R. Sekar
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@ One of the strategies used to solve optimization problems

o Multiple solutions exist; pick one of low (or least) cost

o Greedy strategy: make a locally optimal choice, or simply, what appears best at the

moment
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Overview Kruskal Huffman Compression

Overview

One of the strategies used to solve optimization problems

e Multiple solutions exist; pick one of low (or least) cost

Greedy strategy: make a locally optimal choice, or simply, what appears best at the

moment

Often, locally optimality # global optimality

So, use with a great deal of care

e Always need to prove optimality

If it is unpredictable, why use it?
o [t simplifies the task!
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Overview Kruskal Huffman Compression

Making change

Given coins of denominations 25¢, 10¢, 5¢ and 1¢, make change for x cents

(0 < x < 100) using minimum number of coins.

Greedy solution

makeChange(x)
if (x = 0) return
Let y be the largest denomination that satisfies y < x
Issue | x/y| coins of denomination y

makeChange(x mod y)
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Making change

Given coins of denominations 25¢, 10¢, 5¢ and 1¢, make change for x cents

(0 < x < 100) using minimum number of coins.

Greedy solution
makeChange(x)
if (x = 0) return
Let y be the largest denomination that satisfies y < x
Issue | x/y| coins of denomination y
makeChange(x mod y)

@ Show that it is optimal

o Is it optimal for arbitrary denominations?
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The greedy (i.e., locally optimal) choice is always consistent with some (globally)

optimal solution
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The greedy (i.e., locally optimal) choice is always consistent with some (globally)
optimal solution

What does this mean for the coin change problem?

The optimal solution contains optimal solutions to subproblems.
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When does a Greedy algorithm work?

Greedy choice property
The greedy (i.e., locally optimal) choice is always consistent with some (globally)

optimal solution

What does this mean for the coin change problem?

Optimal substructure

The optimal solution contains optimal solutions to subproblems.

Implies that a greedy algorithm can invoke itself recursively after making a greedy

choice.
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@ A sack that can hold a maximum of x Ibs
@ You have a choice of items you can pack in the sack

@ Maximize the combined “value” of items in the sack

|| item | calories/Ib | weight ||

cucumber 55 2
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Knapsack Problem

@ A sack that can hold a maximum of x Ibs
@ You have a choice of items you can pack in the sack

@ Maximize the combined “value” of items in the sack

H item calories/Ib ‘ weight H
bread 1100 5
butter 3300 1
tomato 80 1
cucumber 55 2

0-1 knapsack: Take all of one item or none at all

Fractional knapsack: Fractional quantities acceptable
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Knapsack Problem

@ A sack that can hold a maximum of x Ibs
@ You have a choice of items you can pack in the sack

@ Maximize the combined “value” of items in the sack

H item calories/Ib ‘ weight H
bread 1100 5
butter 3300 1
tomato 80 1
cucumber 55 2

0-1 knapsack: Take all of one item or none at all
Fractional knapsack: Fractional quantities acceptable

Greedy choice: pick item that maximizes calories/Ib

Will a greedy algorithm work, with x = 5?
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Proof by contradiction: Start with the assumption that there is an optimal solution

that does not include the greedy choice, and show a contradiction.
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Fractional Knapsack

Greedy choice property
Proof by contradiction: Start with the assumption that there is an optimal solution

that does not include the greedy choice, and show a contradiction.

Optimal substructure |
After taking as much of the item with jth maximal value/weight, suppose that the

knapsack can hold y more Ibs.

Then the optimal solution for the problem includes the optimal choice of how to fill a

knapsack of size y with the remaining items.
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Fractional Knapsack

Greedy choice property
Proof by contradiction: Start with the assumption that there is an optimal solution

that does not include the greedy choice, and show a contradiction.

Optimal substructure |
After taking as much of the item with jth maximal value/weight, suppose that the
knapsack can hold y more Ibs.

Then the optimal solution for the problem includes the optimal choice of how to fill a

knapsack of size y with the remaining items.

Does not work for 0-1 knapsack because greedy choice property does not hold.

