Many problems of our interest are search problems with exponentially (or even infinitely) many solutions

- Shortest of the paths between two vertices
- Spanning tree with minimal cost
- Combination of variable values that minimize an objective

We should be surprised we find efficient (i.e., polynomial-time) solutions to these problems

- It seems like these should be the exceptions rather than the norm!

What do we do when we hit upon other search problems?
Hard Problems: Where you find yourself ...

I can’t find an efficient algorithm, I guess I’m just too dumb.

Images from “Computers and Intractability” by Garey and Johnson
Search and Optimization Problems

- What do we do when we hit upon hard search problems?
- Can we prove they can’t be solved efficiently?
Hard Problems: Where you would like to be ...

I can’t find an efficient algorithm, because no such algorithm is possible.
Search and Optimization Problems

- Unfortunately, it is very hard to prove that efficient algorithms are impossible

- Second best alternative:
 - Show that the problem is as hard as many other problems that have been worked on by a host of brilliant scientists over a very long time

- Much of complexity theory is concerned with categorizing hard problems into such equivalence classes
\(P, NP, Co-NP, NP\text{-}hard \) and \(NP\text{-}complete \)
Nondeterminism and Search Problems

- Nondeterminism is an oft-used abstraction in language theory
 - Non-deterministic FSA
 - Non-deterministic PDA

- So, why not non-deterministic Turing machines?
 - Acceptance criteria is analogous to NFA and NPDA
 - if there is a sequence of transitions to an accepting state, an NDTM will take that path.

- What does nondeterminism, a theoretical construct, mean in practice?
 - You can think of it as a boundless potential to search for and identify the correct path that leads to a solution
 - So, it does not change the class of problems that can be solved, just the time/space needed to solve.
Class NP: Non-deterministic Polynomial Time

How they operate:

- Guess a solution
- verify correctness in polynomial time
Class NP: Non-deterministic Polynomial Time

How they operate:

- Guess a solution
- verify correctness in polynomial time

Polynomial time verifiability is the key property of NP.

- This is how you build a path from P to NP.
- Ideal formulation for search problems, where correct solutions are hard to find but easy to recognize.

Example: Boolean formula satisfiability (SAT)

Given a boolean formula in CNF, find an assignment of \{true, false\} to variables that makes it true.

Why not DNF?
Class \(\textit{NP} \): Non-deterministic Polynomial Time

How they operate:
- Guess a solution
- verify correctness in polynomial time

Polynomial time verifiability is the key property of \(\textit{NP} \).
- This is how you build a path from \(\textit{P} \) to \(\textit{NP} \).
- Ideal formulation for search problems, where correct solutions are hard to find but easy to recognize.

Example: Boolean formula satisfiability (\(\textit{SAT} \))
- Given a boolean formula in CNF, find an assignment of \{true, false\} to variables that makes it true.
- Why not DNF?
What are the bounds of NP?

- **Only Decision problems:**
 - Problems with an “yes” or “no” answer
 - Optimization problems are generally not in NP
 - But we can often find optimal solutions using “binary search”

\(^1\)Whether $UNSAT \in NP$ is unknown!
What are the bounds of \(NP \)?

- **Only Decision problems:**
 - Problems with an “yes” or “no” answer
 - Optimization problems are generally not in \(NP \)
 - But we can often find optimal solutions using “binary search”

- “No” answers are usually not verifiable in \(P \)-time
 - So, complement of \(NP \) problems are often not \(NP \).
 - \(UNSAT \) — show that a CNF formula is false for all truth assignments\(^1\)

\(^1\)Whether \(UNSAT \in NP \) is unknown!
What are the bounds of \(NP \)?

- **Only Decision problems:**
 - Problems with an “yes” or “no” answer
 - Optimization problems are generally not in \(NP \)
 - But we can often find optimal solutions using “binary search”

- **“No” answers are usually not verifiable in \(P \)-time**
 - So, complement of \(NP \) problems are often not \(NP \).
 - \(UNSAT \) — show that a CNF formula is false for all truth assignments\(^1\)

- **Key point:** You cannot negate nondeterministic automata.
 - So, we are unable to convert an NDTM for \(SAT \) to solve \(UNSAT \) in \(NP \)-time.

\(^1\)Whether \(UNSAT \in NP \) is unknown!
What are the bounds of NP?

