
Intro DFS DAGs SCC BFS Paths and Matrices

CSE 548: Algorithms
Basic Graph Algorithms

R. Sekar

1 / 46

Intro DFS DAGs SCC BFS Paths and Matrices Overview

Overview

Graphs provide a concise representation of a range problems

Map coloring – more generally, resource contention problems
Networks — communication, traffic, social, biological, ...Figure 3.1 (a) A map and (b) its graph.

(a) (b)

23
45

6

12

1

8

7

9

13
11

10

necessary to use edges with directions on them. There can be directed edges e from x to y
(written e = (x, y)), or from y to x (written (y, x)), or both. A particularly enormous example
of a directed graph is the graph of all links in the World Wide Web. It has a vertex for each
site on the Internet, and a directed edge (u, v) whenever site u has a link to site v: in total,
billions of nodes and edges! Understanding even the most basic connectivity properties of the
Web is of great economic and social interest. Although the size of this problem is daunting,
we will soon see that a lot of valuable information about the structure of a graph can, happily,
be determined in just linear time.

3.1.1 How is a graph represented?
We can represent a graph by an adjacency matrix; if there are n = |V | vertices v1, . . . , vn, this
is an n × n array whose (i, j)th entry is

aij =

�
1 if there is an edge from vi to vj

0 otherwise.

For undirected graphs, the matrix is symmetric since an edge {u, v} can be taken in either
direction.
The biggest convenience of this format is that the presence of a particular edge can be

checked in constant time, with just one memory access. On the other hand the matrix takes
up O(n2) space, which is wasteful if the graph does not have very many edges.
An alternative representation, with size proportional to the number of edges, is the adja-

cency list. It consists of |V | linked lists, one per vertex. The linked list for vertex u holds the
names of vertices to which u has an outgoing edge—that is, vertices v for which (u, v) ∈ E.

88

2 / 46

Intro DFS DAGs SCC BFS Paths and Matrices Overview

Definition and Representations

Definition

A graph G = (V , E), where V is a set of vertices, and E a set of edges.

An edge e of the form (v1, v2) is said to span vertices v1 and v2.

The edges in a directed graph are directed.

A G′ = (V ′, E ′) is called a subgraph of G if V ′ ⊆ V and E ′ = {(u, v) ∈ E|u, v ∈ V ′}.

Adjacency matrix

A graph (V = {v1, . . . , vn}, E) can be

represented by an n× n matrix a, where

aij = 1 iff (vi, vj) ∈ E

Adjacency list

Each vertex v is associated with a

linked list consisting of all vertices u

such that (v, u) ∈ E .

Adjacency matrix uses O(n2) storage; adjacency list uses O(|V |+ |E|) storage.

3 / 46

Intro DFS DAGs SCC BFS Paths and Matrices Overview

Definition and Representations

Definition

A graph G = (V , E), where V is a set of vertices, and E a set of edges.

An edge e of the form (v1, v2) is said to span vertices v1 and v2.

The edges in a directed graph are directed.

A G′ = (V ′, E ′) is called a subgraph of G if V ′ ⊆ V and E ′ = {(u, v) ∈ E|u, v ∈ V ′}.

Adjacency matrix

A graph (V = {v1, . . . , vn}, E) can be

represented by an n× n matrix a, where

aij = 1 iff (vi, vj) ∈ E

Adjacency list

Each vertex v is associated with a

linked list consisting of all vertices u

such that (v, u) ∈ E .

Adjacency matrix uses O(n2) storage; adjacency list uses O(|V |+ |E|) storage.

4 / 46

Intro DFS DAGs SCC BFS Paths and Matrices Overview

Definition and Representations

Definition

A graph G = (V , E), where V is a set of vertices, and E a set of edges.

An edge e of the form (v1, v2) is said to span vertices v1 and v2.

The edges in a directed graph are directed.

A G′ = (V ′, E ′) is called a subgraph of G if V ′ ⊆ V and E ′ = {(u, v) ∈ E|u, v ∈ V ′}.

Adjacency matrix

A graph (V = {v1, . . . , vn}, E) can be

represented by an n× n matrix a, where

aij = 1 iff (vi, vj) ∈ E

Adjacency list

Each vertex v is associated with a

linked list consisting of all vertices u

such that (v, u) ∈ E .

Adjacency matrix uses O(n2) storage; adjacency list uses O(|V |+ |E|) storage.

5 / 46

Intro DFS DAGs SCC BFS Paths and Matrices Overview

Definition and Representations

Definition

A graph G = (V , E), where V is a set of vertices, and E a set of edges.

An edge e of the form (v1, v2) is said to span vertices v1 and v2.

The edges in a directed graph are directed.

A G′ = (V ′, E ′) is called a subgraph of G if V ′ ⊆ V and E ′ = {(u, v) ∈ E|u, v ∈ V ′}.

Adjacency matrix

A graph (V = {v1, . . . , vn}, E) can be

represented by an n× n matrix a, where

aij = 1 iff (vi, vj) ∈ E

Adjacency list

Each vertex v is associated with a

linked list consisting of all vertices u

such that (v, u) ∈ E .

Adjacency matrix uses O(n2) storage; adjacency list uses O(|V |+ |E|) storage.

6 / 46

Intro DFS DAGs SCC BFS Paths and Matrices Overview

Definition and Representations

Definition

A graph G = (V , E), where V is a set of vertices, and E a set of edges.

An edge e of the form (v1, v2) is said to span vertices v1 and v2.

The edges in a directed graph are directed.