0-1 knapsack is NP-hard, but a pseudo-polynomial algorithm is available.
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o All the vertices V in the graph

@ A subset of E such that these edges form a tree
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o All the vertices V in the graph

@ A subset of E such that these edges form a tree

We consider connected undirected graphs, where the second condition for MST can be
replaced by

@ A maximal subset of E such that the subgraph has no cycles
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Overview Kruskal Huffman Compression Minimal Spanning Tree Kruskal’s Algorithm

Spanning Tree

A subgraph of a graph G = (V, E) that includes:
o All the vertices V in the graph

@ A subset of E such that these edges form a tree

We consider connected undirected graphs, where the second condition for MST can be

replaced by

@ A maximal subset of E such that the subgraph has no cycles

@ A subset of E with |V| — 1 edges such that the subgraph is connected
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Overview Kruskal Huffman Compression Minimal Spanning Tree Kruskal’s Algorithm

Spanning Tree

A subgraph of a graph G = (V, E) that includes:
o All the vertices V in the graph

@ A subset of E such that these edges form a tree

We consider connected undirected graphs, where the second condition for MST can be

replaced by

@ A maximal subset of E such that the subgraph has no cycles
@ A subset of E with |V| — 1 edges such that the subgraph is connected

@ A subset of E such that there is a unique path between any two vertices in the
subgraph
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Overview Kruskal Huffman Compression Minimal Spanning Tree Kruskal’s Algorithm

Minimal Spanning Tree (MST)

A spanning tree with minimal cost. Formally:

Input: An undirected graph G = (V, E), a cost function w : E — R.

Output: Atree T = (V, E') such that £ C E that minimizes ), w(e)
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Overview Kruskal Huffman Compression Minimal Spanning Tree Kruskal’s Algorithm

Kruskal’s algorithm

e Start with the empty set of edges

@ Repeat: add lightest edge that doesn’t create a cycle
Adds edges B—C, C—D, C—F, A—D, E—F
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X=¢
Q = priorityQueue(E) // from min to max weight

while Q is nonempty
e = deleteMin(Q)
if e connects two disconnected components in (V, X) X=XU{e}
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Induction Hypothesis: The first i edges selected by Kruskal’s are included in some MST T
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Induction Hypothesis: The first i edges selected by Kruskal’s are included in some MST T

Base case: trivial — the empty set of edges is always in any MST.
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Overview Kruskal Huffman Compression Minimal Spanning Tree Kruskal’s Algorithm

Kruskal’s: Correctness (by induction)

Induction Hypothesis: The first i edges selected by Kruskal’s are included in some MST T
Base case: trivial — the empty set of edges is always in any MST.

Induction step: Show that i+ 1th edge chosen by Kruskal’s is in the MST T

Proof: Let e = (v, w) be the edge chosen at i + 1th step of Kruskal’s.

@ Case 1: e € T: The induction step is done.
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Induction Hypothesis: The first i edges selected by Kruskal’s are included in some MST T
Base case: trivial — the empty set of edges is always in any MST.

Induction step: Show that i+ 1th edge chosen by Kruskal’s is in the MST T

Proof: Let e = (v, w) be the edge chosen at i + 1th step of Kruskal’s.

@ Case 1: e € T: The induction step is done.

@ Case 2: e & T: T is a spanning tree: must include a unique path from v to w

31/67



Overview Kruskal Huffman Compression Minimal Spanning Tree Kruskal’s Algorithm

Kruskal’s: Correctness (by induction)

Induction Hypothesis: The first i edges selected by Kruskal’s are included in some MST T
Base case: trivial — the empty set of edges is always in any MST.

Induction step: Show that i+ 1th edge chosen by Kruskal’s is in the MST T

Proof: Let e = (v, w) be the edge chosen at i + 1th step of Kruskal’s.

@ Case 1: e € T: The induction step is done.

