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Intro Overview

Overview

@ A technique for modeling a diverse range of optimization problems

e LP is more of a modeling technique: You are not being asked to
develop new “LP algorithms,” but to model existing problems using LP.

o Existing solvers can solve these problems

@ We cover the intuition behind the solver, but not in great depth.



Example 1: Profit Maximization
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@ Product P, generates $l/unit, P, generates $6/unit Max xj + 6x2
@ Max 200 units of P, and 300 of P> can be sold x <200, x, < 300
@ Company can produce a total of 400 units X+ xo <400
@ (Cannot produce negative number of units!) X, X >0

Note: It is easy to see that a maximum should be at a vertex



Simplex Method
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@ Applicable to convex problems, i.e.,
conjunctions, and linear constraints, i.e.,
no squaring/multiplication of variables.

@ Feasible regions are convex polygons

Simplex

@ Start at the origin

@ Switch to neighboring vertex if objective
function f(x) is higher

@ Repeat until you reach a local maxima

o which will be a global maxima

o Consider the line f(x) = c passing
through the vertex. Rest of the polygon
must be below this line.
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Example 2: On to more products ...

T2

max 1 + 6xo + 1323
z1 <200
2 < 300
x1 + x2 + x3 < 400
To + 3x3 < 600
T1,x2,23 > 0

Optimum

Search follows these steps:

(0,0,0) —  (200,0,0) — (200,200,200)
$0 $200 $1400
- (200,0,200) —  (0,300,100)
$2800 $3100



Example 3: Communication Network

max 3zap + 3¢/yp + 2xpc + 2xpc + 4rac + 420

TAB + Tp + xBc + e < 10

AR+ Thp +2ac + Tho < 12
zpe + Lo + Tac + To <8
TAB + Tpo + Tac < 6
2yp +rpc + 2o <13
tap +2pc +2ac <11
TAB + Typ > 2
Tpc + Tho > 2
TAC + Tho > 2
TAB, TR, TBC, TRc, TAC, Tac = 0

@ A-B, B-C and A-C traffic pay $3, $2, $4/unit

@ Minimum 2 units per connection

@ x and x’ refer to traffic on short path and long path, resp.

@ Sol: XAB — 0, X/{IB = 7, XBc = XI,3C = 1.5, XACc = 0.5, X;\C =45

[edge (b, B)]
[edge (a, A)]
[edge (¢, C)]
[edge (a,b)]
[edge (b, )]
[edge (a,c)]



Matrix-vector notation

A linear function like z; + 6x5 can be written as the dot product of two vectors

denoted c - x or ¢”x. Similarly, linear constraints can be compiled into matrix-vector form:

z < 200 . 10 ” 200
zy < 300 UL (xz) < | 300

1 +ax0 < 400 11 400
A x < b

Here each row of matrix A corresponds to one constraint: its dot product with x is at most
the value in the corresponding row of b. In other words, if the rows of A are the vectors
aiy,...,a,, then the statement Ax < b is equivalent to

a;-x<pb foralli=1,...,m.
With these notational conveniences, a generic LP can be expressed simply as

max ¢! x
Ax<b
x > 0.
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Optimality of Solution
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@ Multiply (3) by 5 and (4) by 1 and add:
(M 5.x +1-(x+x) < 5300 +1-400

2) xi+6-x < 1900
(3) @ Magically, we have a proof that the maximum

@) possible value for profit is $1900

5) ® This is a certificate of optimality for the
solution found by LP!
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Constructing Dual Problem

@ Introduce a multiplier y; for each equation:

Multiplier Inequality
" x < 200
Y2 X2 < 300
Y3 xi+x < 400

@ After muliplying and adding, we get
(1 + y3)xi + (2 + y3)x2 < 200y + 300y, + 400y

@ To get optimality proof, we need yi + y3 > 1,y» + y3 > 6. In other words,

we have the dual problem:

Min 200y + 300y, + 400ys
ntys = 1

Yo+ys = 6
wysys =2 0



Primal LP: Dual LP:

max ¢! x min y'b
Ax<b yTA >c”
x>0 y>0

If a linear program has a bounded optimum, then so does it dual,

and the two optima coincide.
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Simplex Algorithm

“Pebble falling down:”
o If you rotate the axes so that the normal to the hyperplane

represented by the objective function faces down,

o then simplex operation resembles that of a pebble starting from
one vertex, sliding down to the next vertex down and the next

vertex down,

o until it reaches the minimum.
For simplicity, we consider only those cases where there is a unique

solution, i.e., ignore degenerate cases.
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Simplex Algorithm

e What is the space of feasible solutions?

o A convex polyhedron in n-dimensions (n = number of variables)

@ What is a vertex?

o A point of intersection of n inequalities (“hyperplanes”)

@ What is a neighboring vertex?
e Two vertices are neighbors if they share n — 1 inequalities.

o Vertex found by solving n simultaneous equations

e How many times can it fall?

m-+n

o There are m inequalities and n variables, so < > vertices can be

there.
e This is an exponential number, but simplex works exceptionally well in

practice. 12/14
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History and Main LP Algorithms

Fourier (1800s) Informal/implicit use

Kantorovich (1930) Applications to problems in Economics
Koopmans (1940) Application to shipping problems
Dantzig (1947) Simplex method.

Nobel Prize (1975) Kantorovich and Koopmans, not Dantzig

Khachiyan (1979) Ellipsoid algorithm, polynomial time but not competitive in

practice.

Karmarkar (1984) Interior point method, polynomial time, good practical

performance.
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