A G′ = (V ′, E ′) is called a subgraph of G if V ′ ⊆ V and E ′ = {(u, v) ∈ E|u, v ∈ V ′}.

Adjacency matrix

A graph (V = {v1, . . . , vn}, E) can be

represented by an n× n matrix a, where

aij = 1 iff (vi, vj) ∈ E

Adjacency list

Each vertex v is associated with a

linked list consisting of all vertices u

such that (v, u) ∈ E .

Adjacency matrix uses O(n2) storage; adjacency list uses O(|V |+ |E|) storage.
7 / 46

Intro DFS DAGs SCC BFS Paths and Matrices

Depth-First Search (DFS)
A technique for traversing all vertices in the graph.

Very versatile, forms the linchpin of many graph algorithms.

dfs(V , E)

foreach v ∈ V do visited[v] = false
foreach v ∈ V do
if not visited[v] then explore(V , E, v)

explore(V , E, v)

visited[v] = true
previsit(v) /*A placeholder for now*/
foreach (v, u) ∈ E do
if not visited[u] then explore(V , E, u)

postvisit(v) /*Another placeholder*/

8 / 46

Intro DFS DAGs SCC BFS Paths and Matrices

Depth-First Search (DFS)
A technique for traversing all vertices in the graph.

Very versatile, forms the linchpin of many graph algorithms.

dfs(V , E)

foreach v ∈ V do visited[v] = false
foreach v ∈ V do
if not visited[v] then explore(V , E, v)

explore(V , E, v)

visited[v] = true
previsit(v) /*A placeholder for now*/
foreach (v, u) ∈ E do
if not visited[u] then explore(V , E, u)

postvisit(v) /*Another placeholder*/

9 / 46

Intro DFS DAGs SCC BFS Paths and Matrices

Depth-First Search (DFS)
A technique for traversing all vertices in the graph.

Very versatile, forms the linchpin of many graph algorithms.

dfs(V , E)

foreach v ∈ V do visited[v] = false
foreach v ∈ V do
if not visited[v] then explore(V , E, v)

explore(V , E, v)

visited[v] = true
previsit(v) /*A placeholder for now*/
foreach (v, u) ∈ E do
if not visited[u] then explore(V , E, u)

postvisit(v) /*Another placeholder*/
10 / 46

Intro DFS DAGs SCC BFS Paths and Matrices

Graphs, Mazes and DFS
Figure 3.2 Exploring a graph is rather like navigating a maze.

A

C

B

F

D

H I J

K

E

G

L

H

G

DA

C

F
K
L

J

I

B

E

Figure 3.3 Finding all nodes reachable from a particular node.
procedure explore(G, v)
Input: G = (V,E) is a graph; v ∈ V
Output: visited(u) is set to true for all nodes u reachable from v

visited(v) = true
previsit(v)
for each edge (v, u) ∈ E:

if not visited(u): explore(u)
postvisit(v)

and whenever you arrive at any junction (vertex) there are a variety of passages (edges) you
can follow. A careless choice of passages might lead you around in circles or might cause you
to overlook some accessible part of the maze. Clearly, you need to record some intermediate
information during exploration.
This classic challenge has amused people for centuries. Everybody knows that all you

need to explore a labyrinth is a ball of string and a piece of chalk. The chalk prevents looping,
by marking the junctions you have already visited. The string always takes you back to the
starting place, enabling you to return to passages that you previously saw but did not yet
investigate.
How can we simulate these two primitives, chalk and string, on a computer? The chalk

marks are easy: for each vertex, maintain a Boolean variable indicating whether it has been
visited already. As for the ball of string, the correct cyberanalog is a stack. After all, the exact
role of the string is to offer two primitive operations—unwind to get to a new junction (the
stack equivalent is to push the new vertex) and rewind to return to the previous junction (pop
the stack).
Instead of explicitly maintaining a stack, we will do so implicitly via recursion (which

is implemented using a stack of activation records). The resulting algorithm is shown in

90

If a maze is represented as a graph, then DFS of the graph amounts to an exploration
and mapping of the maze.

11 / 46

Intro DFS DAGs SCC BFS Paths and Matrices

A graph and its DFS tree
Figure 3.2 Exploring a graph is rather like navigating a maze.

A

C

B

F

D

H I J

K

E

G

L

H

G

DA

C

F
K
L

J

I

B

E

Figure 3.3 Finding all nodes reachable from a particular node.
procedure explore(G, v)
Input: G = (V,E) is a graph; v ∈ V
Output: visited(u) is set to true for all nodes u reachable from v

visited(v) = true
previsit(v)
for each edge (v, u) ∈ E:

if not visited(u): explore(u)
postvisit(v)

and whenever you arrive at any junction (vertex) there are a variety of passages (edges) you
can follow. A careless choice of passages might lead you around in circles or might cause you
to overlook some accessible part of the maze. Clearly, you need to record some intermediate
information during exploration.
This classic challenge has amused people for centuries. Everybody knows that all you

need to explore a labyrinth is a ball of string and a piece of chalk. The chalk prevents looping,
by marking the junctions you have already visited. The string always takes you back to the
starting place, enabling you to return to passages that you previously saw but did not yet
investigate.
How can we simulate these two primitives, chalk and string, on a computer? The chalk

marks are easy: for each vertex, maintain a Boolean variable indicating whether it has been
visited already. As for the ball of string, the correct cyberanalog is a stack. After all, the exact
role of the string is to offer two primitive operations—unwind to get to a new junction (the
stack equivalent is to push the new vertex) and rewind to return to the previous junction (pop
the stack).
Instead of explicitly maintaining a stack, we will do so implicitly via recursion (which

is implemented using a stack of activation records). The resulting algorithm is shown in

90

Figure 3.4 The result of explore(A) on the graph of Figure 3.2.