@ Case 2: e & T: T is a spanning tree: must include a unique path from v to w

o At least one edge €’ on this path is not in X, the set of edges chosen in the first i steps by
Kruskal’s. (Otherwise, v and w will be connected in X, so Kruskal’s won’t chose e.)
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Kruskal’s: Correctness (by induction)

Induction Hypothesis: The first i edges selected by Kruskal’s are included in some MST T
Base case: trivial — the empty set of edges is always in any MST.

Induction step: Show that i+ 1th edge chosen by Kruskal’s is in the MST T

Proof: Let e = (v, w) be the edge chosen at i + 1th step of Kruskal’s.

@ Case 1: e € T: The induction step is done.

@ Case 2: e ¢ T: T is a spanning tree: must include a unique path from v to w

o At least one edge €’ on this path is not in X, the set of edges chosen in the first i steps by
Kruskal’s. (Otherwise, v and w will be connected in X, so Kruskal’s won’t chose e.)
o Since neither e nor € are in X, and Kruskal’s chose e, w(e') > w(e).
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Kruskal’s: Correctness (by induction)

Induction Hypothesis: The first i edges selected by Kruskal’s are included in some MST T
Base case: trivial — the empty set of edges is always in any MST.

Induction step: Show that i+ 1th edge chosen by Kruskal’s is in the MST T
Proof: Let e = (v, w) be the edge chosen at i + 1th step of Kruskal’s.

@ Case 1: e € T: The induction step is done.
@ Case 2: e ¢ T: T is a spanning tree: must include a unique path from v to w
o At least one edge €’ on this path is not in X, the set of edges chosen in the first i steps by
Kruskal’s. (Otherwise, v and w will be connected in X, so Kruskal’s won’t chose e.)
o Since neither e nor € are in X, and Kruskal’s chose e, w(e') > w(e).
o Replace € by ein T to get another spanning tree T'. Either w(T’) < w(T), a contradiction
to the assumption T is minimal; or w(T’) = w(T), and we have another MST T’
consistent with X U {e}. In both cases, we have completed the induction step. ]
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Kruskal’s: Runtime complexity

MST(V, E, w)
X=¢
Q = priorityQueue(E, w) // from min to max weight
while Q is nonempty
e = deleteMin(Q)
if e connects two disconnected components in (V, X) X=XU{e}

@ Priority queue: O(log |E|) = O(log V) per operation
@ Connectivity test: O(log V) per check using a disjoint set data structure

Thus, for |E| iterations, we have a runtime of O(|E| log |V/|)
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MST: Applications

Network design: Communication networks, transportation networks, electrical grid,

oil/water pipelines, ...

Clustering: Application of minimum spanning forest (stop when |X| = |V| — k to get k
clusters)

Broadcasting: Spanning tree protocol in Ethernets
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For an event e that occurs with probability p, its information content is given by
I(e) = —logp
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Overview Kruskal Huffman Compression

Information Theory and Coding

Information content
For an event e that occurs with probability p, its information content is given by

I(e) = —logp

@ “surprise factor” — low probability event conveys more information; an event that is

almost always likely (p ~ 1) conveys no information.

@ Information content adds up: for two events e; and e,, their combined information

content is —(log p; + log p,)
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For a discrete random variable X that can take a value x; with probability p;, its entropy

is defined as the expectation (“weighted average”) over the information content of x;:

H(X) = E[I(X)] = —Zpi log p;
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Information theory: Entropy

Information entropy |
For a discrete random variable X that can take a value x; with probability p;, its entropy

is defined as the expectation (“weighted average”) over the information content of x;:

H(X) = E[I(X Zpllogp,

e Entropy is a measure of uncertainty

e Plays a fundamental role in many areas, including coding theory and machine

learning.
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A random variable X denoting chars in an alphabet ¥ = {xq,..., x,}

@ cannot be encoded in fewer than H(X) bits.
@ can be encoded using at most H(X) + 1 bits
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A random variable X denoting chars in an alphabet ¥ = {xq,..., x,}

@ cannot be encoded in fewer than H(X) bits.
@ can be encoded using at most H(X) + 1 bits

@ The first part of this theorem sets a lower bound, regardless of how clever the encoding is.
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Optimal code length

Shannon’s source coding theorem

A random variable X denoting chars in an alphabet ¥ = {x1, ..., xp}

@ cannot be encoded in fewer than H(X) bits.
@ can be encoded using at most H(X) + 1 bits

@ The first part of this theorem sets a lower bound, regardless of how clever the encoding is.