- *Existentially quantified vs Universally quantified formulas*
 - NP is good for $\exists x \ P(x)$: guess a value for x and check if $P(x)$ holds.
 - NP is not good for $\forall x \ P(x)$:
 - Guessing does not seem to help if you need to check all values of x.
What are the bounds of \(\text{NP} \)?

Existentially quantified vs Universally quantified formulas

- \(\text{NP} \) is good for \(\exists x \ P(x) \): guess a value for \(x \) and check if \(P(x) \) holds.
- \(\text{NP} \) is not good for \(\forall x \ P(x) \):
 - Guessing does not seem to help if you need to check all values of \(x \).

Negation of existential formula yields a universal formula.

- No surprise that complement of \(\text{NP} \) problems are typically not in \(\text{NP} \).
- \(\text{UNSAT} \): \(\forall x \neg P(x) \) where \(P \) is in CNF
- \(\text{VALID} \): \(\forall x P(x) \), where \(P \) is in DNF
What are the bounds of NP?

- **Existentially quantified vs Universally quantified formulas**
 - NP is good for $\exists \overline{x} \ P(\overline{x})$: guess a value for \overline{x} and check if $P(\overline{x})$ holds.
 - NP is not good for $\forall \overline{x} \ P(\overline{x})$: Guessing does not seem to help if you need to check all values of \overline{x}.

- Negation of existential formula yields a universal formula.
 - No surprise that complement of NP problems are typically not in NP.
 - $UNSAT$: $\forall \overline{x} \neg P(\overline{x})$ where P is in CNF
 - $VALID$: $\forall \overline{x} P(\overline{x})$, where P is in DNF

- NP seems to be a good way to separate hard problems from even harder ones!
Co-NP: Problems whose complement is in NP

- Decision problems that have a polynomially checkable proof when the answer is “no”

What we *think* the world looks like.
Co-NP: Problems whose complement is in NP

- Decision problems that have a polynomially checkable proof when the answer is “no”

What we think the world looks like.

- Biggest open problem: Is $P = NP$?
- Will also imply $co-NP = P$
The class $Co-NP \cap NP$

- Often, problems that are in $NP \cap co-NP$ are in P
The class \(Co-NP \cap NP \)

- Often, problems that are in \(NP \cap co-NP \) are in \(P \)
- It requires considerable insight and/or structure in the problem to show that something is both \(NP \) and \(co-NP \)
 - This can often be turned into a \(P \)-time algorithm
The class \(\text{Co-NP} \cap \text{NP} \)

- Often, problems that are in \(\text{NP} \cap \text{co-NP} \) are in \(P \)
- It requires considerable insight and/or structure in the problem to show that something is both \(\text{NP} \) and \(\text{co-NP} \)
 - This can often be turned into a \(P \)-time algorithm

Examples
- Linear programming [1979]
 - Obviously in \(\text{NP} \). To see why it is in \(\text{co-NP} \), we can derive a lower bound by multiplying the constraints by a suitable (guessed) number and adding.
The class $Co-NP \cap NP$

- Often, problems that are in $NP \cap co-NP$ are in P
- It requires considerable insight and/or structure in the problem to show that something is both NP and $co-NP$
 - This can often be turned into a P-time algorithm

Examples
- Linear programming [1979]
 - Obviously in NP. To see why it is in $co-NP$, we can derive a lower bound by multiplying the constraints by a suitable (guessed) number and adding.
- Primality testing [2002]
 - Obviously in $co-NP$; See “primality certificate” for proof it is NP
The class $\textit{Co-NP} \cap \textit{NP}$

- Often, problems that are in $\textit{NP} \cap \textit{co-NP}$ are in \textit{P}

- It requires considerable insight and/or structure in the problem to show that something is both \textit{NP} and $\textit{co-NP}$
 - This can often be turned into a \textit{P}-time algorithm

Examples

- Linear programming [1979]
 - Obviously in \textit{NP}. To see why it is in $\textit{co-NP}$, we can derive a lower bound by multiplying the constraints by a suitable (guessed) number and adding.

- Primality testing [2002]
 - Obviously in co-\textit{NP}; See “primality certificate” for proof it is \textit{NP}

- Integer factorization?
A problem Π is NP-hard if the availability of a polynomial solution to Π will allow NP-problems to be solved in polynomial time.

Π is NP-hard \iff if Π can be solved in P-time, $P = \text{NP}$

NP-complete = NP-hard \cap NP

NP-hard and NP-complete

- A problem Π is NP-hard if the availability of a polynomial solution to Π will allow NP-problems to be solved in polynomial time.