I

E

J

C

F

B

A

D

G

H

Figure 3.5 Depth-first search.
procedure dfs(G)

for all v ∈ V :
visited(v) = false

for all v ∈ V :
if not visited(v): explore(v)

This loop takes a different amount of time for each vertex, so let’s consider all vertices to-
gether. The total work done in step 1 is then O(|V |). In step 2, over the course of the entire
DFS, each edge {x, y} ∈ E is examined exactly twice, once during explore(x) and once dur-
ing explore(y). The overall time for step 2 is therefore O(|E|) and so the depth-first search
has a running time of O(|V | + |E|), linear in the size of its input. This is as efficient as we
could possibly hope for, since it takes this long even just to read the adjacency list.
Figure 3.6 shows the outcome of depth-first search on a 12-node graph, once again break-

ing ties alphabetically (ignore the pairs of numbers for the time being). The outer loop of DFS
calls explore three times, on A, C, and finally F . As a result, there are three trees, each
rooted at one of these starting points. Together they constitute a forest.

3.2.3 Connectivity in undirected graphs
An undirected graph is connected if there is a path between any pair of vertices. The graph
of Figure 3.6 is not connected because, for instance, there is no path from A to K. However, it
does have three disjoint connected regions, corresponding to the following sets of vertices:

{A,B,E, I, J} {C,D,G,H,K,L} {F}

92

DFS uses O(|V |) space and O(|E|+ |V |) time.

12 / 46

Intro DFS DAGs SCC BFS Paths and Matrices

DFS and Connected ComponentsFigure 3.6 (a) A 12-node graph. (b) DFS search forest.

(a)
A B C D

E F G H

I J K L

(b) A

B E

I

J G

K

FC

D

H

L

1,10

2,3

4,9

5,8

6,7

11,22 23,24

12,21

13,20

14,17

15,16

18,19

These regions are called connected components: each of them is a subgraph that is internally
connected but has no edges to the remaining vertices. When explore is started at a particular
vertex, it identifies precisely the connected component containing that vertex. And each time
the DFS outer loop calls explore, a new connected component is picked out.
Thus depth-first search is trivially adapted to check if a graph is connected and, more

generally, to assign each node v an integer ccnum[v] identifying the connected component to
which it belongs. All it takes is

procedure previsit(v)
ccnum[v] = cc

where cc needs to be initialized to zero and to be incremented each time the DFS procedure
calls explore.

3.2.4 Previsit and postvisit orderings
We have seen how depth-first search—a few unassuming lines of code—is able to uncover the
connectivity structure of an undirected graph in just linear time. But it is far more versatile
than this. In order to stretch it further, we will collect a little more information during the ex-
ploration process: for each node, we will note down the times of two important events, the mo-
ment of first discovery (corresponding to previsit) and that of final departure (postvisit).
Figure 3.6 shows these numbers for our earlier example, in which there are 24 events. The
fifth event is the discovery of I. The 21st event consists of leaving D behind for good.
One way to generate arrays pre and postwith these numbers is to define a simple counter

clock, initially set to 1, which gets updated as follows.

procedure previsit(v)
pre[v] = clock
clock = clock + 1

93

A connected component of a graph is a maximal subgraph where there is path between
any two vertices in the subgraph, i.e., it is a maximal connected subgraph.

13 / 46

Intro DFS DAGs SCC BFS Paths and Matrices

DFS Numbering

Associate post and pre numbers with each visited node by defining previsit and
postvisit

previsit(v)

pre[v] = clock

clock++

postvisit(v)

post[v] = clock

clock++

Property

For any two vertices u and v, the intervals [pre[u], post[u]] and [pre[v], post[v]] are either

disjoint, or one is contained entirely within another.

14 / 46

Intro DFS DAGs SCC BFS Paths and Matrices

DFS Numbering

Associate post and pre numbers with each visited node by defining previsit and
postvisit

previsit(v)

pre[v] = clock

clock++

postvisit(v)

post[v] = clock

clock++

Property

For any two vertices u and v, the intervals [pre[u], post[u]] and [pre[v], post[v]] are either

disjoint, or one is contained entirely within another.

15 / 46

Intro DFS DAGs SCC BFS Paths and Matrices

DFS Numbering

Associate post and pre numbers with each visited node by defining previsit and
postvisit

previsit(v)

pre[v] = clock

clock++

postvisit(v)

post[v] = clock

clock++

Property

For any two vertices u and v, the intervals [pre[u], post[u]] and [pre[v], post[v]] are either

disjoint, or one is contained entirely within another.

16 / 46

Intro DFS DAGs SCC BFS Paths and Matrices

DFS of Directed GraphFigure 3.7 DFS on a directed graph.

AB C

F DE

G H

A

H

B C

E D

F

G

12,15

13,14

1,16

2,11

4,7

5,6

8,9

3,10

procedure postvisit(v)
post[v] = clock
clock = clock + 1

These timings will soon take on larger significance. Meanwhile, you might have noticed from
Figure 3.4 that:

Property For any nodes u and v, the two intervals [pre(u),post(u)] and [pre(v),post(v)] are
either disjoint or one is contained within the other.

Why? Because [pre(u),post(u)] is essentially the time during which vertex u was on the
stack. The last-in, first-out behavior of a stack explains the rest.

