Example 1: Routing

- What is the best way to route a packet from X to Y, esp. in high speed, high volume networks?
 - A: Pick the shortest path from X to Y
 - B: Send the packet to a random node Z, and let Z route it to Y (possibly using a shortest path from Z to Y)
- Valiant showed in 1981 that surprisingly, B works better!
- Turing award recipient in 2010

Example 2: Transmitting on shared network

- What is the best way for n hosts to share a common network?
 - A: Give each host a turn to transmit
 - B: Maintain a queue of hosts that have something to transmit, and use a FIFO algorithm to grant access
 - C: Let every one try to transmit. If there is contention, use random choice to resolve it.
- Which choice is better?

Topics

1. Intro
2. Decentralize
 - Medium Access
 - Coupon Collection
 - Birthday
 - Balls and Bins
3. Taming distribution
4. Probabilistic Algorithms
 - Caching
 - Closest pair
 - Hashing
 - Universal/Perfect hash
 - Bloom filter
 - Rabin-Karp
 - Prime testing
 - Min-cut
Simplify, Decentralize, Ensure Fairness

- Randomization can often:
 - Enable the use of a simpler algorithm
 - Cut down the amount of book-keeping
 - Support decentralized decision-making
 - Ensure fairness

- **Examples:**
 - Media access protocol: Avoids need for coordination — important here, because coordination needs connectivity!
 - Load balancing: Instead of maintaining centralized information about processor loads, dispatch jobs randomly.
 - Congestion avoidance: Similar to load balancing

A Randomized Protocol for Medium Access

- Suppose n hosts want to access a shared medium
 - If multiple hosts try at the same time, there is contention, and the “slot” is wasted.
 - A slot is wasted if no one tries.
 - How can we maximize the likelihood of every slot being utilized?

- Suppose that a randomized protocol is used.
 - Each host transmits with a probability p
 - What should be the value of p?

- We want the likelihood that one host will attempt access (probability p), while others don’t try (probability $(1-p)^{n-1}$)
 - Find p that maximizes $p(1-p)^{n-1}$
 - Using differentiation to find maxima, we get $p = 1/n$

Maximum probability (when $p = 1/n$)

$$\frac{1}{n} \left(1 - \frac{1}{n}\right)^{n-1}$$

- Note $(1 - \frac{1}{n})^{n-1}$ converges to $1/e$ for reasonably large n
 - About 5% off e at $n = 10$.
 - So, let us simplify the expression to $1/ne$ for future calculations

What is the efficiency of the protocol?

- The probability that some host gets to transmit is $n \cdot 1/ne = 1/e$

Is this protocol a reasonable choice?

- Wasting almost 2/3rd of the slots is rarely acceptable

How long before a host i can expect to transmit successfully?

- The probability it fails the first time is $(1 - 1/ne)$
 - Probability i fails in k attempts: $(1 - 1/ne)^k$
 - This quantity gets to be reasonably small (specifically, $1/e$) when $k = ne$
 - For larger k, say $k = ne \cdot c \ln n$, the expression becomes
 $$\left((1 - 1/ne)^{ne}\right)^{c \ln n} = (1/e)^{c \ln n} = (e^{\ln n})^{-c} = n^{-c}$$

- So, a host has a reasonable success chance in $O(n)$ attempts
 - This becomes a virtual certainty in $O(n \ln n)$ attempts
A Randomized Protocol for Medium Access

- What is the expected wait time?
 - “Average” time a host can expect to try before succeeding.

\[E[X] = \sum_{j=0}^{\infty} j \cdot Pr[X = j] \]

- For our protocol, expected wait time is given by

\[1 \cdot p + 2 \cdot (1 - p)p + 3 \cdot (1 - p)^2p \cdots = p \sum_{i=1}^{\infty} i \cdot (1 - p)^{i-1} \]

- How do we sum the series \(\sum ix^{i-1} \)?
 - Note that \(\sum_{i=1}^{\infty} x^i = \frac{1}{(1-x)} \). Now, differentiate both sides:
 \[
 \sum_{i=1}^{\infty} ix^{i-1} = -\frac{1}{(1-x)^2}
 \]

- Expected wait time is

\[p \sum_{i=1}^{\infty} i \cdot (1 - p)^{i-1} = \frac{p}{p^2} = \frac{1}{p} \]

- We get an intuitive result — a host will need to wait \(1/p = ne \) slots on the average.