- Π is NP-hard \iff if Π can be solved in P-time, $P = \text{NP}$

- NP-complete = NP-hard \cap NP
Polynomial-time Reducibility

- Show that a problem A could be transformed into problem B in polynomial time
 - Called a polynomial-time reduction of A to B
 - The crux of proofs involving NP-completeness
Show that a problem A could be transformed into problem B in polynomial time

- Called a polynomial-time reduction of A to B
- The crux of proofs involving NP-completeness

Implication: if B can be solved in P-time, we can solve A in P-time
Polynomial-time Reducibility

- Show that a problem A could be transformed into problem B in polynomial time
 - Called a polynomial-time reduction of A to B
 - The crux of proofs involving NP-completeness

Implication: if B can be solved in P-time, we can solve A in P-time

An NP-complete problem is one to which any problem in NP can be reduced to.
Polynomial-time Reducibility

- Show that a problem A could be transformed into problem B in polynomial time
 - Called a polynomial-time reduction of A to B
 - The crux of proofs involving NP-completeness

Implication: if B can be solved in P-time, we can solve A in P-time

- An NP-complete problem is one to which any problem in NP can be reduced to.

Never forget the direction: To prove a problem Π is NP-complete, need to show how all other NP problems can be solved using Π, not vice-versa!
Wait! How can I reduce every NP to my problem?

- If a particular NP-problem A is given to you, then you can think of a way to reduce it to your problem B
Wait! How can I reduce every NP to my problem?

- If a particular NP-problem A is given to you, then you can think of a way to reduce it to your problem B.

- But how do you go about proving that every NP problem X can be reduced to B?
 - You don’t even know X — indeed, the class NP is infinite!
Wait! How can I reduce every NP to my problem?

- If a particular NP-problem A is given to you, then you can think of a way to reduce it to your problem B.
- But how do you go about proving that every NP problem X can be reduced to B?
 - You don’t even know X — indeed, the class NP is infinite!
- *If you already knew an NP-complete problem, your task is easy!*
 - Simply reduce this NP-complete problem to B, and by transitivity, you have a reduction of every $X \in NP$ to B.

Cook and Levin managed to do this!
Wait! How can I reduce every NP to my problem?

- If a particular NP-problem A is given to you, then you can think of a way to reduce it to your problem B.
- But how do you go about proving that every NP problem X can be reduced to B?
 - You don’t even know X — indeed, the class NP is infinite!

If you already knew an NP-complete problem, your task is easy!

- Simply reduce this NP-complete problem to B, and by transitivity, you have a reduction of every $X \in NP$ to B.

- So, who will bell the cat?
 - Stephen Cook [1970] and Leonid Levin [1973] managed to do this!
 - Cook was denied reappointment/tenure in 1970 at Berkeley, but won the Turing award in 1982!
The first \textit{NP}-complete problem: \textit{SAT}

How do you show reducibility of arbitrary \textit{NP}-problems to \textit{SAT}?
The first NP-complete problem: SAT

How do you show reducibility of arbitrary NP-problems to SAT? You start from the definition, of course!

- The class NP is defined in terms of an NDTM
 - X is in NP if there is an NDTM T_X that solves X in polynomial time
The first NP-complete problem: SAT

How do you show reducibility of arbitrary NP-problems to SAT? You start from the definition, of course!

- The class NP is defined in terms of an NDTM
 - X is in NP if there is an NDTM T_X that solves X in polynomial time
- Use this NDTM as the basis of proof.
The first NP-complete problem: SAT

How do you show reducibility of arbitrary NP-problems to SAT? You start from the definition, of course!

- The class NP is defined in terms of an NDTM
 - X is in NP if there is an NDTM T_X that solves X in polynomial time

- Use this NDTM as the basis of proof.

Specifically, show that acceptance by an NDTM can be encoded in terms of a boolean formula
The first NP-complete problem: SAT

How do you show reducibility of arbitrary NP-problems to SAT? You start from the definition, of course!

- The class NP is defined in terms of an NDTM
 - X is in NP if there is an NDTM T_X that solves X in polynomial time

- Use this NDTM as the basis of proof.

