough detail to reason about runtime.
- Fixpoint iteration thus serves two main purposes:
- When it is possible to bound its complexity in advance, e.g., non-recursive definitions

Role of Iterative Solutions

- Fixpoint iteration resembles an inductive construction
- S^{0} is the base case, S^{i} construction from S^{i-1} is the induction step.
- Drawback of explicit fixpoint iteration: hard to analyze the number of iterations, and hence the runtime complexity
- So, algorithms tend to rely on inductive, bottom-up constructions with enough detail to reason about runtime.
- Fixpoint iteration thus serves two main purposes:
- When it is possible to bound its complexity in advance, e.g., non-recursive definitions
- As an intermediate step that can be manually analyzed to uncover inductive structure explicitly.

Shortest Path Problems

Graphs with cycles: Natural example where the optimal substructure equations are recursive.
Single source: $d_{v}=\min _{u \mid(u, v) \in E}\left(d_{u}+l_{u v}\right)$
All pairs: $d_{u v}=\min _{w \mid(w, v) \in E}\left(d_{u w}+l_{w v}\right)$
or, alternatively, $d_{u v}=\min _{w \in V}\left(d_{u w}+d_{w v}\right)$

Shortest Path Problems

Graphs with cycles: Natural example where the optimal substructure equations are recursive.
Single source: $d_{v}=\min _{u \mid(u, v) \in E}\left(d_{u}+l_{u v}\right)$
All pairs: $d_{u v}=\min _{w \mid(w, v) \in E}\left(d_{u w}+l_{w v}\right)$
or, alternatively, $d_{u v}=\min _{w \in v}\left(d_{u w}+d_{w v}\right)$
Our study of shortest path algorithms is based on fixpoint formulation

- Shows how different shortest path algorithms can be derived from this perspective.
- Highlights the similarities between these algorithms, making them easier to understand/remember.

Single-source shortest paths

For the source vertex $s, d_{s}=0$. For $v \neq s$, we have the following equation that captures the optimal substructure of the problem. We use the convention $l_{u u}=0$ for all u, as it simplifies the equation:

$$
d_{v}=\min _{u \mid(u, v) \in E}\left(d_{u}+l_{u v}\right)
$$

Expressing edge lengths as a matrix, this equation becomes:

$$
\left[\begin{array}{c}
d_{1} \\
d_{2} \\
\vdots \\
d_{j} \\
\vdots \\
d_{n}
\end{array}\right]=\left[\begin{array}{cccc}
l_{11} & l_{21} & \cdots & l_{n 1} \\
l_{12} & l_{22} & \cdots & l_{n 2} \\
\vdots & \vdots & \vdots & \vdots \\
l_{1 j} & l_{2 j} & \cdots & l_{j n} \\
\vdots & \vdots & \vdots & \vdots \\
l_{1 n} & l_{2 n} & \cdots & l_{n n}
\end{array}\right]\left[\begin{array}{c}
d_{1} \\
d_{2} \\
\vdots \\
d_{j} \\
\vdots \\
d_{n}
\end{array}\right]
$$

Matches the form of linear simultaneous equations, except that point-wise multiplication and addition become the integer " + " and \min operations respectively.

Single-source shortest paths

SSP, written as a recursive matrix equation is:

$$
D=\mathbf{L} D
$$

Now, solve this equation iteratively:

$$
\begin{aligned}
& D^{0}=Z \quad\left(Z \text { is the column matrix consisting of all } \infty \text { except } d_{s}=0\right) \\
& D^{1}=\mathbf{L} Z \\
& D^{2}=\mathbf{L} D^{1}=\mathbf{L}(\mathbf{L} Z)=\mathbf{L}^{2} Z
\end{aligned}
$$

Or, more generally, $D^{i}=\mathbf{L}^{i} Z$

- \mathbf{L} is the generalized adjacency matrix, with entries being edge weights (aka edge lengths) rather than booleans.
- Side note: In this domain, multiplicative identity I is a matrix with zeroes on the main diagonal, and ∞ in all other places.
- So, $\mathbf{L}=\mathbf{I}+\mathbf{L}$, and hence $\mathbf{L}^{*}=\lim _{r \rightarrow \infty} \mathbf{L}^{r}$

Single-source shortest paths

- Recall the connection between paths and the entries in \mathbf{L}^{i}.
- Thus, D^{i} represents the shortest path using i or fewer edges!
- Unless there are cycles with negative cost in the graph, all shortest paths must have a length less than n, so:
- D^{n} contains all of the shortest paths from the source vertex s
- d_{i}^{n} is the shortest path length from s to the vertex i.

Computing $\mathbf{L} \times \mathbf{L}$ takes $O\left(n^{3}\right)$, so overall SSP cost is $O\left(n^{4}\right)$.