@ Surprisingly simple proof for such a fundamental theorem! (See Wikipedia.)
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Optimal code length

Shannon’s source coding theorem

A random variable X denoting chars in an alphabet ¥ = {x1, ..., xp}

cannot be encoded in fewer than H(X) bits.

can be encoded using at most H(X) + 1 bits

(]

The first part of this theorem sets a lower bound, regardless of how clever the encoding is.

Surprisingly simple proof for such a fundamental theorem! (See Wikipedia.)

@ Huffman coding: an algorithm that achieves this bound
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Let X = {A, B, C, D} with probabilities 0.55,0.02,0.15, 0.28.

o If we use a fixed-length code, each character will use 2-bits.

o Alternatively, use a variable length code
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Variable-length encoding

Let ¥ = {A, B, C, D} with probabilities 0.55,0.02,0.15, 0.28.

o If we use a fixed-length code, each character will use 2-bits.

o Alternatively, use a variable length code
o Let us use as many bits as the information content of a character
e Auses 1bit, B uses 6 bits, C uses 3 bits, and D uses 2 bits.
e You get an average saving of 15%

0.55% 14 0.02% 6+ 0.15 % 3+ 0.28 x 2 = 1.68 bits
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Variable-length encoding

Let ¥ = {A, B, C, D} with probabilities 0.55,0.02,0.15, 0.28.
o If we use a fixed-length code, each character will use 2-bits.
o Alternatively, use a variable length code

o Let us use as many bits as the information content of a character

A uses 1 bit, B uses 6 bits, C uses 3 bits, and D uses 2 bits.

e You get an average saving of 15%

0.55% 14 0.02% 6+ 0.15 % 3 4+ 0.28 x 2 = 1.68 bits

Lower bound (entropy)

—(.5log, .5+ .02log, .02 + .14 log, .14 + .27 log, .27) = 1.51 bits
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Variable-length encoding

Let ¥ = {A, B, C, D} with probabilities 0.55,0.02,0.15, 0.28.
o Let us try fixing the codes, not just their
lengths:
A=0,D=11,C = 101, B = 100.

e Note: enough to assign 3 bits to B, not 6. So,
average coding size reduces to 1.62. s oo
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Variable-length encoding

Let ¥ = {A, B, C, D} with probabilities 0.55,0.02,0.15, 0.28.

o Let us try fixing the codes, not just their
lengths:

A=0,D=11,C = 101, B = 100.

e Note: enough to assign 3 bits to B, not 6. So,
average coding size reduces to 1.62. s oo

Prefix encoding
@ No code is a prefix of another.
@ Necessary property to enable decoding.

@ Every such encoding can be represented using a full binary tree (either 0 or 2
children for every node)
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Huffman encoding

@ Build the prefix tree bottom-up

@ Start with a node whose children are codewords

¢; and ¢, that occur least often

@ Remove ¢; and ¢, from alphabet, replace with ¢

that occurs with frequency f; + f,

@ Recurse
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Huffman encoding

@ Build the prefix tree bottom-up

@ Start with a node whose children are codewords

¢; and ¢, that occur least often

@ Remove ¢; and ¢, from alphabet, replace with ¢

that occurs with frequency f; + f,

@ Recurse

e How to make this algorithm fast?

