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Intro Overview

Overview

A technique for modeling a diverse range of optimization problems

LP is more of a modeling technique: You are not being asked to

develop new “LP algorithms,” but to model existing problems using LP.

Existing solvers can solve these problems

We cover the intuition behind the solver, but not in great depth.
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Example 1: Profit Maximization
Figure 7.1 (a) The feasible region for a linear program. (b) Contour lines of the objective
function: x1 + 6x2 = c for different values of the profit c.
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Profit = $1900

$1 each, and x2 boxes of Nuit, at a more substantial profit of $6 apiece; x1 and x2 are unknown
values that we wish to determine. But this is not all; there are also some constraints on x1 and
x2 that must be accommodated (besides the obvious one, x1, x2 ≥ 0). First, the daily demand
for these exclusive chocolates is limited to at most 200 boxes of Pyramide and 300 boxes of
Nuit. Also, the current workforce can produce a total of at most 400 boxes of chocolate per day.
What are the optimal levels of production?
We represent the situation by a linear program, as follows.

Objective function max x1 + 6x2

Constraints x1 ≤ 200

x2 ≤ 300

x1 + x2 ≤ 400

x1, x2 ≥ 0

A linear equation in x1 and x2 defines a line in the two-dimensional (2D) plane, and a
linear inequality designates a half-space, the region on one side of the line. Thus the set
of all feasible solutions of this linear program, that is, the points (x1, x2) which satisfy all
constraints, is the intersection of five half-spaces. It is a convex polygon, shown in Figure 7.1.
We want to find the point in this polygon at which the objective function—the profit—is

maximized. The points with a profit of c dollars lie on the line x1 + 6x2 = c, which has a slope
of −1/6 and is shown in Figure 7.1 for selected values of c. As c increases, this “profit line”
moves parallel to itself, up and to the right. Since the goal is to maximize c, we must move
the line as far up as possible, while still touching the feasible region. The optimum solution
will be the very last feasible point that the profit line sees and must therefore be a vertex of
the polygon, as shown in the figure. If the slope of the profit line were different, then its last
contact with the polygon could be an entire edge rather than a single vertex. In this case, the
optimum solution would not be unique, but there would certainly be an optimum vertex.
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Product P1 generates $1/unit, P2 generates $6/unit Max x1 + 6x2

Max 200 units of P1 and 300 of P2 can be sold x1 ≤ 200, x2 ≤ 300

Company can produce a total of 400 units x1 + x2 ≤ 400

(Cannot produce negative number of units!) x1, x2 ≥ 0

Note: It is easy to see that a maximum should be at a vertex
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Intro Overview

Simplex Method

It is a general rule of linear programs that the optimum is achieved at a vertex of the
feasible region. The only exceptions are cases in which there is no optimum; this can happen
in two ways:

1. The linear program is infeasible; that is, the constraints are so tight that it is impossible
to satisfy all of them. For instance,

x ≤ 1, x ≥ 2.

2. The constraints are so loose that the feasible region is unbounded, and it is possible to
achieve arbitrarily high objective values. For instance,

max x1 + x2

x1, x2 ≥ 0

Solving linear programs
Linear programs (LPs) can be solved by the simplex method, devised by George Dantzig in
1947. We shall explain it in more detail in Section 7.6, but briefly, this algorithm starts at a
vertex, in our case perhaps (0, 0), and repeatedly looks for an adjacent vertex (connected by
an edge of the feasible region) of better objective value. In this way it does hill-climbing on
the vertices of the polygon, walking from neighbor to neighbor so as to steadily increase profit
along the way. Here’s a possible trajectory.
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Profit $1900

$0 $200

$1400

Upon reaching a vertex that has no better neighbor, simplex declares it to be optimal and
halts. Why does this local test imply global optimality? By simple geometry—think of the
profit line passing through this vertex. Since all the vertex’s neighbors lie below the line, the
rest of the feasible polygon must also lie below this line.