3.3 Depth-first search in directed graphs

3.3.1 Types of edges
Our depth-first search algorithm can be run verbatim on directed graphs, taking care to tra-
verse edges only in their prescribed directions. Figure 3.7 shows an example and the search
tree that results when vertices are considered in lexicographic order.
In further analyzing the directed case, it helps to have terminology for important relation-

ships between nodes of a tree. A is the root of the search tree; everything else is its descendant.
Similarly, E has descendants F , G, andH, and conversely, is an ancestor of these three nodes.
The family analogy is carried further: C is the parent of D, which is its child.
For undirected graphs we distinguished between tree edges and nontree edges. In the

directed case, there is a slightly more elaborate taxonomy:

94

17 / 46

Intro DFS DAGs SCC BFS Paths and Matrices

DFS and Edge Types
Tree edges are actually part of the DFS forest.

Forward edges lead from a node to a nonchild descendant
in the DFS tree.

Back edges lead to an ancestor in the DFS tree.

Cross edges lead to neither descendant nor ancestor; they
therefore lead to a node that has already been completely
explored (that is, already postvisited).

Ba
ck

Forward

Cross

Tree

A

B

C D

DFS tree

Figure 3.7 has two forward edges, two back edges, and two cross edges. Can you spot them?

Ancestor and descendant relationships, as well as edge types, can be read off directly
from pre and post numbers. Because of the depth-first exploration strategy, vertex u is an
ancestor of vertex v exactly in those cases where u is discovered first and v is discovered
during explore(u). This is to say pre(u) < pre(v) < post(v) < post(u), which we can
depict pictorially as two nested intervals:

u v v u

The case of descendants is symmetric, since u is a descendant of v if and only if v is an an-
cestor of u. And since edge categories are based entirely on ancestor-descendant relationships,
it follows that they, too, can be read off from pre and post numbers. Here is a summary of
the various possibilities for an edge (u, v):

pre/post ordering for (u, v) Edge type

u v v u
Tree/forward

v u u v
Back

v uv u
Cross

You can confirm each of these characterizations by consulting the diagram of edge types. Do
you see why no other orderings are possible?

3.3.2 Directed acyclic graphs
A cycle in a directed graph is a circular path v0 → v1 → v2 → · · · → vk → v0. Figure 3.7 has
quite a few of them, for example, B → E → F → B. A graph without cycles is acyclic. It turns
out we can test for acyclicity in linear time, with a single depth-first search.

95

Tree edges are actually part of the DFS forest.

Forward edges lead from a node to a nonchild descendant
in the DFS tree.

Back edges lead to an ancestor in the DFS tree.

Cross edges lead to neither descendant nor ancestor; they
therefore lead to a node that has already been completely
explored (that is, already postvisited).

Ba
ck

Forward

Cross

Tree

A

B

C D

DFS tree

Figure 3.7 has two forward edges, two back edges, and two cross edges. Can you spot them?

Ancestor and descendant relationships, as well as edge types, can be read off directly
from pre and post numbers. Because of the depth-first exploration strategy, vertex u is an
ancestor of vertex v exactly in those cases where u is discovered first and v is discovered
during explore(u). This is to say pre(u) < pre(v) < post(v) < post(u), which we can
depict pictorially as two nested intervals:

u v v u

The case of descendants is symmetric, since u is a descendant of v if and only if v is an an-
cestor of u. And since edge categories are based entirely on ancestor-descendant relationships,
it follows that they, too, can be read off from pre and post numbers. Here is a summary of
the various possibilities for an edge (u, v):

pre/post ordering for (u, v) Edge type

u v v u
Tree/forward

v u u v
Back

v uv u
Cross

You can confirm each of these characterizations by consulting the diagram of edge types. Do
you see why no other orderings are possible?

3.3.2 Directed acyclic graphs
A cycle in a directed graph is a circular path v0 → v1 → v2 → · · · → vk → v0. Figure 3.7 has
quite a few of them, for example, B → E → F → B. A graph without cycles is acyclic. It turns
out we can test for acyclicity in linear time, with a single depth-first search.

95

No cross edges in undirected graphs!

Back and forward edges merge
18 / 46

Intro DFS DAGs SCC BFS Paths and Matrices Topological Sort

Directed Acyclic Graphs (DAGs)

A directed graph that contains no cycles.
Often used to represent (acyclic) dependencies, partial orders,...

Property (DAGs and DFS)

A directed graph has a cycle iff its DFS reveals a back edge.

In a dag, every edge leads to a vertex with lower post number.

Every dag has at least one source and one sink.

19 / 46

Intro DFS DAGs SCC BFS Paths and Matrices Topological Sort

Topological Sort

A way to linearize DAGs while ensuring that for every vertex, all its ancestors appear
before itself.

Applications: spreadsheet recomputation of formulas, Make (and other compile/build
systems) and Task scheduling/project management.

20 / 46

Intro DFS DAGs SCC BFS Paths and Matrices Topological Sort

Topological Sort

topoSort(V , E)

while |V | ≠ 0
if there is a vertex v in V with in-degree of 0
output v
V = V − {v}; E = E − {e ∈ E|e is incident on v})

else output “graph is cyclic”; break

Chapter 6

Dynamic programming

In the preceding chapters we have seen some elegant design principles—such as divide-and-
conquer, graph exploration, and greedy choice—that yield definitive algorithms for a variety
of important computational tasks. The drawback of these tools is that they can only be used
on very specific types of problems. We now turn to the two sledgehammers of the algorithms
craft, dynamic programming and linear programming, techniques of very broad applicability
that can be invoked when more specialized methods fail. Predictably, this generality often
comes with a cost in efficiency.