- \textbf{Note:} The derivation is a general one, applies to any event with probability \(p \); it is not particular to this access protocol.

How long will it be before every host would have a high probability of succeeding?

- We are interested in the probability of

\[S(k) = \bigcup_{i=1}^{n} S(i, k) \]

- Note that failures are not independent, so we cannot say that

\[Pr[S(k)] = \sum_{i=1}^{n} Pr[S(i, k)] \]

but certainly, the rhs is an upper bound on \(Pr[F(k)] \).

- We use this approximate \textit{union bound} for our asymptotic analysis.

If we use \(k = ne \), then

\[\sum_{i=1}^{n} Pr[S(i, k)] = \sum_{i=1}^{n} \frac{1}{e} = n/e \]

which suggests that the likelihood some hosts failed within \(ne \) attempts is rather high.

If we use \(k = cn \ln n \) then we get a bound:

\[\sum_{i=1}^{n} Pr[S(i, k)] = \sum_{i=1}^{n} n^{-c/e} = n^{(e-c)/e} \]

which is relatively small — \(O(n^{-1}) \) for \(c = 2e \).

Thus, it is highly likely that all hosts will have succeeded in \(O(n \ln n) \) attempts.
A Randomized Protocol: Conclusions

- High school probability background is sufficient to analyze simple randomized algorithms
- Carefully work out each step
 - Intuition often fails us on probabilities
- If every host wants to transmit in every slot, this randomized protocol is a bad choice.
 - 63% wasted slots is unacceptable in most cases.
 - Better off with a round-robin or queuing based algorithm.
- How about protocols used in Ethernet or WiFi?
 - Optimistic: whoever needs to transmit will try in the next slot
 - Exponential backoff when collisions occur
 - Each collision halves p

Coupon Collector Problem

- Suppose that your favorite cereal has a coupon inside. There are n types of coupons, but only one of them in each box. How many boxes will you have to buy before you can expect to have all of the n types?
- What is your guess?
- Let us work out the expectation. Let us say that you have so far $j - 1$ types of coupons, and are now looking to get to the jth type. Let X_j denote the number of boxes you need to purchase before you get the $j + 1$th type.

Coupon Collector Problem

- Note $E[X_j] = 1/p_j$, where p_j is the probability of getting the jth coupon.
- Note $p_j = (n - j)/n$, so, $E[X_j] = n/(n - j)$
- We have all n types when we finish the X_{n-1} phase:
 \[E[X] = \sum_{i=0}^{n-1} E[X_i] = \sum_{i=0}^{n-1} n/(n - j) = nH(n) \]
 - Note $H(n)$ is the harmonic sum, and is bounded by $\ln n$
- Perhaps unintuitively, you need to buy $\ln n$ cereal boxes to obtain one useful coupon.
- Abstracts the media access protocol just discussed!

Birthday Paradox

- What is the smallest size group where there are at least two people with the same birthday?
 - 365
 - 183
 - 61
 - 25
Birthday Paradox

- The probability that the i^{th} person's birthday is distinct from previous i is approx. \[p_i = \frac{N - i}{N} \]

- Let X_i be the number of duplicate birthdays added by i: \[E[X_i] = 0 \cdot p_i + 1 \cdot (1 - p_i) = 1 - p_i = \frac{i}{N} \]

- Sum up E_i's to find the # of distinct birthdays among n: \[E[X] = \sum_{i=1}^{n} E[X_i] = \sum_{i=1}^{n} \frac{i}{N} = \frac{n(n - 1)}{2N} \]

Thus, when $n \approx 27$, we have one duplicate birthday.

Birthday Paradox Vs Coupon Collection

- Two sides of the same problem
 - **Coupon Collection**: What is the minimum number of samples needed to cover every one of N values
 - **Birthday problem**: What is the maximum number of samples that can avoid covering any value more than once?

- So, if we want enough people to ensure that every day of the year is covered as a birthday, we will need $365 \ln 365 \approx 2153$ people!

 Almost 100 times as many as needed for one duplicate birthday!

Balls and Bins

If m balls are thrown at random into n bins:

- What should m be to have more than one ball in some bin?
 - Birthday problem

- What should m be to have at least one ball per bin?
 - Coupon collection, media access protocol example

- What is the maximum number of balls in any bin?
 - Such problems arise in load-balancing, hashing, etc.