More products
Encouraged by consumer demand, the chocolatier decides to introduce a third and even more
exclusive line of chocolates, called Pyramide Luxe. One box of these will bring in a profit of $13.

191

Applicable to convex problems, i.e.,
conjunctions, and linear constraints, i.e.,
no squaring/multiplication of variables.

Feasible regions are convex polygons

Simplex

Start at the origin

Switch to neighboring vertex if objective
function f (x̄) is higher

Repeat until you reach a local maxima

which will be a global maxima
Consider the line f (x̄) = c passing
through the vertex. Rest of the polygon
must be below this line.
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Example 2: On to more products ...Figure 7.2 The feasible polyhedron for a three-variable linear program.
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Let x1, x2, x3 denote the number of boxes of each chocolate produced daily, with x3 referring to
Luxe. The old constraints on x1 and x2 persist, although the labor restriction now extends to
x3 as well: the sum of all three variables can be at most 400. What’s more, it turns out that
Nuit and Luxe require the same packaging machinery, except that Luxe uses it three times
as much, which imposes another constraint x2 + 3x3 ≤ 600. What are the best possible levels
of production?
Here is the updated linear program.

max x1 + 6x2 + 13x3

x1 ≤ 200

x2 ≤ 300

x1 + x2 + x3 ≤ 400

x2 + 3x3 ≤ 600

x1, x2, x3 ≥ 0

The space of solutions is now three-dimensional. Each linear equation defines a 3D plane,
and each inequality a half-space on one side of the plane. The feasible region is an intersection
of seven half-spaces, a polyhedron (Figure 7.2). Looking at the figure, can you decipher which
inequality corresponds to each face of the polyhedron?
A profit of c corresponds to the plane x1 + 6x2 + 13x3 = c. As c increases, this profit-plane

moves parallel to itself, further and further into the positive orthant until it no longer touches
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Figure 7.2 The feasible polyhedron for a three-variable linear program.

x1

x3

x2

Optimum

Let x1, x2, x3 denote the number of boxes of each chocolate produced daily, with x3 referring to
Luxe. The old constraints on x1 and x2 persist, although the labor restriction now extends to
x3 as well: the sum of all three variables can be at most 400. What’s more, it turns out that
Nuit and Luxe require the same packaging machinery, except that Luxe uses it three times
as much, which imposes another constraint x2 + 3x3 ≤ 600. What are the best possible levels
of production?
Here is the updated linear program.

max x1 + 6x2 + 13x3

x1 ≤ 200

x2 ≤ 300

x1 + x2 + x3 ≤ 400

x2 + 3x3 ≤ 600

x1, x2, x3 ≥ 0

The space of solutions is now three-dimensional. Each linear equation defines a 3D plane,
and each inequality a half-space on one side of the plane. The feasible region is an intersection
of seven half-spaces, a polyhedron (Figure 7.2). Looking at the figure, can you decipher which
inequality corresponds to each face of the polyhedron?
A profit of c corresponds to the plane x1 + 6x2 + 13x3 = c. As c increases, this profit-plane

moves parallel to itself, further and further into the positive orthant until it no longer touches

192

Search follows these steps:

(0, 0, 0) → (200, 0, 0) → (200, 200, 200)

$0 $200 $1400

→ (200, 0, 200) → (0, 300, 100)

$2800 $3100
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Example 3: Communication NetworkFigure 7.3 A communications network between three users A,B, and C. Bandwidths are
shown.
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Well, almost. The optimum solution might turn out to be fractional; for instance, it might
involve hiring 10.6 workers in the month of March. This number would have to be rounded to
either 10 or 11 in order to make sense, and the overall cost would then increase correspond-
ingly. In the present example, most of the variables take on fairly large (double-digit) values,
and thus rounding is unlikely to affect things too much. There are other LPs, however, in
which rounding decisions have to be made very carefully in order to end up with an integer
solution of reasonable quality.
In general, there is a tension in linear programming between the ease of obtaining frac-

tional solutions and the desirability of integer ones. As we shall see in Chapter 8, finding
the optimum integer solution of an LP is an important but very hard problem, called integer
linear programming.