6.1 Shortest paths in dags, revisited
At the conclusion of our study of shortest paths (Chapter 4), we observed that the problem is
especially easy in directed acyclic graphs (dags). Let’s recapitulate this case, because it lies at
the heart of dynamic programming.
The special distinguishing feature of a dag is that its nodes can be linearized; that is, they

can be arranged on a line so that all edges go from left to right (Figure 6.1). To see why
this helps with shortest paths, suppose we want to figure out distances from node S to the
other nodes. For concreteness, let’s focus on node D. The only way to get to it is through its
predecessors, B or C; so to find the shortest path toD, we need only compare these two routes:

dist(D) = min{dist(B) + 1,dist(C) + 3}.

A similar relation can be written for every node. If we compute these dist values in the

Figure 6.1 A dag and its linearization (topological ordering).

B

DC

A

S E
1

2

4 1

6

3 1

2

S C A B D E4 6

3

1

2

1

1

2

161

21 / 46

Intro DFS DAGs SCC BFS Paths and Matrices Topological Sort

Topological Sort

topoSort(V , E)

while |V | ≠ 0
if there is a vertex v in V with in-degree of 0
output v
V = V − {v}; E = E − {e ∈ E|e is incident on v})

else output “graph is cyclic”; break

Correctness:

If there is no vertex with in-degree 0, it is not a DAG

When the algorithm outputs v , it has already output v’s ancestors

Performance: What is the runtime? Can it be improved using DFS properties of DAGs?

22 / 46

Intro DFS DAGs SCC BFS Paths and Matrices Topological Sort

Topological Sort

topoSort(V , E)

while |V | ≠ 0
if there is a vertex v in V with in-degree of 0
output v
V = V − {v}; E = E − {e ∈ E|e is incident on v})

else output “graph is cyclic”; break

Correctness:

If there is no vertex with in-degree 0, it is not a DAG

When the algorithm outputs v , it has already output v’s ancestors

Performance: What is the runtime? Can it be improved using DFS properties of DAGs?
23 / 46

Intro DFS DAGs SCC BFS Paths and Matrices

Strongly Connected Components (SCC)

For directed graphs, SCCs are the equivalent of connected
components in undirected graphs.

Definition (SCC)

Two vertices u and v in a directed graph are connected if there is a

path from u to v and vice-versa.

A directed graph is strongly connected if any pair of vertices in the

graph are connected.

A subgraph of a directed graph is said to be an SCC if it is a maximal

subgraph that is strongly connected.

24 / 46

Intro DFS DAGs SCC BFS Paths and Matrices

SCC ExampleFigure 3.9 (a) A directed graph and its strongly connected components. (b) The meta-graph.

(a)
A

D E

C

F

B

HG

K

L

JI

(b)

A B,E C,F

D
J,K,L
G,H,I

3.4.2 An efficient algorithm
The decomposition of a directed graph into its strongly connected components is very infor-
mative and useful. It turns out, fortunately, that it can be found in linear time by making
further use of depth-first search. The algorithm is based on some properties we have already
seen but which we will now pinpoint more closely.

Property 1 If the explore subroutine is started at node u, then it will terminate precisely
when all nodes reachable from u have been visited.

Therefore, if we call explore on a node that lies somewhere in a sink strongly connected
component (a strongly connected component that is a sink in the meta-graph), then we will
retrieve exactly that component. Figure 3.9 has two sink strongly connected components.
Starting explore at node K, for instance, will completely traverse the larger of them and
then stop.
This suggests a way of finding one strongly connected component, but still leaves open two

major problems: (A) how do we find a node that we know for sure lies in a sink strongly con-
nected component and (B) how do we continue once this first component has been discovered?
Let’s start with problem (A). There is not an easy, direct way to pick out a node that is

guaranteed to lie in a sink strongly connected component. But there is a way to get a node in
a source strongly connected component.

Property 2 The node that receives the highest post number in a depth-first search must lie
in a source strongly connected component.

This follows from the following more general property.

Property 3 If C and C � are strongly connected components, and there is an edge from a node

98

25 / 46

Intro DFS DAGs SCC BFS Paths and Matrices

DAG of SCCs

Property

Every directed graph is a dag of its strongly connected components.Figure 3.9 (a) A directed graph and its strongly connected components. (b) The meta-graph.

(a)
A

D E

C

F

B

HG

K

L

JI

(b)

A B,E C,F

D
J,K,L
G,H,I

3.4.2 An efficient algorithm
The decomposition of a directed graph into its strongly connected components is very infor-
mative and useful. It turns out, fortunately, that it can be found in linear time by making
further use of depth-first search. The algorithm is based on some properties we have already
seen but which we will now pinpoint more closely.

Property 1 If the explore subroutine is started at node u, then it will terminate precisely
when all nodes reachable from u have been visited.

Therefore, if we call explore on a node that lies somewhere in a sink strongly connected
component (a strongly connected component that is a sink in the meta-graph), then we will
retrieve exactly that component. Figure 3.9 has two sink strongly connected components.
Starting explore at node K, for instance, will completely traverse the larger of them and
then stop.
This suggests a way of finding one strongly connected component, but still leaves open two

major problems: (A) how do we find a node that we know for sure lies in a sink strongly con-
nected component and (B) how do we continue once this first component has been discovered?
Let’s start with problem (A). There is not an easy, direct way to pick out a node that is

guaranteed to lie in a sink strongly connected component. But there is a way to get a node in
a source strongly connected component.

Property 2 The node that receives the highest post number in a depth-first search must lie
in a source strongly connected component.

This follows from the following more general property.