Balls and Bins: Max Occupancy

- Probability $p_{i,k}$ that the first bin receives at least k balls:
 - Choose k balls in $\binom{n}{k}$ ways
 - These balls should fall into the first bin: prob. is $(1/n)^k$
 - Other balls may fall anywhere, i.e., probability 1:
 \[\binom{m}{k} \left(\frac{1}{n} \right)^k = \frac{m \cdot (m-1) \cdot \ldots \cdot (m-k+1)}{k! n^k} \leq \frac{m^k}{k! n^k} \]
 - Let $m = n$, and use Sterling's approx. $k! \approx \sqrt{2\pi k} (k/e)^k$:
 \[P_k = \sum_{i=1}^{n} p_{i,k} \leq n \cdot \frac{1}{k!} \leq n \cdot \left(\frac{e}{k} \right)^k \]
 - Some arithmetic simplification will show that $P_k < 1/n$ when
 \[k = \frac{3 \ln n}{\ln n} \]

\[^1 \text{We are assuming that } i-1 \text{ birthdays are distinct: reasonable if } n \ll N \]

\[^2 \text{More accurate calculation will yield } n = 24.6 \]

\[^3 \text{This is actually an upper bound, as there can be some double counting.} \]
Balls and Bins: Summary of Results

- m balls are thrown at random into n bins:
 - Min. one bin with expectation of 2 balls: $m = \sqrt{2n}$
 - No bin expected to be empty: $m = n \ln n$
 - Expected number of empty bins: $ne^{-m/n}$
 - Max. balls in any bin when $m = n$:
 $$\Theta(\ln n / \ln \ln n)$$
 - This is a probabilistic bound: chance of finding any bin with higher occupancy is $1/n$ or less.
 - Note that the absolute maximum is n.

Randomized Quicksort

- Picks a pivot at random. What is its complexity?
- If pivot index is picked uniformly at random over the interval $[l, h]$, then:
 - every array element is equally likely to be selected as the pivot
 - every partition is equally likely
 - thus, expected complexity of randomized quicksort is given by:
 $$T(n) = n + \frac{1}{n} \sum_{i=1}^{n-1} (T(i) + T(n-i))$$
 - Summary: Input need not be random
 - Expected $O(n \log n)$ performance comes from externally forced randomness in picking the pivot

Cache or Page Eviction

- Caching algorithms have to evict entries when there is a miss
 - As do virtual memory systems on a page fault
 - Optimally, we should evict the “farthest in future” entry
 - But we can’t predict the future!
 - Result: many candidates for eviction. How can be avoid making bad (worst-case) choices repeatedly, even if input behaves badly?
 - Approach: pick one of the candidates at random!

Closest pair

- We studied a deterministic divide-and-conquer algorithm for this problem.
 - Quite complex, required multiple sort operations at each stage.
 - Even then, the number of cross-division pairs to be considered seemed significant
 - Result: deterministic algorithm difficult to implement, and likely slow in practice.
 - Can a randomized algorithm be simpler and faster?
Randomized Closest Pair: Key Ideas

- Divide the plane into small squares, hash points into them
- Pairwise comparisons can be limited to points within the squares very closeby
- Process the points in some random order
- Maintain min. distance δ among points processed so far.
- Update δ as more points are processed
- At any point, the “small squares” have a size of $\delta/2$
- At most one point per square (or else points are closer than δ)
- Points closer than δ will at most be two squares from each other
 - Only constant number of points to consider
- Requires rehashing all processed points when δ is updated.

Randomized Closest Pair: Analysis

- Correctness is relatively clear, so we focus on performance
- Two main concerns
 - **Storage:** # of squares is $1/\delta^2$, which can be very large
 - Use a dictionary (hash table) that stores up to n points, and maps
 $(2x/\delta, 2y/\delta)$ to $\{1, \ldots, n\}$
 - To process a point (x_j, y_j)
 - look up the dictionary at $(x_j/\delta \pm 2, y_j/\delta \pm 2)$
 - insert if it is not closer than δ
 - **Rehashing points:** If closer than δ — very expensive.
- Total runtime can all be “charged” to insert operations,
 - incl. those performed during rehashing
 so we will focus on estimating inserts.