7.1.3 Example: optimum bandwidth allocation
Next we turn to a miniaturized version of the kind of problem a network service provider
might face.
Suppose we are managing a network whose lines have the bandwidths shown in Fig-

ure 7.3, and we need to establish three connections: between users A and B, between B
and C, and between A and C. Each connection requires at least two units of bandwidth, but
can be assigned more. Connection A–B pays $3 per unit of bandwidth, and connections B–C
and A–C pay $2 and $4, respectively.
Each connection can be routed in two ways, a long path and a short path, or by a combina-

tion: for instance, two units of bandwidth via the short route, one via the long route. How do
we route these connections to maximize our network’s revenue?

This is a linear program. We have variables for each connection and each path (long or
short); for example, xAB is the short-path bandwidth allocated to the connection between A
and B, and x�

AB the long-path bandwidth for this same connection. We demand that no edge’s
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bandwidth is exceeded and that each connection gets a bandwidth of at least 2 units.

max 3xAB + 3x�
AB + 2xBC + 2x�

BC + 4xAC + 4x�
AC

xAB + x�
AB + xBC + x�

BC ≤ 10 [edge (b,B)]
xAB + x�

AB + xAC + x�
AC ≤ 12 [edge (a,A)]

xBC + x�
BC + xAC + x�

AC ≤ 8 [edge (c, C)]
xAB + x�

BC + x�
AC ≤ 6 [edge (a, b)]

x�
AB + xBC + x�

AC ≤ 13 [edge (b, c)]
x�

AB + x�
BC + xAC ≤ 11 [edge (a, c)]

xAB + x�
AB ≥ 2

xBC + x�
BC ≥ 2

xAC + x�
AC ≥ 2

xAB , x�
AB , xBC , x�

BC , xAC , x�
AC ≥ 0

Even a tiny example like this one is hard to solve on one’s own (try it!), and yet the optimal
solution is obtained instantaneously via simplex:

xAB = 0, x�
AB = 7, xBC = x�

BC = 1.5, xAC = 0.5, x�
AC = 4.5.

This solution is not integral, but in the present application we don’t need it to be, and thus no
rounding is required. Looking back at the original network, we see that every edge except a–c
is used at full capacity.
One cautionary observation: our LP has one variable for every possible path between the

users. In a larger network, there could easily be exponentially many such paths, and therefore
this particular way of translating the network problem into an LP will not scale well. We will
see a cleverer and more scalable formulation in Section 7.2.
Here’s a parting question for you to consider. Suppose we removed the constraint that

each connection should receive at least two units of bandwidth. Would the optimum change?

196

A–B, B–C and A–C tra�c pay $3, $2, $4/unit

Minimum 2 units per connection

x and x′ refer to tra�c on short path and long path, resp.

Sol: xAB = 0, x′AB = 7, xBC = x′BC = 1.5, xAC = 0.5, x′AC = 4.5
6 / 14



Matrix-vector notation
A linear function like x1 + 6x2 can be written as the dot product of two vectors

c =

�
1
6

�
and x =

�
x1

x2

�
,

denoted c · x or cT x. Similarly, linear constraints can be compiled into matrix-vector form:

x1 ≤ 200
x2 ≤ 300

x1 + x2 ≤ 400

=⇒



1 0
0 1
1 1




� �� �

�
x1

x2

�
≤




200
300
400




� �� �

.

A x ≤ b

Here each row of matrix A corresponds to one constraint: its dot product with x is at most
the value in the corresponding row of b. In other words, if the rows of A are the vectors
a1, . . . ,am, then the statement Ax ≤ b is equivalent to

ai · x ≤ bi for all i = 1, . . . ,m.