Property 3 If C and C � are strongly connected components, and there is an edge from a node

98

26 / 46

Intro DFS DAGs SCC BFS Paths and Matrices

Towards an Algorithm for Computing SCCs

Pick a sink SCC.

Output all nodes in this SCC.
We can just do a DFS starting from any node v in this SCC!
Because this is a sink SCC, this DFS cannot reach any other SCC, so will only output this SCC.

Delete these nodes from the graph and repeat the whole process.

But how do we find a node in the sink SCC?

27 / 46

Intro DFS DAGs SCC BFS Paths and Matrices

Towards an Algorithm for Computing SCCs

Pick a sink SCC.

Output all nodes in this SCC.
We can just do a DFS starting from any node v in this SCC!
Because this is a sink SCC, this DFS cannot reach any other SCC, so will only output this SCC.

Delete these nodes from the graph and repeat the whole process.

But how do we find a node in the sink SCC?

28 / 46

Intro DFS DAGs SCC BFS Paths and Matrices

Towards an Algorithm for Computing SCCs

Property

When explore(u) returns, it has visited all (and only) the nodes reachable from u.

If C and C′ are SCCs and there is an edge from C to C′ then:

the highest post number in C will be larger than the highest post number in C′.

Corollary

The node that receives the highest post number after DFS must be in a source SCC.

Property

For a graph G, let GR denote the graph formed by reversing every edge in G. Then

The SCCs of G and GR are identical.

A source SCC of GR is a sink SCC of G.

29 / 46

Intro DFS DAGs SCC BFS Paths and Matrices

Towards an Algorithm for Computing SCCs

Property

When explore(u) returns, it has visited all (and only) the nodes reachable from u.

If C and C′ are SCCs and there is an edge from C to C′ then:

the highest post number in C will be larger than the highest post number in C′.

Corollary

The node that receives the highest post number after DFS must be in a source SCC.

Property

For a graph G, let GR denote the graph formed by reversing every edge in G. Then

The SCCs of G and GR are identical.

A source SCC of GR is a sink SCC of G.

30 / 46

Intro DFS DAGs SCC BFS Paths and Matrices

Towards an Algorithm for Computing SCCs

Property

When explore(u) returns, it has visited all (and only) the nodes reachable from u.

If C and C′ are SCCs and there is an edge from C to C′ then:

the highest post number in C will be larger than the highest post number in C′.

Corollary

The node that receives the highest post number after DFS must be in a source SCC.

Property

For a graph G, let GR denote the graph formed by reversing every edge in G. Then

The SCCs of G and GR are identical.

A source SCC of GR is a sink SCC of G.
31 / 46

Intro DFS DAGs SCC BFS Paths and Matrices

An Algorithm for Computing SCCs

1. Construct GR from G by reversing every edge in the given graph G.

2. The node v with the highest post number is in a source SCC of GR.

So, v must be in a sink SCC of G.

3. Invoke explore(v) in G to output this sink SCC.

4. Delete these nodes from G and GR, and repeat from Step 2.

Can we do all this in linear time?

32 / 46

Intro DFS DAGs SCC BFS Paths and Matrices

An Algorithm for Computing SCCs

1. Construct GR from G by reversing every edge in the given graph G.

2. The node v with the highest post number is in a source SCC of GR.

So, v must be in a sink SCC of G.

3. Invoke explore(v) in G to output this sink SCC.

4. Delete these nodes from G and GR, and repeat from Step 2.

Can we do all this in linear time?

33 / 46

Intro DFS DAGs SCC BFS Paths and Matrices

Breadth-first Search (BFS)

Traverse the graph by “levels”

BFS(v) visits v first

Then it visits all immediate children of v

then it visits children of children of v , and so on.

As compared to DFS, BFS uses a queue (rather than a stack) to remember vertices
that still need to be explored

34 / 46

Intro DFS DAGs SCC BFS Paths and Matrices

Breadth-first Search (BFS)

Traverse the graph by “levels”

BFS(v) visits v first

Then it visits all immediate children of v

then it visits children of children of v , and so on.

As compared to DFS, BFS uses a queue (rather than a stack) to remember vertices
that still need to be explored

35 / 46

Intro DFS DAGs SCC BFS Paths and Matrices

BFS Algorithm

bfs(V , E, s)

foreach u ∈ V do visited[u] = false

q = {s}; visited[s] = true

while q is nonempty do
u = deque(q)

foreach edge (u, v) ∈ E do
if not visited[v] then
queue(q, v); visited[v] = true

36 / 46

Intro DFS DAGs SCC BFS Paths and Matrices

BFS Algorithm Illustration
Figure 4.2 A physical model of a graph.

B

E S

D C

A

S

D EC

B

A

Figure 4.3 Breadth-first search.
procedure bfs(G, s)
Input: Graph G = (V,E), directed or undirected; vertex s ∈ V
Output: For all vertices u reachable from s, dist(u) is set

to the distance from s to u.