Specifically, show that acceptance by an NDTM can be encoded in terms of a boolean formula

- Model T_X tape contents, tape heads, and finite state at each step as a vector of boolean variables
The first \textit{NP}-complete problem: \textit{SAT}

How do you show reducibility of arbitrary \textit{NP}-problems to \textit{SAT}? You start from the definition, of course!

- The class \textit{NP} is defined in terms of an NDTM
 - X is in \textit{NP} if there is an NDTM T_X that solves X in polynomial time

- Use this NDTM as the basis of proof.

Specifically, show that acceptance by an NDTM can be encoded in terms of a boolean formula

- Model T_X tape contents, tape heads, and finite state at each step as a vector of boolean variables
 - Need $(p(n))^2$ variables, where $p(n)$ is the (polynomial) runtime of T_X
The first NP-complete problem: SAT

How do you show reducibility of arbitrary NP-problems to SAT? You start from the definition, of course!

- The class NP is defined in terms of an NDTM
 - X is in NP if there is an NDTM T_X that solves X in polynomial time

- Use this NDTM as the basis of proof.

Specifically, show that acceptance by an NDTM can be encoded in terms of a boolean formula

- Model T_X tape contents, tape heads, and finite state at each step as a vector of boolean variables
 - Need $(p(n))^2$ variables, where $p(n)$ is the (polynomial) runtime of T_X

- Model each transition as a boolean formula
Thanks to Cook-Levin, you can say ...

I can’t find an efficient algorithm, but neither can all these famous people.
Some Hard Decision Problems
Traveling Salesman Problem

Given \(n \) vertices and \(n(n - 1)/2 \) distances between them, is there a tour (i.e., cycle) of length \(b \) or less that passes through all vertices?
Hamiltonian Cycle

- Simpler than TSP
 - Is there a cycle that passes through every vertex in the graph?
- Earliest reference, posed in the context of chess boards and knights ("Rudrata cycle")
- Longest path is another version of the same problem
 - When posed as a decision problem, becomes the same as Hamiltonian path problem
Balanced Cuts

Does there exist a way to partition vertices V in a graph into two sets S and T such that

- there are at most b edges between S and T, and

- $|S| \geq |T| \geq |V|/3$
Integer Linear Programming (ILP) and Zero-One Equations (ZOE)

ILP: Linear programming, but solutions are limited to integers
- Many problems are easy to solve over real numbers but much harder for integers.

Examples:
- Knapsack solutions to equations such as $x^n + y^n = z^n$.
Integer Linear Programming (ILP) and Zero-One Equations (ZOE)

ILP: Linear programming, but solutions are limited to integers

- Many problems are easy to solve over real numbers but much harder for integers.
- Examples:
 - Knapsack
 - solutions to equations such as $x^n + y^n = z^n$
Integer Linear Programming (ILP) and Zero-One Equations (ZOE)

ILP: Linear programming, but solutions are limited to integers
- Many problems are easy to solve over real numbers but much harder for integers.
- Examples:
 - Knapsack
 - Solutions to equations such as $x^n + y^n = z^n$

ZOE: A special case of ILP, where the values are just 0 or 1.
- Find x such that $Ax = 1$ where 1 is a column matrix consisting of 1’s.
3d-Matching

- Given triples of compatibilities between men, women and pets, find perfect, 3-way matches.
Independent set, vertex cover, and clique

Independent set: Does this graph contain a set of at least k vertices with no edge between them?
Independent set: Does this graph contain a set of at least k vertices with no edge between them?

Vertex cover: Does this graph contain a set of at least k vertices that cover all edges?
Independent set, vertex cover, and clique

Independent set: Does this graph contain a set of at least k vertices with no edge between them?

Vertex cover: Does this graph contain a set of at least k vertices that cover all edges?

Clique: Does this graph contain at least k vertices that are fully connected among themselves?
Easy Vs Hard Problems

<table>
<thead>
<tr>
<th>Hard</th>
<th>Easy</th>
</tr>
</thead>
<tbody>
<tr>
<td>3SAT</td>
<td>2SAT, HORN SAT</td>
</tr>
<tr>
<td>TSP</td>
<td>MST</td>
</tr>
<tr>
<td>Longest path</td>
<td>Shortest path</td>
</tr>
<tr>
<td>3d-matching</td>
<td>bipartite match</td>
</tr>
<tr>
<td>Independent set</td>
<td>Indep. set on trees</td>
</tr>
<tr>
<td>ILP</td>
<td>Linear programming</td>
</tr>
<tr>
<td>Hamiltonian cycle</td>
<td>Euler path,</td>
</tr>
<tr>
<td></td>
<td>Knights tour</td>
</tr>
<tr>
<td>Balanced cut</td>
<td>Min-cut</td>
</tr>
</tbody>
</table>
Show that a known NP-complete problem A could be transformed into problem B in polynomial time.