Randomized Closest Pair: # of Inserts

Theorem

If random variable X_i denotes the likelihood of needing to rehash after processing k points, then

$$X_i \leq \frac{2}{i}$$

- Let p_1, p_2, \ldots, p_i be the points processed so far, and p and q be the closest among these
- Rehashing is needed while processing p_i if $p_i = p$ or $p_i = q$
- Since points are processed in random order, there is a $2/i$ probability that p_i is one of p or q

Theorem

The expected number of inserts is $3n$.

- Processing of p_i involves
 - i inserts if rehashing takes place, and 1 insert otherwise
- So, expected inserts for processing p_i is
 $$i \cdot X_i + 1 \cdot (1 - X_i) = 1 + (i - 1) \cdot X_i = 1 + \frac{2(i - 1)}{i} \leq 3$$
- Upper bound on expected inserts is thus $3n$

Look Ma! I have a linear-time randomized closest pair algorithm—And it is not even probabilistic!
Hash Tables

- A data structure for implementing:
 - **Dictionaries**: Fast look up of a record based on a key.
 - **Sets**: Fast membership check.
- Support expected $O(1)$ time *lookup, insert, and delete*
- Hash table entries may be:
 - **fat**: store a pair *(key, object)*
 - **lean**: store pointer to object containing key
- Two main questions:
 - *How to avoid $O(n)$ worst case behavior?*
 - How to ensure *average case performance* can be realized *for arbitrary distribution of keys?*

Hash Table Implementation

Direct access: A fancy name for arrays. Not applicable in most cases where the universe \mathcal{U} of keys is very large.

Index based on hash: Given a hash function h (fixed for the entire table) and a key x, use $h(x)$ to index into an array A.
- Use $A[h(x) \mod s]$, where s is the size of array
 - Sometimes, we fold the mod operation into h.
- Array elements typically called *buckets*
 - *Collisions bound to occur* since $s \ll |\mathcal{U}|$
 - Either $h(x) = h(y)$, or
 - $h(x) \neq h(y)$ but $h(x) \equiv h(y) \pmod s$

Collisions in Hash tables

- **Load factor α:** Ratio of number of keys to number of buckets
- *If* keys were random:
 - What is the max α if we want ≤ 1 collisions in the table?
 - If $\alpha = 1$, what is the maximum number of collisions to expect?
- Both questions can be answered from balls-and-bins results:
 - $1/\sqrt{n}$, and $O(\ln n / \ln \ln n)$
- **Real world keys are not random.** Your hash table implementation needs to achieve its performance goals independent of this distribution.

Chained Hash Table

- Each bucket is a linked list.
- Any key that hashes to a bucket is inserted into that bucket.
- What is the *average* search time, as a function of α?
 - It is $1 + \alpha$ if:
 - you assume that the distribution of lookups is independent of the table entries, OR,
 - the chains are not too long (i.e., α is small)
Open addressing

- If there is a collision, probe other empty slots
 - Linear probing: If \(h(x) \) is occupied, try \(h(x) + i \) for \(i = 1, 2, \ldots \)
 - Binary probing: Try \(h(x) \oplus i \), where \(\oplus \) stands for exor.
 - Quadratic probing: For \(i \)th probe, use \(h(x) + ci + c2i^2 \)

- Criteria for secondary probes
 - Completeness: Should cycle through all possible slots in table
 - Clustering: Probe sequences shouldn't coalesce to long chains
 - Locality: Preserve locality; typically conflicts with clustering.

- Average search time can be \(O(1/(1-\alpha)^2) \) for linear probing, and \(O(1/(1-\alpha)) \) for quadratic probing.

Chaining Vs Open Addressing

- Chaining leads to fewer collisions
 - Clustering causes more collisions w/ open addressing for same \(\alpha \)
 - However, for lean tables, open addressing uses half the space of chaining, so you can use a much lower \(\alpha \) for same space usage.