for all u ∈ V :
dist(u) = ∞

dist(s) = 0
Q = [s] (queue containing just s)
while Q is not empty:

u = eject(Q)
for all edges (u, v) ∈ E:

if dist(v) = ∞:
inject(Q, v)
dist(v) = dist(u) + 1

4.2 Breadth-first search
In Figure 4.2, the lifting of s partitions the graph into layers: s itself, the nodes at distance
1 from it, the nodes at distance 2 from it, and so on. A convenient way to compute distances
from s to the other vertices is to proceed layer by layer. Once we have picked out the nodes
at distance 0, 1, 2, . . . , d, the ones at d + 1 are easily determined: they are precisely the as-yet-
unseen nodes that are adjacent to the layer at distance d. This suggests an iterative algorithm
in which two layers are active at any given time: some layer d, which has been fully identified,
and d + 1, which is being discovered by scanning the neighbors of layer d.
Breadth-first search (BFS) directly implements this simple reasoning (Figure 4.3). Ini-

tially the queue Q consists only of s, the one node at distance 0. And for each subsequent
distance d = 1, 2, 3, . . ., there is a point in time at which Q contains all the nodes at distance
d and nothing else. As these nodes are processed (ejected off the front of the queue), their
as-yet-unseen neighbors are injected into the end of the queue.
Let’s try out this algorithm on our earlier example (Figure 4.1) to confirm that it does the

110

Figure 4.4 The result of breadth-first search on the graph of Figure 4.1.

Order Queue contents
of visitation after processing node

[S]
S [A C D E]
A [C D E B]
C [D E B]
D [E B]
E [B]
B []

DA

B

C E

S

right thing. If S is the starting point and the nodes are ordered alphabetically, they get visited
in the sequence shown in Figure 4.4. The breadth-first search tree, on the right, contains the
edges through which each node is initially discovered. Unlike the DFS tree we saw earlier, it
has the property that all its paths from S are the shortest possible. It is therefore a shortest-
path tree.

Correctness and efficiency
We have developed the basic intuition behind breadth-first search. In order to check that
the algorithm works correctly, we need to make sure that it faithfully executes this intuition.
What we expect, precisely, is that

For each d = 0, 1, 2, . . ., there is a moment at which (1) all nodes at distance ≤ d
from s have their distances correctly set; (2) all other nodes have their distances
set to∞; and (3) the queue contains exactly the nodes at distance d.

This has been phrased with an inductive argument in mind. We have already discussed both
the base case and the inductive step. Can you fill in the details?

The overall running time of this algorithm is linear, O(|V | + |E|), for exactly the same
reasons as depth-first search. Each vertex is put on the queue exactly once, when it is first en-
countered, so there are 2 |V | queue operations. The rest of the work is done in the algorithm’s
innermost loop. Over the course of execution, this loop looks at each edge once (in directed
graphs) or twice (in undirected graphs), and therefore takes O(|E|) time.

Now that we have both BFS and DFS before us: how do their exploration styles compare?
Depth-first search makes deep incursions into a graph, retreating only when it runs out of new
nodes to visit. This strategy gives it the wonderful, subtle, and extremely useful properties
we saw in the Chapter 3. But it also means that DFS can end up taking a long and convoluted
route to a vertex that is actually very close by, as in Figure 4.1. Breadth-first search makes
sure to visit vertices in increasing order of their distance from the starting point. This is a
broader, shallower search, rather like the propagation of a wave upon water. And it is achieved
using almost exactly the same code as DFS—but with a queue in place of a stack.

111

37 / 46

Intro DFS DAGs SCC BFS Paths and Matrices

BFS Algorithm Illustration
Figure 4.2 A physical model of a graph.

B

E S

D C

A

S

D EC

B

A

Figure 4.3 Breadth-first search.
procedure bfs(G, s)
Input: Graph G = (V,E), directed or undirected; vertex s ∈ V
Output: For all vertices u reachable from s, dist(u) is set

to the distance from s to u.

for all u ∈ V :
dist(u) = ∞

dist(s) = 0
Q = [s] (queue containing just s)
while Q is not empty:

u = eject(Q)
for all edges (u, v) ∈ E:

if dist(v) = ∞:
inject(Q, v)
dist(v) = dist(u) + 1

4.2 Breadth-first search
In Figure 4.2, the lifting of s partitions the graph into layers: s itself, the nodes at distance
1 from it, the nodes at distance 2 from it, and so on. A convenient way to compute distances
from s to the other vertices is to proceed layer by layer. Once we have picked out the nodes
at distance 0, 1, 2, . . . , d, the ones at d + 1 are easily determined: they are precisely the as-yet-
unseen nodes that are adjacent to the layer at distance d. This suggests an iterative algorithm
in which two layers are active at any given time: some layer d, which has been fully identified,
and d + 1, which is being discovered by scanning the neighbors of layer d.
Breadth-first search (BFS) directly implements this simple reasoning (Figure 4.3). Ini-

tially the queue Q consists only of s, the one node at distance 0. And for each subsequent
distance d = 1, 2, 3, . . ., there is a point in time at which Q contains all the nodes at distance
d and nothing else. As these nodes are processed (ejected off the front of the queue), their
as-yet-unseen neighbors are injected into the end of the queue.
Let’s try out this algorithm on our earlier example (Figure 4.1) to confirm that it does the

110

Figure 4.4 The result of breadth-first search on the graph of Figure 4.1.

Order Queue contents
of visitation after processing node

[S]
S [A C D E]
A [C D E B]
C [D E B]
D [E B]
E [B]
B []

DA

B

C E

S

right thing. If S is the starting point and the nodes are ordered alphabetically, they get visited
in the sequence shown in Figure 4.4. The breadth-first search tree, on the right, contains the
edges through which each node is initially discovered. Unlike the DFS tree we saw earlier, it
has the property that all its paths from S are the shortest possible. It is therefore a shortest-
path tree.

Correctness and efficiency
We have developed the basic intuition behind breadth-first search. In order to check that
the algorithm works correctly, we need to make sure that it faithfully executes this intuition.
What we expect, precisely, is that

For each d = 0, 1, 2, . . ., there is a moment at which (1) all nodes at distance ≤ d
from s have their distances correctly set; (2) all other nodes have their distances
set to∞; and (3) the queue contains exactly the nodes at distance d.