SSP: Improving Efficiency of Matrix Formulation

- Compute the product from right: $(\mathbf{L} \times(\mathbf{L} \times \cdots(\mathbf{L} \times \mathbf{Z}) \cdots)$
- Each multiplication involves $n \times n$ and $1 \times n$ matrix, so takes $O\left(n^{2}\right)$ instead of $O\left(n^{3}\right)$ time.
- Overall time reduced to $O\left(n^{3}\right)$.
- To compute $\mathbf{L} \times d_{j}$, enough to consider neighbors of j, and not all n vertices

$$
d_{j}^{i}=\min _{k \mid(k, j) \in E}\left(d_{k}^{i-1}+l_{k j}\right)
$$

- Computes each matrix multiplication in $O(|E|)$ time, so we have an overall $O(|E||V|)$ algorithm.
- We have stumbled onto the Bellman-Ford algorithm!

Further Optimization on Iteration

$$
d_{j}^{i}=\min _{k \mid(k, j) \in E}\left(d_{k}^{i-1}+l_{k j}\right)
$$

- Optimization 1: If none of the d_{k} 's on the rhs changed in the previous iteration, then d_{j}^{i} will be the same as d_{j}^{i-1}, so we can skip recomputing it in this iteration.
- Can be an useful improvement in practice, but asymptotic complexity unchanged from $O(|V||E|)$

Optimizing Iteration

$$
\left.d_{j}^{i}=\min _{k \mid(k, j) \in E}\left(d_{k}^{i-1}+l_{k j}\right)\right)
$$

Optimization 2: Wait to update d_{j} on account of d_{k} on the rhs until d_{k} 's cost stabilizes

- Avoids repeated propagation of min cost from k to j - instead propagation takes place just once per edge, i.e., $O(|E|)$ times

Optimizing Iteration

$$
\left.d_{j}^{i}=\min _{k \mid(k, j) \in E}\left(d_{k}^{i-1}+l_{k j}\right)\right)
$$

Optimization 2: Wait to update d_{j} on account of d_{k} on the rhs until d_{k} 's cost stabilizes

- Avoids repeated propagation of min cost from k to j - instead propagation takes place just once per edge, i.e., $O(|E|)$ times
- If all weights are non-negative, we can determine when costs have stabilized for a vertex k
- There must be at least r vertices whose shortest path from the source s uses r or fewer edges.
- In other words, if d_{k}^{i} has the r th lowest value, then d_{k}^{i} has stabilized if $r \leq i$

Optimizing Iteration

$$
\left.d_{j}^{i}=\min _{k \mid(k, j) \in E}\left(d_{k}^{i-1}+l_{k j}\right)\right)
$$

Optimization 2: Wait to update d_{j} on account of d_{k} on the rhs until d_{k} 's cost stabilizes

- Avoids repeated propagation of min cost from k to j - instead propagation takes place just once per edge, i.e., $O(|E|)$ times
- If all weights are non-negative, we can determine when costs have stabilized for a vertex k
- There must be at least r vertices whose shortest path from the source s uses r or fewer edges.
- In other words, if d_{k}^{i} has the r th lowest value, then d_{k}^{i} has stabilized if $r \leq i$

Voila! We have Dijkstra's Algorithm!

All pairs Shortest Path (I)

$$
d_{u v}^{i}=\min _{w \mid(w, v) \in E}\left(d_{u w}^{i-1}+l_{w v}\right)
$$

- Note that $d_{u v}$ depends on $d_{u v}$, but not on any $d_{x y}$, where $x \neq u$.

All pairs Shortest Path (I)

$$
d_{u v}^{i}=\min _{w \mid(w, v) \in E}\left(d_{u w}^{i-1}+l_{w v}\right)
$$

- Note that $d_{u v}$ depends on $d_{u v}$, but not on any $d_{x y}$, where $x \neq u$.
- So, solutions for $d_{x y}$ don't affect $d_{u v}$.

All pairs Shortest Path (I)

$$
d_{u v}^{i}=\min _{w \mid(w, v) \in E}\left(d_{u w}^{i-1}+l_{w v}\right)
$$

- Note that $d_{u v}$ depends on $d_{u w}$, but not on any $d_{x y}$, where $x \neq u$.
- So, solutions for $d_{x y}$ don't affect $d_{u v}$.
- i.e., we can solve a separate SSP, each with one of the vertices as source

All pairs Shortest Path (I)

$$
d_{u v}^{i}=\min _{w \mid(w, v) \in E}\left(d_{u w}^{i-1}+l_{w v}\right)
$$

- Note that $d_{u v}$ depends on $d_{u v}$, but not on any $d_{x y}$, where $x \neq u$.
- So, solutions for $d_{x y}$ don't affect $d_{u v}$.
- i.e., we can solve a separate SSP, each with one of the vertices as source
- i.e., we run Dijkstra's $|V|$ times, overall complexity $O(|E||V| \log |V|)$