- Chaining is more tolerant of “lumpy” hash functions
 - For instance, if \(h(x) \) and \(h(x+1) \) are often very close, open hashing can experience longer chains when inputs are closely spaced.
 - Hash functions for open-hashing having to be selected very carefully

- Linked lists are not cache-friendly
 - Can be mitigated w/ arrays for buckets instead of linked lists

- Not all quadratic probes cover all slots (but some can)

Resizing

- Hard to predict the right size for hash table in advance
 - Ideally, \(0.5 \leq \alpha \leq 1 \), so we need an accurate estimate

- It is stupid to ask programmers to guess the size
 - Without a good basis, only terrible guesses are possible

- Right solution: Resize tables automatically.
 - When \(\alpha \) becomes too large (or small), rehash into a bigger (or smaller) table
 - Rehashing is \(O(n) \), but if you increase size by a factor, then amortized cost is still \(O(1) \)
 - Exercise: How to ensure amortized \(O(1) \) cost when you resize up as well as down?

Average Vs Worst Case

- Worst case search time is \(O(n) \) for a table of size \(n \)

- With hash tables, it is all about avoiding the worst case, and achieving the average case

- Two main challenges:
 - Input is not random, e.g., names or IP addresses.
 - Even when input is random, \(h \) may cause “lumping,” or non-uniform dispersal of \(U \) to the set \(\{1, \ldots, n\} \)

- Two main techniques
 - Universal hashing
 - Perfect hashing
Universal Hashing

- No single hash function can be good on all inputs
 - Any function \(U \to \{1, \ldots, n\} \) must map \(|U|/n\) inputs to same value!

 Note: \(|U|\) can be much, much larger than \(n \).

Definition

A family of hash functions \(\mathcal{H} \) is universal if

\[
\Pr_{h \in \mathcal{H}}[h(x) = h(y)] = \frac{1}{n} \quad \text{for all } x \neq y
\]

Meaning: If we pick \(h \) at random from the family \(\mathcal{H} \), then, probability of collisions is the same for any two elements.

Contrast with non-universal hash functions such as

\[h(x) = ax \mod n, \quad (a \text{ is chosen at random}) \]

Note \(y \) and \(y + kn \) collide with a probability of 1 for every \(a \).

Universality of prime multiplicative hashing

- Need to show \(\Pr[h(x) = h(y)] = \frac{1}{n}, \text{ for } x \neq y \)

- \(h(x) = h(y) \) means \((rx \mod p) \mod n = (ry \mod p) \mod n \)

- Note \(a \mod n = b \mod n \) means \(a = b + kn \) for some integer \(k \).

 Using this, we eliminate \(\mod n \) from above equation to get:

 \[
 rx \mod p = kn + ry \mod p, \quad \text{where } k \leq |p/n|
 \]

 \[
 r x \equiv kn + ry \pmod p
 \]

 \[
 r(x - y) \equiv kn \pmod p
 \]

 \[
 r \equiv kn(x - y)^{-1} \pmod p
 \]

- So, \(x, y \) collide if \(r = n(x - y)^{-1}, 2n(x - y)^{-1}, \ldots, \left\lfloor \frac{p}{n} \right\rfloor n(x - y)^{-1} \)

- In other words, \(x \) and \(y \) collide for \(p/n \) out of \(p \) possible values of \(r \), i.e., collision probability is \(1/n \)

Universal Hashing Using Multiplication

Observation (Multiplication Modulo Prime)

If \(p \) is a prime and \(0 < a < p \)

- \(\{1a, 2a, 3a, \ldots, (p-1)a\} = \{1, 2, \ldots, p-1\} \pmod p \)

- \(\forall a \equiv b \pmod p \)

Prime multiplicative hashing

Let the key \(x \in U \), \(p > |U| \) be prime, and \(0 < r < p \) be random. Then

\[
 h(x) = (rx \mod p) \mod n
\]

is universal.

Prove: \(\Pr[h(x) = h(y)] = \frac{1}{n}, \text{ for } x \neq y \)

Binary multiplicative hashing

- Faster: avoids need for computing modulo prime

- When \(|U| < 2^w \), \(n = 2^l \) and \(a \) an odd random number

 \[
 h(x) = \left\lfloor \frac{ax \mod 2^w}{2^{w-l}} \right\rfloor
 \]

- Can be implemented efficiently if \(w \) is the wordsize:

 \((a*x) >> (\text{WORDSIZE}-\text{HASHBITS}) \)

- Scheme is near-universal: collision probability is \(O(1)/2^l \)
Prime Multiplicative Hash for Vectors

Let \(p \) be a prime number, and the key \(x \) be a vector \([x_1, \ldots, x_k]\) where \(0 \leq x_i < p \). Let
\[
h(x) = \sum_{i=1}^{k} r_i x_i \pmod{p}
\]
If \(0 < r_i < p \) are chosen at random, then \(h \) is universal.