With these notational conveniences, a generic LP can be expressed simply as

max cT x

Ax ≤ b

x ≥ 0.

7.2 Flows in networks
7.2.1 Shipping oil
Figure 7.4(a) shows a directed graph representing a network of pipelines along which oil can
be sent. The goal is to ship as much oil as possible from the source s to the sink t. Each
pipeline has a maximum capacity it can handle, and there are no opportunities for storing oil
en route. Figure 7.4(b) shows a possible flow from s to t, which ships 7 units in all. Is this the
best that can be done?

7.2.2 Maximizing flow
The networks we are dealing with consist of a directed graph G = (V,E); two special nodes
s, t ∈ V , which are, respectively, a source and sink of G; and capacities ce > 0 on the edges.
We would like to send as much oil as possible from s to t without exceeding the capacities

of any of the edges. A particular shipping scheme is called a flow and consists of a variable fe

for each edge e of the network, satisfying the following two properties:

1. It doesn’t violate edge capacities: 0 ≤ fe ≤ ce for all e ∈ E.

2. For all nodes u except s and t, the amount of flow entering u equals the amount leaving

199
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Optimality of Solution

Max x1 + 6x2 (1)

x1 ≤ 200 (2)

x2 ≤ 300 (3)

x1 + x2 ≤ 400 (4)

x1, x2 ≥ 0 (5)

Multiply (3) by 5 and (4) by 1 and add:

5·x2 + 1·(x1+x2) ≤ 5·300 + 1·400

x1 + 6·x2 ≤ 1900

Magically, we have a proof that the maximum

possible value for profit is $1900

This is a certificate of optimality for the

solution found by LP!
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Intro Overview

Constructing Dual Problem
Introduce a multiplier yi for each equation:

Multiplier Inequality

y1 x1 ≤ 200

y2 x2 ≤ 300

y3 x1 + x2 ≤ 400

After muliplying and adding, we get

(y1 + y3)x1 + (y2 + y3)x2 ≤ 200y1 + 300y2 + 400y3

To get optimality proof, we need y1 + y3 ≥ 1, y2 + y3 ≥ 6. In other words,

we have the dual problem:
Min 200y1 + 300y2 + 400y3

y1 + y3 ≥ 1

y2 + y3 ≥ 6

y1, y2, y3 ≥ 0
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Intro Overview

Duality

Figure 7.10 A generic primal LP in matrix-vector form, and its dual.

Primal LP:

max cTx

Ax ≤ b

x ≥ 0

Dual LP:

min yT b

yT A ≥ cT

y ≥ 0

Figure 7.11 In the most general case of linear programming, we have a set I of inequalities
and a set E of equalities (a total of m = |I| + |E| constraints) over n variables, of which a
subset N are constrained to be nonnegative. The dual has m = |I| + |E| variables, of which
only those corresponding to I have nonnegativity constraints.

Primal LP:

max c1x1 + · · · + cnxn

ai1x1 + · · · + ainxn ≤ bi for i ∈ I

ai1x1 + · · · + ainxn = bi for i ∈ E

xj ≥ 0 for j ∈ N

Dual LP:

min b1y1 + · · · + bmym

a1jy1 + · · · + amjym ≥ cj for j ∈ N

a1jy1 + · · · + amjym = cj for j �∈ N

yi ≥ 0 for i ∈ I

Amazingly, this is not just a lucky example, but a general phenomenon. To start with, the
preceding construction—creating a multiplier for each primal constraint; writing a constraint
in the dual for every variable of the primal, in which the sum is required to be above the
objective coefficient of the corresponding primal variable; and optimizing the sum of the mul-
tipliers weighted by the primal right-hand sides—can be carried out for any LP, as shown in
Figure 7.10, and in even greater generality in Figure 7.11. The second figure has one notewor-
thy addition: if the primal has an equality constraint, then the corresponding multiplier (or
dual variable) need not be nonnegative, because the validity of equations is preserved when
multiplied by negative numbers. So, the multipliers of equations are unrestricted variables.
Notice also the simple symmetry between the two LPs, in that the matrix A = (aij) defines
one primal constraint with each of its rows, and one dual constraint with each of its columns.
By construction, any feasible solution of the dual is an upper bound on any feasible solution

of the primal. But moreover, their optima coincide!

