CSE 548: *(Design and)* Analysis of Algorithms

Graphs

R. Sekar
Overview

- Graphs provide a concise representation of a range of problems
 - **Map coloring** – more generally, resource contention problems
 - **Networks** — communication, traffic, social, biological, ...

![Figure 3.1(a) A map and (b) its graph.](image_url)
Definition and Representations

A graph $G = (V, E)$, where V is a set of vertices, and E a set of edges. An edge e of the form (v_1, v_2) is said to span vertices v_1 and v_2. The edges in a directed graph are directed. A $G' = (V', E')$ is called a subgraph of G if $V' \subseteq V$ and E' includes every edge in E between vertices in V'.

Adjacency matrix

A graph $(V = \{v_1, \ldots, v_n\}, E)$ can be represented by an $n \times n$ matrix a, where $a_{ij} = 1$ iff $(v_i, v_j) \in E$.

Adjacency list

Each vertex v is associated with a linked list consisting of all vertices u such that $(v, u) \in E$.

Note that adjacency matrix uses $O(n^2)$ storage, while adjacency list uses $O(|V| + |E|)$ storage. Both can represent directed as well as undirected graphs.
Depth-First Search (DFS)

- A technique for traversing all vertices in the graph
- Very versatile, forms the linchpin of many graph algorithms

\[\text{dfs}(V, E) \]

\[
\begin{align*}
\text{foreach } v \in V \text{ do} & \quad \text{visited}[v] = \text{false} \\
\text{foreach } v \in V \text{ do} & \quad \text{if not visited}[v] \text{ then } \text{explore}(V, E, v)
\end{align*}
\]

\[\text{explore}(V, E, v) \]

\[
\begin{align*}
\text{visited}[v] = \text{true} \\
\text{previsit}(v) & \quad /*\text{A placeholder for now}*/ \\
\text{foreach } (v, u) \in E \text{ do} & \quad \text{if not visited}[u] \text{ then } \text{explore}(G, V, u) \\
\text{postvisit}(v) & \quad /*\text{Another placeholder}*/
\end{align*}
\]
If a maze is represented as a graph, then DFS of the graph amounts to an exploration and mapping of the maze.
A graph and its DFS tree

DFS uses \(O(|V|)\) space and \(O(|E| + |V|)\) time.
A connected component of a graph is a maximal subgraph where there is path between any two vertices in the subgraph, i.e., it is a maximal connected subgraph.
DFS Numbering

Associate post and pre numbers with each visited node by defining \textit{previsit} and \textit{postvisit}

\begin{align*}
\text{\textit{previsit}}(v) & \quad \text{\textit{postvisit}}(v) \\
\text{pre}[v] = \text{clock} & \quad \text{post}[v] = \text{clock} \\
\text{clock}++ & \quad \text{clock}++
\end{align*}

Property

For any two vertices \(u \) and \(v \), the intervals \([\text{pre}[u], \text{post}[u]]\) and \([\text{pre}[v], \text{post}[v]]\) are either disjoint, or one is contained entirely within another.
DFS of Directed Graph

3.3 Depth-first search in directed graphs

3.3.1 Types of edges

Our depth-first search algorithm can be run verbatim on directed graphs, taking care to traverse edges only in their prescribed directions. Figure 3.7 shows an example and the search tree that results when vertices are considered in lexicographic order.

In further analyzing the directed case, it helps to have terminology for important relationships between nodes of a tree. A is the root of the search tree; everything else is its descendant. Similarly, E has descendants F, G, and H, and conversely, is an ancestor of these three nodes. The family analogy is carried further: C is the parent of D, which is its child.

For undirected graphs we distinguished between tree edges and nontree edges. In the directed case, there is a slightly more elaborate taxonomy:

- **Tree edges**: The edges that are part of the search tree.
- **Nontree edges**: The edges that are not part of the search tree.
- **Back edges**: The edges that point from a descendant to an ancestor.
- **Forward edges**: The edges that point from a parent to a child.
- **Cross edges**: The edges that point from a vertex to a descendant of an ancestor.

These edges are significant in understanding the structure and connectivity of the directed graph.
DFS and Edge Types

Tree edges are actually part of the DFS forest.
Forward edges lead from a node to a nonchild descendant in the DFS tree.
Back edges lead to an ancestor in the DFS tree. Cross edges lead to neither descendant nor ancestor; they cross the DFS tree.