- Strings can also be handled like vectors, or alternatively, as a polynomial evaluated at a random point \(a \), with \(p \) a prime:
\[
h(x) = \sum_{i=0}^{l} x_i a^i \pmod{p}
\]

Perfect hashing

Static: Pick a hash function (or set of functions) that avoids collisions for a given set of keys

Dynamic: Keys need not be static.

- **Approach 1:** Use \(O(n^2) \) storage. Expected collision on \(n \) items is 0.
 - But too wasteful of storage.
 - Don’t forget: more memory usually means less performance due to cache effects.

- **Approach 2:** Use a secondary hash table for each bucket of size \(n_i^2 \), where \(n_i \) is the number of elements in the bucket.
 - Uses only \(O(n) \) storage, if \(h \) is universal

 Universality of multiplicative hashing for vectors

- Since \(x \neq y \), there exists an \(i \) such that \(x_i \neq y_i \)
- When collision occurs, \(\sum_{j=1}^{k} r_j x_j = \sum_{j=1}^{k} r_j y_j \pmod{p} \)
- Rearranging, \(\sum_{j \neq i} r_j (x_j - y_j) = r_i (y_i - x_i) \pmod{p} \)
- The lhs evaluates to some \(c \), and we need to estimate the probability that rhs evaluates to this \(c \)
- Using multiplicative inverse property, we see that \(r_i = c (y_i - x_i)^{-1} \pmod{p} \).
- Since \(y_i, x_i < p \), it is easy to see from this equation that the collision-causing value of \(r_i \) is distinct for distinct \(y_i \).
- Viewed another way, exactly one of \(p \) choices of \(r_i \) would cause a collision between \(x_i \) and \(y_i \), i.e., \(\Pr[h(x) = h(y)] = 1/p \)

Hashing Summary

- Excellent average case performance
 - Pointer chasing is expensive on modern hardware, so improvement from \(O(\log n) \) of binary trees to expected \(O(1) \) for hash tables is significant.
 - But all benefits will be reversed if collisions occur too often
 - Universal hashing is a way to ensure expected average case even when input is not random.
 - Perfect hashing can provide efficient performance even in the worst case, but the benefits are likely small in practice.
Probabilistic Algorithms

- Algorithms that produce the correct answer with some probability
- By re-running the algorithm many times, we can increase the probability to be arbitrarily close to 1.0.

Bloom Filters

- To resolve collisions, hash tables have to store keys: $O(mw)$ bits, where w is the number of bits in the key
- What if you want to store very large keys?
 - **Radical idea:** Don’t store the key in the table!
 - Potentially w-fold space reduction

Bloom Filters: False positives

- Prob. that a bit is *not* set by h_i on inserting a key is $(1 - 1/m)$
 - The probability it is not set by any h_i is $(1 - 1/m)^k$
 - The probability it is not set after r key inserts is $(1 - 1/m)^{kr} \approx e^{-kr/m}$
- Complementing, the prob. p that a certain bit is set is $1 - e^{-kr/m}$
- For a false positive on a key y, all the bits that it hashes to should be a 1. This happens with probability
 $$(1 - e^{-kr/m})^k = (1 - p)^k$$
Bloom Filters

- Consider
 \[(1 - e^{-kr/m})^k \]
- Note that the table can potentially store very large number of entries with very low false positives
 - For instance, with \(k = 20 \), \(m = 10^9 \) bits (12M bytes), and a false positive rate of \(2^{-10} = 10^{-3} \), can store 60M keys of arbitrary size!
- Exercise: What is the optimal value of \(k \) to minimize false positive rate for a given \(m \) and \(r \)?
- But large \(k \) values introduce high overheads
- Important: Bloom filters can be used as a prefilter, e.g., if actual keys are in secondary storage (e.g., files or internet repositories)

Using arithmetic for substring matching

Problem: Given strings \(T[1..n] \) and \(P[1..m] \), find occurrences of \(P \) in \(T \) in \(O(n + m) \) time.