@ What is its complexity?
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Huffman encoding: Example

(52) D D
e} (59) 20) (5]
(173 (5) () D
O HEN© (o)
G2) G2)
2 2 2 1

This sentence contains three a’s, three ’s, two d’s, twenty-six €’s, five f’s, three g’s, eight h’s, thirteen i’s, two I’s, sixteen n’s, nine
0’s, six I'’s, twenty-seven s’s, twenty-two t’s, two u’s, five v’s, eight w’s, four x’s, five y’s, and only one z. Images from Jeff Erickson’s

“Algorithms”

Uses about 650 bits, vs 850 for fixed-length (5-bit) code.
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@ Crux of the proof: Greedy choice property

e Familiar exchange argument
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Huffman encoding: Optimality

@ Crux of the proof: Greedy choice property

@ Familiar exchange argument
e Suppose the optimal prefix tree does not use longest path for two least frequent

codewords ¢; and ¢,
e Show that by exchanging ¢; with the codeword using the longest path in the optimal tree,

you can reduce the cost of the “optimal code” — a contradiction
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Huffman encoding: Optimality

@ Crux of the proof: Greedy choice property

@ Familiar exchange argument
e Suppose the optimal prefix tree does not use longest path for two least frequent
codewords ¢; and ¢,
e Show that by exchanging ¢; with the codeword using the longest path in the optimal tree,
you can reduce the cost of the “optimal code” — a contradiction

e Same argument holds for ¢,

55/67



@ Document compression

@ Signal encoding

@ As part of other compression algorithms (MP3, gzip, PKZIP, JPEG, ...)
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@ How much compression can we get using Huffman?
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o It depends on what we mean by a codeword!
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@ How much compression can we get using Huffman?

o It depends on what we mean by a codeword!
o If they are English characters, effect is relatively small

o if they are English words, or better, sentences, then much higher compression is possible
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Lossless Compression

@ How much compression can we get using Huffman?
o It depends on what we mean by a codeword!
o If they are English characters, effect is relatively small
o if they are English words, or better, sentences, then much higher compression is possible
e To use words/sentences as codewords, we probably need to construct
document-specific codebook

o Larger alphabet size implies larger codebooks!

o Need to consider the combined size of codebook plus the encoded document
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Lossless Compression

@ How much compression can we get using Huffman?
o It depends on what we mean by a codeword!
o If they are English characters, effect is relatively small
o if they are English words, or better, sentences, then much higher compression is possible
e To use words/sentences as codewords, we probably need to construct
document-specific codebook

o Larger alphabet size implies larger codebooks!

o Need to consider the combined size of codebook plus the encoded document

@ Can the codebook be constructed on-the-fly?

o Lempel-Ziv compression algorithms (gzip)
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Key Idea: Use preceding W-bytes as the codebook (“sliding window”, up to 32KB in
gzip)
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gzip Algorithm [Lempel-Ziv 1977]

Key Idea: Use preceding W-bytes as the codebook (“sliding window”, up to 32KB in
gzip)

Encoding:
@ Strings previously seen in the window are replaced by the pair (offset, length)

o Need to find the longest match for the current string
e Matches should have a minimum length, or else they will be emitted as literals

o Encode offset and length using Huffman encoding
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gzip Algorithm [Lempel-Ziv 1977]

Key Idea: Use preceding W-bytes as the codebook (“sliding window”, up to 32KB in
gzip)

Encoding:
@ Strings previously seen in the window are replaced by the pair (offset, length)
o Need to find the longest match for the current string
e Matches should have a minimum length, or else they will be emitted as literals

o Encode offset and length using Huffman encoding

Decoding: Interpret (offset, length) using the same window of W-bytes of preceding
text. (Much faster than encoding.)
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Greedy Algorithms: Summary

@ One of the strategies used to solve optimization problems

o Frequently, locally optimal choices are NOT globally optimal, so use with a great
deal of care.

o Always need to prove optimality. Proof typically relies on greedy choice property, usually

established by an “exchange” argument, and optimal substructure.
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Greedy Algorithms: Summary

@ One of the strategies used to solve optimization problems

o Frequently, locally optimal choices are NOT globally optimal, so use with a great
deal of care.
o Always need to prove optimality. Proof typically relies on greedy choice property, usually

established by an “exchange” argument, and optimal substructure.

e Examples
e MST and clustering
e Shortest path

e Huffman encoding
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