Implication: if B can be solved in P-time, we can solve A in P-time.

Never forget the direction:
- We are proving that B is NP-complete here.
All of NP

SAT

3SAT

INDEPENDENT SET

VERTEX COVER

CLIQUE

3D MATCHING

ZOE

SUBSET SUM

ILP

RUDRATA CYCLE

TSP
Reducing all of NP to SAT

- We already discussed this
 - Show how to reduce acceptance by an NDTM to the SAT problem.
Reducing all of NP to SAT

- We already discussed this
 - Show how to reduce acceptance by an NDTM to the SAT problem.

- Exercise: Show how to transform acceptance by an FSA into an instance of SAT
Reducing SAT to 3SAT

3SAT: A special case of SAT where each clause has ≤ 3 literals
Reducing SAT to $3SAT$

- $3SAT$: A special case of SAT where each clause has ≤ 3 literals
- Reduction involves transforming a disjunction with many literals into a CNF of disjunctions with ≤ 3 literals per term
Reducing SAT to 3SAT

- **3SAT**: A special case of SAT where each clause has \(\leq 3 \) literals.
- Reduction involves transforming a disjunction with many literals into a CNF of disjunctions with \(\leq 3 \) literals per term.
- The transformation below at most doubles the problem size.

Key Idea: Introduce additional variables:

- **Example:** \(l_1 \lor l_2 \lor l_3 \lor l_4 \) can be transformed into:

\[
(l_1 \lor l_2 \lor y_1) \land (\overline{y_1} \lor l_3 \lor l_4)
\]
Reducing \textit{SAT} to \textit{3SAT}

- \textit{3SAT}: A special case of \textit{SAT} where each clause has ≤ 3 literals
- Reduction involves transforming a disjunction with many literals into a CNF of disjunctions with ≤ 3 literals per term
- The transformation below at most doubles the problem size.

\textbf{Key Idea}: Introduce additional variables:

- \textit{Example}: $l_1 \lor l_2 \lor l_3 \lor l_4$ can be transformed into:

$$\left(l_1 \lor l_2 \lor y_1 \right) \land \left(\overline{y_1} \lor l_3 \lor l_4 \right)$$

For this conjunction to be true, one of \{ l_1, ..., l_4 \} must be true:

- So a solution to the transformed problem is a solution to the original — simply discard assignments for the new variables y_i.
Reducing 3SAT to Independent set

- Nontrivial reduction, as the problems are quite different in nature

- **Idea:** Model each of \(k \) clauses of 3SAT by a “triangle” in a graph

The graph corresponding to \((\overline{x} \lor y \lor z) (x \lor \overline{y} \lor z) (x \lor y \lor z) (x \lor \overline{y})\).
Reducing 3SAT to Independent set

- Nontrivial reduction, as the problems are quite different in nature

- **Idea:** Model each of \(k\) clauses of 3SAT by a “triangle” in a graph

\[(\overline{x} \lor y \lor z) \ (x \lor \overline{y} \lor z) \ (x \lor y \lor z) \ (x \lor y). \]

The graph corresponding to \((x \lor y \lor z) \ (x \lor \overline{y} \lor z) \ (x \lor y \lor z) \ (x \lor y)\).

- Independent set of size \(k\) must contain one literal from each clause
 - By setting that literal to *true*, we obtain a solution for 3SAT
Reducing 3SAT to Independent set

- Nontrivial reduction, as the problems are quite different in nature

- **Idea:** Model each of k clauses of 3SAT by a “triangle” in a graph

 The graph corresponding to $(x \lor y \lor z) (x \lor \bar{y} \lor z) (x \lor y \lor z) (x \lor y)$.