Duality theorem If a linear program has a bounded optimum, then so does its dual, and the
two optimum values coincide.

209

Theorem (Duality)

If a linear program has a bounded optimum, then so does it dual,

and the two optima coincide.
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Simplex Algorithm

“Pebble falling down:”

If you rotate the axes so that the normal to the hyperplane

represented by the objective function faces down,

then simplex operation resembles that of a pebble starting from

one vertex, sliding down to the next vertex down and the next

vertex down,

until it reaches the minimum.

For simplicity, we consider only those cases where there is a unique

solution, i.e., ignore degenerate cases.
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Simplex Algorithm

What is the space of feasible solutions?

A convex polyhedron in n-dimensions (n = number of variables)

What is a vertex?

A point of intersection of n inequalities (“hyperplanes”)

What is a neighboring vertex?

Two vertices are neighbors if they share n− 1 inequalities.

Vertex found by solving n simultaneous equations

How many times can it fall?

There are m inequalities and n variables, so

(
m+ n

n

)
vertices can be

there.

This is an exponential number, but simplex works exceptionally well in

practice. 12 / 14
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Simplex AlgorithmFigure 7.12 A polyhedron defined by seven inequalities.
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max x1 + 6x2 + 13x3

x1 ≤ 200 1�
x2 ≤ 300 2�

x1 + x2 + x3 ≤ 400 3�
x2 + 3x3 ≤ 600 4�

x1 ≥ 0 5�
x2 ≥ 0 6�
x3 ≥ 0 7�

7.6.1 Vertices and neighbors in n-dimensional space
Figure 7.12 recalls an earlier example. Looking at it closely, we see that each vertex is the
unique point at which some subset of hyperplanes meet. Vertex A, for instance, is the sole
point at which constraints 2�, 3�, and 7� are satisfied with equality. On the other hand, the
hyperplanes corresponding to inequalities 4� and 6� do not define a vertex, because their
intersection is not just a single point but an entire line.
Let’s make this definition precise.

Pick a subset of the inequalities. If there is a unique point that satisfies them with
equality, and this point happens to be feasible, then it is a vertex.

How many equations are needed to uniquely identify a point? When there are n variables, we
need at least n linear equations if we want a unique solution. On the other hand, having more
than n equations is redundant: at least one of them can be rewritten as a linear combination
of the others and can therefore be disregarded. In short,

Each vertex is specified by a set of n inequalities.3

A notion of neighbor now follows naturally.

Two vertices are neighbors if they have n − 1 defining inequalities in common.

In Figure 7.12, for instance, vertices A and C share the two defining inequalities { 3�, 7�} and
are thus neighbors.

3There is one tricky issue here. It is possible that the same vertex might be generated by different subsets
of inequalities. In Figure 7.12, vertex B is generated by { 2�, 3�, 4�}, but also by { 2�, 4�, 5�}. Such vertices are
called degenerate and require special consideration. Let’s assume for the time being that they don’t exist, and
we’ll return to them later.

214
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History and Main LP Algorithms

Fourier (1800s) Informal/implicit use

Kantorovich (1930) Applications to problems in Economics

Koopmans (1940) Application to shipping problems

Dantzig (1947) Simplex method.

Nobel Prize (1975) Kantorovich and Koopmans, not Dantzig

Khachiyan (1979) Ellipsoid algorithm, polynomial time but not competitive in

practice.

Karmarkar (1984) Interior point method, polynomial time, good practical

performance.
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