The various possibilities for an edge \((u, v)\):
- Tree/forward: \(u\) is an ancestor of \(v\) \(\iff\) \(v\) is a descendant of \(u\).
- Back: \(u\) is a descendant of \(v\) \(\iff\) \(v\) is an ancestor of \(u\).
- Cross: \(v\) is not an ancestor of \(u\) and \(u\) is not an ancestor of \(v\).

It turns out we can test for acyclicity in linear time, with a single depth-first search.

Pre/post ordering for \((u, v)\):
- Tree/forward: \(u\) \(\prec\) \(v\) \(\prec\) \(u\)
- Back: \(v\) \(\prec\) \(u\) \(\prec\) \(v\)
- Cross: \(v\) \(\prec\) \(v\) \(\prec\) \(u\) \(\prec\) \(u\)

No cross edges in undirected graphs!
Back and forward edges merge.

Figure 3.7 has two forward edges, two back edges, and two cross edges. Can you spot them?
Biconnectivity in Undirected Graphs

Definition (Biconnected Components)

- An **articulation point** in a graph is any vertex \(a\) that lies on every path from between vertices \(v, w\).
- A **biconnected** graph contains no articulation points.
- A **biconnected component** of a graph is a maximal subgraph that is biconnected.
Illustration of Biconnected Components

- Each biconnected component given a different color
- Articulation points have multiple colors
Biconnected Graphs

- Biconnected components are *not* disjoint.

- Articulation points are duplicated across them.

Articulation points ≡ single-points of failure

Graph is disconnected if any of them go down.

- Between any two $u, v \in V$ in a biconnected graph there are two node-disjoint paths (and hence a cycle).
Finding articulation points during DFS

During DFS visit of vertex v, we want to decide if it is an articulation point or not. Divide V into two disjoint sets:

- V_i includes nodes *inside* the DFS tree rooted at v, and
- $V_o = V - V_i$ of nodes *outside* the DFS tree rooted at v.

Observation (1)

Suppose that every inside node v_i (i.e., $v_i \in V_i - \{v\}$) can reach some outside node v_o (i.e., $v_o \in V_o$) without going through v. Then v is **not** an articulation point.
Finding articulation points during DFS (2)

Proof:

Paths within V_o: By properties of DFS tree, any two vertices in V_o can reach each other without going through v.

Paths between v_i and V_o: Once v_i can reach any node in V_o, it can reach all other nodes in V_o without having to go through v.

Paths within V_i: Consider nodes v_i and v_i' in $V_i - \{v\}$. By our assumption there is a path from v_i to some $v_o \in V_o$, and another path from v_i' to some $v_o' \in V_o$, neither involving v. Consider the path v_i to v_o to v_o' to v_i', which does not pass through v.

Thus, for every pair of vertices, there is a path between them that avoids v, and hence v is *not* an articulation point.
Observation (2)

If Observation (1) does not hold then \(v \) is an articulation point.

This means that there exists some \(v_i \) that cannot reach an outside node \(v_o \) without going through \(v \). By definition, this means that \(v \) is an articulation point.
Finding articulation points during DFS (3)

We combine and slightly strengthen Observations (1), (2), while omitting the proof, as it is essentially the same as before.

Observation (3)

Let Y denote the set of ancestors of v and X its immediate children in the DFS tree. Now, v is not an articulation point iff each $x \in X$ has a path to some $y \in Y$ without going through v.

- By focusing on just the children and ancestors of v, this makes it easier to decide on articulation points during DFS.
- *Note than any such path from x to y will follow zero or more tree edges down, followed by a back edge.*
Finding articulation points during DFS (4)

Note than any such path from x to y will follow zero or more tree edges down, followed by a back edge.

- If this path bypasses v, this is going to occur due to a single back-edge that goes to an ancestor of v. So there is no need to consider paths with multiple back-edges.

- Note: Pre-number increases while following tree edges down, while it decreases when a back edge is followed.

Key Idea: During DFS, for each vertex x, maintain the highest ancestor that can be reached from x by following tree edges down and then a back edge.
Finding articulation points during DFS (5)

Key Idea: During DFS, maintain the highest ancestor reachable from x by following tree edges down and then a back edge.