Idea: To simplify presentation, assume \(P, T \) range over \([0-9] \)
 - Interpret \(P[1..m] \) as digits of a number
 \[p = 10^{m-1}P[1] + 10^{m-2}P[2] + \cdots + 10^{m-m}P[m] \]
 - Similarly, interpret \(T[i..(i + m - 1)] \) as the number \(t_i \)
 - Note: \(P \) is a substring of \(T \) at \(i \) iff \(p = t_i \)
 - To get \(t_{i+1} \), shift \(T[i] \) out of \(t_i \), and shift in \(T[i + m] \):
 \[t_{i+1} = (t_i - 10^{m-1}T[i]) \cdot 10 + T[i + m] \]
 - We have an \(O(n + m) \) algorithm. Almost: we still need to figure out how to operate on \(m \)-digit numbers in constant time!

Rabin-Karp Fingerprinting

Key Idea

- Instead of working with \(m \)-digit numbers,
- perform all arithmetic modulo a random prime number \(q \),
- where \(q > m^2 \) fits within wordsize

- All observations made on previous slide still hold
 - Except that \(p = t_i \) does not guarantee a match
 - Typically, we expect matches to be infrequent, so we can use \(O(m) \)
 exact-matching algorithm to confirm probable matches.
Carter-Wegman-Rabin-Karp Algorithm

\[p(x) = \sum_{i=1}^{m} P[m-i] \cdot x^i \]

Random choice does not imply high probability of being right.

- You need to explicitly establish correctness probability.
- So, what is the likelihood of false matches?
- A false match occurs if \(p_1(x) = p_2(x) \), i.e., \(p_1(x) - p_2(x) = p_3(x) = 0 \).
- Arithmetic modulo prime defines a field, so an \(m \)th degree polynomial has \(m + 1 \) roots.
- Thus, \((m + 1)/q \) of the \(q \) (recall \(q \) is the prime number used for performing modulo arithmetic) possible choices of \(x \) will result in a false match, i.e., probability of false positive = \((m + 1)/q \)

Primality Testing

Fermat’s Theorem

\[a^{p-1} \equiv 1 \pmod{p} \]

- Recall \(\{1a, 2a, 3a, \ldots, (p-1)a\} \equiv \{1, 2, \ldots, p-1\} \pmod{p} \)
- Multiply all elements of both sides:
 \[(p-1)!a^{p-1} \equiv (p-1)! \pmod{p} \]
- Canceling out \((p-1)! \) from both sides, we have the theorem!

Lemma

If \(a^{N-1} \not\equiv 1 \pmod{N} \) for a relatively prime to \(N \), then it holds for at least half the choices of \(a < N \).

- If there is no \(b \) such that \(b^{N-1} \equiv 1 \pmod{N} \), then we have nothing to prove.
- Otherwise, pick one such \(b \), and consider \(c \equiv ab \).
 - Note \(c^{N-1} \equiv a^{N-1}b^{N-1} \equiv a^{N-1} \not\equiv 1 \)
 - Thus, for every \(b \) for which Fermat’s test is satisfied, there exists a \(c \) that does not satisfy it.
 - Moreover, since \(c \) is relatively prime to \(N \), \(ab \not\equiv ab' \) unless \(b \equiv b' \).
- Thus, at least half of the numbers \(x < N \) that are relatively prime to \(N \) will fail Fermat’s test.
Primality Testing

- When Fermat’s test returns “prime” \(Pr[N \text{ is not prime}] < 0.5 \)
- If Fermat’s test is repeated for \(k \) choices of \(a \), and returns “prime” in each case, \(Pr[N \text{ is not prime}] < 0.5^k \)
- In fact, 0.5 is an upper bound. Empirically, the probability has been much smaller.

Prime number generation

Lagrange’s Prime Number Theorem

For large \(N \), primes occur approx. once every \(\log N \) numbers.

Generating Primes

- Generate a random number
- Probabilistically test it is prime, and if so output it
- Otherwise, repeat the whole process

What is the complexity of this procedure?

- \(O(\log^2 N) \) multiplications on \(\log N \) bit numbers
- If \(N \) is not prime, should we try \(N+1, N+2, \text{ etc.} \) instead of generating a new random number?
- No, it is not easy to decide when to give up.