- Independent set of size k must contain one literal from each clause
 - By setting that literal to *true*, we obtain a solution for 3SAT
 - **Key point:** Avoid conflicts, e.g., assigning *true* to both x and \bar{x}
 - Ensure using edges between every variable and its complement

Figure 8.8
Reducing Independent set to Vertex Cover

- If S is an independent set then $V - S$ is a vertex cover
 - Consider any edge e in the graph
 - Case 1: Both ends of e are in $V - S$
 - Case 2: At least one end of e is S. The other end of e cannot be in S or else S won’t be independent.
 - Thus, in both cases, at least one side of e must go to $V - S$.
 - In other words $V - S$ is a vertex cover

- Thus, we have reduced independent set to vertex cover problem.
Reducing Independent set to Clique

- If S is an independent set then S is clique in $\overline{G} = (V, \overline{E})$
 - For any pair $v_1, v_2 \in S$ there is no edge in E
 - means that there is an edge between any such pair in G'
 - i.e, S is a clique in \overline{G}

- Thus, we have reduced independent set to the clique problem, while only using polynomial time and space.
NP-completeness Reductions

- We have discussed the left half of this picture.
- We won’t discuss the right half, since the proofs are similar in many ways, but are more involved.
- You can find those reductions in the textbook.

![Diagram of NP-completeness Reductions]

All of **NP**

SAT

3**Sat**

INDEPENDENT SET

VERTEX COVER

CLIQUE

3D MATCHING

ZOE

SUBSET SUM

ILP

RUDRATA CYCLE

TSP
Beyond NP: PSPACE

- **PSPACE**: The class of problems that can be solved using only polynomial amount of space.
- It is OK to take exponential (or super-exponential) time.
Beyond NP: PSPACE

- **PSPACE**: The class of problems that can be solved using only polynomial amount of space.
 - It is OK to take exponential (or super-exponential) time.

- **Key point**: Unlike time, space is reusable.
 - Result: many exponential algorithms are in PSPACE.
 - Consider universal formulas. We can check them in polynomial space by rerunning the same computation (say, check(\(v\))) for each \(v\).
 - The space used for check is recycled, but the time adds up for different \(v\)'s.

Note: SAT is in PSPACE
Try every possible truthe assignment for variables.
Thus, all NP-complete problems are in PSPACE.
Beyond NP: PSPACE

PSPACE: The class of problems that can be solved using only polynomial amount of space.

- It is OK to take exponential (or super-exponential) time.

Key point: Unlike time, space is reusable.

- Result: many exponential algorithms are in PSPACE.
 - Consider universal formulas. We can check them in polynomial space by rerunning the same computation (say, check(v)) for each v.
 - The space used for check is recycled, but the time adds up for different v’s.

Note: SAT is in PSPACE

- Try every possible truth assignment for variables.
Beyond NP: PSPACE

- **PSPACE**: The class of problems that can be solved using only polynomial amount of space.
 - It is OK to take exponential (or super-exponential) time.

- *Key point*: Unlike time, space is reusable.
 - Result: many exponential algorithms are in PSPACE.
 - Consider universal formulas. We can check them in polynomial space by rerunning the same computation (say, $check(v)$) for each v.
 - The space used for $check$ is recycled, but the time adds up for different v’s.

- **Note**: SAT is in PSPACE
 - Try every possible truth assignment for variables.

 Thus, all NP-complete problems are in PSPACE.
PSPACE-hard: A problem \(\Pi \) is PSPACE-hard if for any problem \(\Pi' \) in PSPACE there is a \(P \)-time reduction to \(\Pi \).
PSPACE-hard and PSPACE-complete

PSPACE-hard: A problem Π is PSPACE-hard if for any problem Π' in PSPACE there is a P-time reduction to Π.

PSPACE-complete: PSPACE-hard problems that are in PSPACE.
PSPACE-hard and PSPACE-complete

PSPACE-hard: A problem Π is PSPACE-hard if for any problem Π' in PSPACE there is a P-time reduction to Π.

PSPACE-complete: PSPACE-hard problems that are in PSPACE.

- **Examples**:
 - QBF: Quantified boolean formulae
 - NFA totality: Does this NFA accept all strings?

Is $NP \not\subseteq PSPACE$?

- We think so, but we can’t even prove $P \not\subseteq PSPACE$
Classes EXP, EXP-hard and EXP-complete

- The class EXP (aka EXPTIME) consists of the class of problems that can be solved in $O(2^{nk})$ time for some k.

$PSPACE \subseteq EXP$. Intuitively, you can't do more than EXP work using a PSPACE algorithm because you need polynomial amount of space even if the only thing you did is to count up to 2^n.

As usual, EXP-hard and EXP-complete are defined using P-time reductions.

Generalized versions of games such as chess and checkers are EXP-hard.