- This info is maintained in the array low.
- $low[x] \leq low[x']$ for every child x' of x in DFS tree.
 - This captures the fact that we can follow the tree edge down from x to x', then go to whichever ancestor is reachable from x'.
 - Algorithmically, let $low[x] = \min(low[x], low[x'])$ when $\text{explore}(x')$ returns

- $low[x] \leq \text{pre}[x'']$ for x'' adjacent to x but not a parent or child in the DFS tree.
 - Algorithmically, set $low[x] = \min(low[x], \text{pre}[x''])$
 - By properties of DFS, x'' is either a descendant or ancestor of x.
 - As we are taking \min, statement effective only if x'' is an ancestor.
Finding articulation points during DFS (6)

Key Idea: Maintain *low* during DFS

- When visiting *x*, initialize *low*[x] to *pre*[x].

- When a DFS call on a child *x’* of *x* returns, check if *low*[x’] ≥ *pre*[x].
 - If so, the highest ancestor *x’* can reach is not higher than *x*, i.e., *x’* cannot go to ancestors of *x* without going through *x*.
 - So, mark *x* as articulation point

- If an adjacent vertex *x”* is already visited when *x* considers it, set

 \[\text{low}[x] = \min(\text{low}[x], \text{pre}[x’']) \]

All these can be done during a DFS, while increasing the cost of each step by only a constant amount — so, overall complexity is \(O(|E| + |V|) \)
Directed Acyclic Graphs (DAGs)

A directed graph that contains no cycles. Often used to represent (acyclic) dependencies, partial orders,...

Property (DAGs and DFS)

- A directed graph has a cycle iff its DFS reveals a back edge.
- In a dag, every edge leads to a vertex with lower post number.
- Every dag has at least one source and one sink.
Strongly Connected Components (SCC)

Analog of connected components for undirected graphs

Definition (SCC)

- Two vertices u and v in a directed graph are connected if there is a path from u to v and vice-versa.

- A directed graph is strongly connected if any pair of vertices in the graph are connected.

- A subgraph of a directed graph is said to be an SCC if it is a maximal subgraph that is strongly connected.

SCCs are also similar to biconnected components!
The textbook describes an algorithm for computing SCC in linear-time using DFS.
Breadth-first Search (BFS)

- Traverse the graph by “levels”
 - $BFS(v)$ visits v first
 - Then it visits all immediate children of v
 - then it visits children of children of v, and so on.

- As compared to DFS, BFS uses a queue (rather than a stack) to remember vertices that still need to be explored
BFS Algorithm

\[\text{bfs}(V, E, s) \]

\begin{align*}
\text{foreach} & \quad u \in V \text{ do } \text{visited}[u] = false \\
q & = \{s\}; \text{visited}[s] = true \\
\text{while} & \quad q \text{ is nonempty do} \\
& \quad u = \text{deque}(q) \\
\text{foreach} & \quad \text{edge } (u, v) \in E \text{ do} \\
& \quad \text{if not } \quad \text{visited}[v] \text{ then} \\
& \quad \quad \text{queue}(q, v); \text{visited}[v] = true
\end{align*}
BFS Algorithm Illustration

Order of visitation	**Queue contents after processing node**
S | *S*
A | *A C D E*
C | *C D E B*
D | *D E B*
E | *E B*
B | *

Let's try out this algorithm on our earlier example (Figure 4.1) to confirm that it does the...
BFS automatically computes shortest paths!

bfs(V, E, s)

```
foreach $u \in V$ do $dist[u] = \infty$

$q = \{s\}; \ dist[s] = 0$

while $q$ is nonempty do

\[ u = \text{deque}(q) \]

foreach edge $(u, v) \in E$ do

\[ \text{if } dist[v] = \infty \text{ then} \]

\[ \text{queue}(q, v); \ dist[v] = dist[u] + 1 \]

```

But not all paths are created equal! We would like to compute shortest weighted path — a topic of future lecture.
Graph paths and Boolean Matrices

A graph and its boolean matrix representation

\[A = \begin{bmatrix}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix} \]
Graph paths and Boolean Matrices

- Let A be the adjacency matrix for a graph G, and $B = A \times A$. Now, $B_{ij} = 1$ iff there is path in the graph of length 2 from v_i to v_j.

- Let $C = A + B$. Then $C_{ij} = 1$ iff there is path of length ≤ 2 between v_i and v_j.

- Define $A^* = A^0 + A^1 + A^2 + \cdots$. If $D = A^*$ then $D_{ij} = 1$ iff v_j is reachable from v_i.

\[
A = \begin{bmatrix}
0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

\[
A^2 = \begin{bmatrix}
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

\[
A^3 = \begin{bmatrix}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]
Redefine operations on matrix elements so that $+$ becomes \min, and \times becomes integer addition.

$D = A^*$ then $D_{ij} = k$ iff the shortest path from v_j to v_i is of length k.