

- A technique for modeling a diverse range of optimization problems
  - LP is more of a modeling technique: You are not being asked to develop new "LP algorithms," but to model existing problems using LP.
  - Existing solvers can solve these problems
- We cover the intuition behind the solver, but not in great depth.

#### **Example 1: Profit Maximization**



- Company can produce a total of 400 units
- (Cannot produce negative number of units!)

*Note:* It is easy to see that a maximum should be at a vertex

 $x_1 + x_2 < 400$ 

 $x_1, x_2 > 0$ 

#### Intro Ov

#### Overview

### Simplex Method



- Applicable to *convex problems,* i.e., conjunctions, and *linear constraints,* i.e., no squaring/multiplication of variables.
- Feasible regions are *convex polygons*

#### Simplex

- Start at the origin
- Switch to neighboring vertex if objective function *f*(*x*) is higher
- Repeat until you reach a local maxima
  - which will be a global maxima
  - Consider the line  $f(\bar{x}) = c$  passing through the vertex. Rest of the polygon must be below this line.

#### Example 2: On to more products ...



#### Example 3: Communication Network



- *A*-*B*, *B*-*C* and *A*-*C* traffic pay \$3, \$2, \$4/unit
- Minimum 2 units per connection
- x and x' refer to traffic on short path and long path, resp.

• Sol: 
$$x_{AB} = 0, x'_{AB} = 7, x_{BC} = x'_{BC} = 1.5, x_{AC} = 0.5, x'_{AC} = 4.5$$

#### **Matrix-vector notation**

A linear function like  $x_1 + 6x_2$  can be written as the dot product of two vectors

$$\mathbf{c} = egin{pmatrix} 1 \ 6 \end{pmatrix} ext{ and } \mathbf{x} = egin{pmatrix} x_1 \ x_2 \end{pmatrix},$$

denoted  $\mathbf{c} \cdot \mathbf{x}$  or  $\mathbf{c}^T \mathbf{x}$ . Similarly, linear constraints can be compiled into matrix-vector form:

Here each row of matrix **A** corresponds to one constraint: its dot product with x is at most the value in the corresponding row of **b**. In other words, if the rows of **A** are the vectors  $\mathbf{a}_1, \ldots, \mathbf{a}_m$ , then the statement  $\mathbf{Ax} \leq \mathbf{b}$  is equivalent to

 $\mathbf{a}_i \cdot \mathbf{x} \leq b_i$  for all  $i = 1, \ldots, m$ .

With these notational conveniences, a generic LP can be expressed simply as

$$\begin{aligned} \max \ \mathbf{c}^T \mathbf{x} \\ \mathbf{A} \mathbf{x} &\leq \mathbf{b} \\ \mathbf{x} &> 0. \end{aligned}$$

# Optimality of Solution

|          |                       |        |        | Multiply (3) by 5 and (4) by 1 and add:                                |  |  |  |
|----------|-----------------------|--------|--------|------------------------------------------------------------------------|--|--|--|
| /lax     | <i>x</i> <sub>l</sub> | +      | $6x_2$ | (1) $5 \cdot x_2 + 1 \cdot (x_1 + x_2) \leq 5 \cdot 300 + 1 \cdot 400$ |  |  |  |
|          | <i>x</i> <sub>l</sub> | $\leq$ | 200    | (2) $x_1 + 6 \cdot x_2 \leq 1900$                                      |  |  |  |
|          | <i>x</i> <sub>2</sub> | $\leq$ | 300    | (3) • Magically, we have a proof that the maximum                      |  |  |  |
| $x_1 + $ | <i>x</i> <sub>2</sub> | $\leq$ | 400    | (4) possible value for profit is \$1900                                |  |  |  |
| $X_1$ ,  | $X_2$                 | >      | 0      | (5) • This is a <i>certificate of optimality</i> for the               |  |  |  |
| • /      | -                     | _      |        | solution found by LP!                                                  |  |  |  |

|       | 0 |    |    |    |   |   |
|-------|---|----|----|----|---|---|
| Intro |   | Jν | en | /1 | 6 | w |
|       |   |    |    |    |   |   |

## Constructing Dual Problem

- Introduce a multiplier  $y_i$  for each equation: Multiplier Inequality  $y_1$   $x_1 \leq 200$   $y_2$   $x_2 \leq 300$  $y_3$   $x_1 + x_2 \leq 400$
- After muliplying and adding, we get

$$(y_1 + y_3)x_1 + (y_2 + y_3)x_2 \le 200y_1 + 300y_2 + 400y_3$$

• To get optimality proof, we need  $y_1 + y_3 \ge 1$ ,  $y_2 + y_3 \ge 6$ . In other words, we have the dual problem:

|         | Intro Overview |  |
|---------|----------------|--|
| Duality |                |  |



## Simplex Algorithm

#### "Pebble falling down:"

- If you rotate the axes so that the normal to the hyperplane represented by the objective function faces down,
- then simplex operation resembles that of a pebble starting from one vertex, sliding down to the next vertex down and the next vertex down,
- until it reaches the minimum.
- For simplicity, we consider only those cases where there is a unique solution, i.e., ignore degenerate cases.

#### Intro Overview

## Simplex Algorithm

- What is the space of feasible solutions?
  - A convex polyhedron in *n*-dimensions (*n* = number of variables)
- What is a vertex?
  - A point of intersection of *n* inequalities ("hyperplanes")
- What is a neighboring vertex?
  - Two vertices are neighbors if they share n-1 inequalities.
  - Vertex found by solving *n* simultaneous equations
- How many times can it fall?
  - There are *m* inequalities and *n* variables, so  $\binom{m+n}{n}$  vertices can be there.
  - This is an exponential number, but simplex works exceptionally well in practice.

Intro

#### Overview

# Simplex Algorithm



### History and Main LP Algorithms

- Fourier (1800s) Informal/implicit use
- Kantorovich (1930) Applications to problems in Economics
- Koopmans (1940) Application to shipping problems
- Dantzig (1947) Simplex method.
- Nobel Prize (1975) Kantorovich and Koopmans, not Dantzig
- Khachiyan (1979) Ellipsoid algorithm, polynomial time but not competitive in practice.
- Karmarkar (1984) Interior point method, polynomial time, good practical performance.