We think $PSPACE \subset EXP$, but can only prove $P \subset EXP$.

Classes EXP, EXP-hard and EXP-complete

- The class EXP (aka EXPTIME) consists of the class of problems that can be solved in $O(2^{n^k})$ time for some k.

- $\text{PSPACE} \subseteq \text{EXP}$.
 - Intuitively, you can’t do more than EXP work using a PSPACE algorithm because you need polynomial amount of space even if the only thing you did is to count up to 2^n.

- $\text{P} \subset \text{EXP}$.
Classes EXP, EXP-hard and EXP-complete

- The class EXP (aka EXPTIME) consists of the class of problems that can be solved in $O(2^{n^k})$ time for some k.

- $\text{PSPACE} \subseteq \text{EXP}$.
 - Intuitively, you can’t do more than EXP work using a PSPACE algorithm because you need polynomial amount of space even if the only thing you did is to count up to 2^n.

- As usual, EXP-hard and EXP-complete are defined using P-time reductions.
Classes EXP, EXP-hard and EXP-complete

- The class EXP (aka EXPTIME) consists of the class of problems that can be solved in $O(2^{n^k})$ time for some k.

- $\text{PSPACE} \subseteq \text{EXP}$.
 - Intuitively, you can’t do more than EXP work using a PSPACE algorithm because you need polynomial amount of space even if the only thing you did is to count up to 2^n.

- As usual, EXP-hard and EXP-complete are defined using P-time reductions.

- Generalized versions of games such as chess and checkers are EXP-hard.
The class EXP (aka EXPTIME) consists of the class of problems that can be solved in $O(2^{n^k})$ time for some k.

PSPACE \subseteq EXP.

Intuitively, you can’t do more than EXP work using a PSPACE algorithm because you need polynomial amount of space even if the only thing you did is to count up to 2^n.

As usual, EXP-hard and EXP-complete are defined using P-time reductions.

Generalized versions of games such as chess and checkers are EXP-hard.

We think PSPACE \subsetneq EXP, but can only prove $P \subsetneq$ EXP.
Where do we stop?

These classes can be extended for ever:

- **NEXP**: Nondeterministic exponential time
- **EXPSPACE**: Problems solvable with exponential space.
- **EEXP**: Problems solvable in double exp. time \(O(2^{2^{(n^k)}})\) for some \(k\)
Where do we stop?

- These classes can be extended for ever:
 - **NEXP**: Nondeterministic exponential time
 - **EXPSPACE**: Problems solvable with exponential space.
 - **EEXP**: Problems solvable in double exp. time \(O(2^{(2^{n^k})}) \) for some \(k \)

- **Examples**:
 - Equivalence of regexpr with intersection is EXPSPACE-hard.
 - REs with negation can’t be decided even in \(E^k \)EXPTIME for any \(k \).
Where do we stop?

These classes can be extended for ever:

- **NEXP**: Nondeterministic exponential time
- **EXPSPACE**: Problems solvable with exponential space.
- **EEXP**: Problems solvable in double exp. time \((O(2^{2^{(n^k)}}))\) for some \(k\)

Examples:
- Equivalence of regeexpr with intersection is EXPSPACE-hard.
- REs with negation can’t be decided even in \(E^k\)EXPTIME for any \(k\).

\(P \subseteq NP \subseteq PSPACE \subseteq \text{EXP} \subseteq \text{NEXP} \subseteq \text{EXPSPACE} \subseteq \text{EEXP} \subseteq \text{NEEXP} \subseteq \text{EEXPSPACE} \subseteq \cdots\)
Where do we stop?

These classes can be extended for ever:

- **NEXP**: Nondeterministic exponential time
- **EXPSPACE**: Problems solvable with exponential space.
- **EEXP**: Problems solvable in double exp. time \(O(2^{2^{(2^k)}})\) for some \(k\)

Examples:
- Equivalence of regexpr with intersection is EXPSPACE-hard.
- REs with negation can’t be decided even in \(E^k\)EXPTIME for any \(k\).

\[P \subseteq NP \subseteq PSPACE \subseteq EXP \subseteq NEXP \subseteq EXPSPACE \subseteq EEXP \subseteq NEEXP \subseteq EEXPSPACE \subseteq \cdots \]

We *think* these classes are distinct, but have proofs only for classes that are 3 places apart, e.g., \(P\) and \(EXP\).