All pairs Shortest Path (II)

$$
d_{u v}^{i}=\min _{w \in E}\left(d_{u w}^{i-1}+d_{w v}^{i-1}\right)
$$

Matrix formulation:

$$
\mathbf{D}=\mathbf{D} \times \mathbf{D}
$$

with $\mathbf{D}^{0}=\mathbf{L}$.
Iterative formulation of the above equation yields

$$
\mathbf{D}^{i}=\mathbf{L}^{2^{i}}
$$

We need only consider paths of length $\leq n$, so stop at $i=\log n$. Thus, overall complexity is $O\left(n^{3} \log n\right)$, as each step requires $O\left(n^{3}\right)$ multiplication.
We have just uncovered a variant of Floyd-Warshall algorithm!

- Typically used with matrix-multiplication based formulation.

All pairs Shortest Path (II)

$$
d_{u v}^{i}=\min _{w \in E}\left(d_{u w}^{i-1}+d_{w v}^{i-1}\right)
$$

Matrix formulation:

$$
\mathbf{D}=\mathbf{D} \times \mathbf{D}
$$

with $\mathbf{D}^{0}=\mathbf{L}$.
Iterative formulation of the above equation yields

$$
\mathbf{D}^{i}=\mathbf{L}^{2^{i}}
$$

We need only consider paths of length $\leq n$, so stop at $i=\log n$. Thus, overall complexity is $O\left(n^{3} \log n\right)$, as each step requires $O\left(n^{3}\right)$ multiplication.
We have just uncovered a variant of Floyd-Warshall algorithm!

- Typically used with matrix-multiplication based formulation.

Matches ASP I complexity for dense graphs $\left(|E|=\Theta\left(|V|^{2}\right)\right)$

Further Improving ASP II

Each step has $O\left(n^{3}\right)$ complexity as it considers all (u, w, v) combinations

Further Improving ASP II

Each step has $O\left(n^{3}\right)$ complexity as it considers all (u, w, v) combinations Note: Blind fixpoint iteration "breaks" recursion by limiting path length.

- Converts $d_{u v}$ into $d_{u v}^{i}$ where i is the path length
- Worked well for SSP \& ASP I, not so well for ASP II

Further Improving ASP II

Each step has $O\left(n^{3}\right)$ complexity as it considers all (u, w, v) combinations Note: Blind fixpoint iteration "breaks" recursion by limiting path length.

- Converts $d_{u v}$ into $d_{u v}^{i}$ where i is the path length
- Worked well for SSP \& ASP I, not so well for ASP II

Can we break cycles by limiting something else, say, vertices on the path?

Further Improving ASP II

Each step has $O\left(n^{3}\right)$ complexity as it considers all (u, w, v) combinations Note: Blind fixpoint iteration "breaks" recursion by limiting path length.

- Converts $d_{u v}$ into $d_{u v}^{i}$ where i is the path length
- Worked well for SSP \& ASP I, not so well for ASP II

Can we break cycles by limiting something else, say, vertices on the path?
Floyd-Warshall: Define $d_{u v}^{k}$ as the shortest path from u to v that only uses intermediate vertices 1 to k.

$$
d_{u v}^{k}=\min \left(d_{u v}^{k-1}, d_{u k}^{k-1}+d_{k v}^{k-1}\right)
$$

Further Improving ASP II

Each step has $O\left(n^{3}\right)$ complexity as it considers all (u, w, v) combinations Note: Blind fixpoint iteration "breaks" recursion by limiting path length.

- Converts $d_{u v}$ into $d_{u v}^{i}$ where i is the path length
- Worked well for SSP \& ASP I, not so well for ASP II

Can we break cycles by limiting something else, say, vertices on the path?
Floyd-Warshall: Define $d_{u v}^{k}$ as the shortest path from u to v that only uses intermediate vertices 1 to k.

$$
d_{u v}^{k}=\min \left(d_{u v}^{k-1}, d_{u k}^{k-1}+d_{k v}^{k-1}\right)
$$

Complexity: Need n iterations to consider $k=1, \ldots, n$ but each iteration considers only n^{2} pairs, so overall runtime becomes $O\left(n^{3}\right)$

Summary

- A versatile, robust technique to solve optimization problems
- Key step: Identify optimal substructure in the form of an equation for optimal cost

Summary

- A versatile, robust technique to solve optimization problems
- Key step: Identify optimal substructure in the form of an equation for optimal cost
- If equations are non-recursive, then either
- identify underlying DAG, compute costs in topological order, or,
- write down a memoized recursive procedure
- For recursive equations, "break" recursion by introducing additional parameters.
- A fixpoint iteration can help expose such parameters.
- Remember the choices made while computing the optimal cost, use these to construct optimal solution.