Rabin-Miller Test

- Works on Carmichael’s numbers
- For prime number test, we consider only odd \(N \), so \(N - 1 = 2^t u \) for some odd \(u \)
- Compute \(a^u, a^{2u}, a^{4u}, \ldots, a^{2^t u} = a^{N-1} \)
- If \(a^{N-1} \) is not 1 then we know \(N \) is composite.
- Otherwise, we do a follow-up test on \(a^r, a^{2u} \text{ etc.} \)
 - Let \(a^{r u} \) be the first term that is equivalent to 1.
 - If \(r > 0 \) and \(a^{r u} \neq -1 \) then \(N \) is composite
- This combined test detects non-primes with a probability of at least 0.75 for all numbers.
Global Min-cut in Undirected Graphs

- Compute the minimum number of edges that need to be severed to disconnect a graph
- Yields the edge-connectivity of the graph

A multigraph whose minimum cut has three edges.

Deterministic Global Min-cut

- Replace each undirected edge by two (opposing) directed edges
- Pick a vertex \(s \)
- for each \(t \) in \(V \) compute the minimum \(s-t \) cut
- The smallest among these is the global min-cut
- Repeating min-cut \(O(|V|) \) times, so it is expensive and complex.

Randomized global min-cut

- Relies on repeated “collapsing” of edges, illustrated below
 - Pick a random edge \((u,v)\), and delete it
 - Replace \(u \) and \(v \) by a single vertex \(uv \)
 - Replace each edge \((x,u)\) by \((x,uv)\)
 - Replace each edge \((x,v)\) by \((x,uv)\)
- Note: edges maintain their identity during this process

\[
\begin{align*}
\text{GuessMinCut}(V,E) & \\
\text{if } |V| = 2 & \text{ then return the only cut remaining} \\
\text{Pick an edge at random and collapse it to get } V', E' & \\
\text{return } \text{GuessMinCut}(V', E')
\end{align*}
\]

- Does this algorithm make sense? Why should it work?
- Basic idea: Only a small fraction of edges belong to the min-cut, reducing the likelihood of them being collapsed
- Still, when almost every edge is being collapsed, how likely is it that min-cut edges will remain?

A graph \(G \) and two collapsed graphs \(G/(b,e) \) and \(G/(c,d) \).
Guess MinCut Correctness Probability

- If min-cut has \(k \) edges, then every node has min degree \(k \)
- So, there are \(nk/2 \) edges
- The likelihood of collapsing them in the first step is \(2/n \)
- The likelihood of preserving min-cut edges is \((n-2)/n \)
- We thus have the following recurrence for likelihood of preserving min-cut edges in the final solution:

 \[
P(n) \geq \frac{n-2}{n} \cdot P(n-1) \geq \frac{n-2}{n} \cdot \frac{n-4}{n-1} \cdot \frac{n-6}{n-2} \cdot \ldots \cdot \frac{2}{n-2} \cdot \frac{1}{n-1} = \frac{2}{n(n-1)}
 \]

So, the probability of being wrong is high
- by repeating it \(O(n^2 \ln n) \) times, we reduce it to \(1/n^c \).

Overall runtime is \(O(n^4 \ln n) \), which is hardly impressive.

Power of Two Random Choices for Min-cut

- Divide random collapses into two phases
 - An initial "safe" phase that shrinks the graph to \(1 + n/\sqrt{2} \) nodes
 - Probability of preserving min-cut is
 \[
 \frac{(n/\sqrt{2})(n/\sqrt{2}+1)}{p(n-1)} \geq \frac{1}{2}
 \]
 - A second "unsafe" phase that is run twice, and the smaller min-cut is picked

- A single run of unsafe phase is simply a recursive call
 - A kind-of-divide and conquer with power-of-two
 - Since input size decreases with each level of recursion, total time is reduced in spite of exponential increase in number of iterations

- We get the following recurrence for correctness probability:
 \[
P(n) \geq 1 - \left(1 - \frac{1}{2} P\left(\frac{n}{\sqrt{2}} + 1 \right) \right)^2
 \]
 which yields a result of \(\Omega(1/\log n) \)
- Need \(O(\log^2 n) \) repetitions to obtain low error rate
- For runtime, we have the recurrence
 \[
 T(n) = O(n^2) + 2T\left(\frac{n}{\sqrt{2}} + 1 \right) = O(n^2 \log n)
 \]
 - Incl. \(\log^2 n \) iterations, total runtime is \(O(n^4 \log^3 n)! \)