This has been phrased with an inductive argument in mind. We have already discussed both
the base case and the inductive step. Can you fill in the details?

The overall running time of this algorithm is linear, O(|V | + |E|), for exactly the same
reasons as depth-first search. Each vertex is put on the queue exactly once, when it is first en-
countered, so there are 2 |V | queue operations. The rest of the work is done in the algorithm’s
innermost loop. Over the course of execution, this loop looks at each edge once (in directed
graphs) or twice (in undirected graphs), and therefore takes O(|E|) time.

Now that we have both BFS and DFS before us: how do their exploration styles compare?
Depth-first search makes deep incursions into a graph, retreating only when it runs out of new
nodes to visit. This strategy gives it the wonderful, subtle, and extremely useful properties
we saw in the Chapter 3. But it also means that DFS can end up taking a long and convoluted
route to a vertex that is actually very close by, as in Figure 4.1. Breadth-first search makes
sure to visit vertices in increasing order of their distance from the starting point. This is a
broader, shallower search, rather like the propagation of a wave upon water. And it is achieved
using almost exactly the same code as DFS—but with a queue in place of a stack.

111

38 / 46

Intro DFS DAGs SCC BFS Paths and Matrices

Shortest Paths and BFS

BFS automatically computes shortest paths!

bfs(V , E, s)

foreach u ∈ V do dist[u] = ∞
q = {s}; dist[s] = 0
while q is nonempty do
u = deque(q)

foreach edge (u, v) ∈ E do
if dist[v] = ∞ then
queue(q, v); dist[v] = dist[u] + 1

But not all paths are created equal! We would like to compute shortest weighted path
— a topic of future lecture.

39 / 46

Intro DFS DAGs SCC BFS Paths and Matrices

Shortest Paths and BFS

BFS automatically computes shortest paths!

bfs(V , E, s)

foreach u ∈ V do dist[u] = ∞
q = {s}; dist[s] = 0
while q is nonempty do
u = deque(q)

foreach edge (u, v) ∈ E do
if dist[v] = ∞ then
queue(q, v); dist[v] = dist[u] + 1

But not all paths are created equal! We would like to compute shortest weighted path
— a topic of future lecture.

40 / 46

Intro DFS DAGs SCC BFS Paths and Matrices

Graph paths and Boolean Matrices

A graph and its boolean matrix representation

1 2 3

4

A =


0 1 0 0
1 0 1 1
0 0 0 1
0 0 0 0



41 / 46

Intro DFS DAGs SCC BFS Paths and Matrices

Graph paths and Boolean Matrices

Let A be the adjacency matrix for a graph G, and
B = A× A. Now, Bij = 1 iff there is path in the
graph of length 2 from vi to vj

Let C = A+ B. Then Cij = 1 iff there is path of
length ≤ 2 between vi and vj

Define A∗ = A0 + A1 + A2 + · · · . If D = A∗ then
Dij = 1 iff vj is reachable from vi .

A =


0 1 0 0
1 0 1 1
0 0 0 1
0 0 0 0



A2 =


1 0 1 1
0 1 0 1
0 0 0 0
0 0 0 0



A3 =


0 1 0 1
1 0 1 1
0 0 0 0
0 0 0 0



42 / 46

Intro DFS DAGs SCC BFS Paths and Matrices

Graph paths and Boolean Matrices

Let A be the adjacency matrix for a graph G, and
B = A× A. Now, Bij = 1 iff there is path in the
graph of length 2 from vi to vj

Let C = A+ B. Then Cij = 1 iff there is path of
length ≤ 2 between vi and vj

Define A∗ = A0 + A1 + A2 + · · · . If D = A∗ then
Dij = 1 iff vj is reachable from vi .

A =


0 1 0 0
1 0 1 1
0 0 0 1
0 0 0 0



A2 =


1 0 1 1
0 1 0 1
0 0 0 0
0 0 0 0



A3 =


0 1 0 1
1 0 1 1
0 0 0 0
0 0 0 0



43 / 46

Intro DFS DAGs SCC BFS Paths and Matrices

Graph paths and Boolean Matrices

Let A be the adjacency matrix for a graph G, and
B = A× A. Now, Bij = 1 iff there is path in the
graph of length 2 from vi to vj

Let C = A+ B. Then Cij = 1 iff there is path of
length ≤ 2 between vi and vj

Define A∗ = A0 + A1 + A2 + · · · . If D = A∗ then
Dij = 1 iff vj is reachable from vi .

A =


0 1 0 0
1 0 1 1
0 0 0 1
0 0 0 0



A2 =


1 0 1 1
0 1 0 1
0 0 0 0
0 0 0 0



A3 =


0 1 0 1
1 0 1 1
0 0 0 0
0 0 0 0



44 / 46

Intro DFS DAGs SCC BFS Paths and Matrices

Shortest paths and Matrix Operations

Redefine operations on matrix elements so that + becomes min, and ∗ becomes
integer addition.

D = A∗ then Dij = k iff the shortest path from vj to vi is of length k

45 / 46

Intro DFS DAGs SCC BFS Paths and Matrices

Shortest paths and Matrix Operations

Redefine operations on matrix elements so that + becomes min, and ∗ becomes
integer addition.

D = A∗ then Dij = k iff the shortest path from vj to vi is of length k

46 / 46

	Intro
	Overview

	DFS
	DAGs
	Topological Sort

	SCC
	BFS
	Paths and Matrices

