R. Sekar

1/46

e Graphs provide a concise representation of a range problems
Map coloring - more generally, resource contention problems

Networks — communication, traffic, social, biological, ...

2/46

@ Agraph G = (V,E), where V is a set of vertices, and E a set of edges.

@ An edge e of the form (v, v,) is said to span vertices v; and v;.

@ The edges in a directed graph are directed.

3/46

@ Agraph G = (V,E), where V is a set of vertices, and E a set of edges.

@ An edge e of the form (v, v,) is said to span vertices v; and v;.

@ The edges in a directed graph are directed.

® AG = (V' F) is called a subgraph of G if V' C V and E' = {(u,v) € Elu,v € V'}.

4/46

Intro DFS DAGs SCC BFS Pathsand Matrices Overview

Definition and Representations

Definition
@ Agraph G = (V,E), where V is a set of vertices, and E a set of edges.
@ An edge e of the form (vi, v;) is said to span vertices vi and v,.

@ The edges in a directed graph are directed.

® AG = (V' F') is called a subgraph of G if V' C V and E' = {(u,v) € E|u,v € V'}.

Adjacency matrix

A graph (V= {wy,..., vy}, E) can be
represented by an n X n matrix a, where
aj = 1iff (vi,vj) € E

5/46

Intro DFS DAGs SCC BFS Pathsand Matrices Overview

Definition and Representations

Definition
@ Agraph G = (V,E), where V is a set of vertices, and E a set of edges.
@ An edge e of the form (vi, v;) is said to span vertices vi and v,.

@ The edges in a directed graph are directed.

@ AG = (V',E) is called a subgraph of G if VV C V and E' = {(u,v) € E|u,v € V'}.

Adjacency matrix Adjacency list |
A graph (V= {wy,..., vy}, E) can be Each vertex v is associated with a
represented by an n X n matrix a, where linked list consisting of all vertices u

a; = 1iff (vj,vj) € E such that (v, u) € E.

6/46

Intro DFS DAGs SCC BFS Pathsand Matrices Overview

Definition and Representations

Definition

@ Agraph G = (V,E), where V is a set of vertices, and E a set of edges.

@ An edge e of the form (vi, v;) is said to span vertices vi and v,.

@ The edges in a directed graph are directed.

@ AG = (V',E) is called a subgraph of G if VV C V and E' = {(u,v) € E|u,v € V'}.

Adjacency matrix Adjacency list |
A graph (V= {wy,..., vy}, E) can be Each vertex v is associated with a
represented by an n X n matrix a, where linked list consisting of all vertices u
aj = 1iff (vi,vj) € E such that (v, u) € E.

Adjacency matrix uses O(n?) storage; adjacency list uses O(| V| + |E|) storage.

7/46

@ A technique for traversing all vertices in the graph.

@ Very versatile, forms the linchpin of many graph algorithms.

8/46

@ A technique for traversing all vertices in the graph.

@ Very versatile, forms the linchpin of many graph algorithms.

foreach v € V do visited|v] = false
foreach v € V do
if not visited[v] then explore(V, E, v)

9/46

Intro DFS DAGs SCC BFS Paths and Matrices

Depth-First Search (DFS)

@ A technique for traversing all vertices in the graph.
@ Very versatile, forms the linchpin of many graph algorithms.
dfs(V,E)
foreach v € V do visited[v] = false

foreach v € V do
if not visited|v] then explore(V, E, v)

explore(V, E,v)
visited[v] = true
previsit(v) /*A placeholder for now*/
foreach (v, u) € E do
if not visited[u] then explore(V, E, u)
postvisit(v) /*Another placeholder*/

10/46

Intro DFS DAGs SCC BFS Paths and Matrices

Graphs, Mazes and DFS

I o SRy S § ; .
/< /\ J B T =
|

&—@ *W —

If a maze is represented as a graph, then DFS of the graph amounts to an exploration

and mapping of the maze.
11/46

DFS uses O(|V|) space and O(|E| + |V]) time.

12/46

Intro DFS DAGs SCC BFS Paths and Matrices

DFS and Connected Components

(a) (b)
A—®
® ®

0‘0

/]

&)
©

18,19

15,16

A connected component of a graph is a maximal subgraph where there is path between

any two vertices in the subgraph, i.e., it is a maximal connected subgraph.
13/46

Associate post and pre numbers with each visited node by defining previsit and

postvisit

pre[v] = clock
clock++

14/ 46

Associate post and pre numbers with each visited node by defining previsit and

postvisit

pre[v] = clock post|v] = clock
clock++ clock++

15/46

Associate post and pre numbers with each visited node by defining previsit and

postvisit

pre[v] = clock post|v] = clock
clock++ clock++

For any two vertices u and v, the intervals [pre[u], post[u]] and [pre[v], post[v]] are either

disjoint, or one is contained entirely within another.

16/46

17/46

Intro DFS DAGs SCC BFS Paths and Matrices

DFS and Edge Types

DF'S tree

L]

]
I

pre/post ordering for (u,v)

]

u

]

v

]

u

Edge type

Tree/forward

Back

Cross

No cross edges in undirected graphs!

Back and forward edges merge

18/46

Intro DFS DAGs SCC BFS Paths and Matrices Topological Sort

Directed Acyclic Graphs (DAGs)

A directed graph that contains no cycles.

Often used to represent (acyclic) dependencies, partial orders,...

Property (DAGs and DFS)
o A directed graph has a cycle iff its DFS reveals a back edge.

@ In a dag, every edge leads to a vertex with lower post number.

o Every dag has at least one source and one sink.

19/46

Intro DFS DAGs SCC BFS Paths and Matrices Topological Sort

Topological Sort

A way to linearize DAGs while ensuring that for every vertex, all its ancestors appear

before itself.

Applications: spreadsheet recomputation of formulas, Make (and other compile/build

systems) and Task scheduling/project management.

20/46

Intro DFS DAGs SCC BFS Paths and Matrices Topological Sort

Topological Sort

topoSort(V, E)
while |V| # 0
if there is a vertex v in V with in-degree of 0
output v
V=V -—{v}) E=E—{ec E|leisincident on v})

else output “graph is cyclic”; break

21/46

Intro DFS DAGs SCC BFS Paths and Matrices Topological Sort

Topological Sort

topoSort(V, E)
while |V| # 0
if there is a vertex v in V with in-degree of 0
output v
V=V -—{v}) E=E—{ec E|leisincident on v})

else output “graph is cyclic”; break

Correctness:
o If there is no vertex with in-degree 0, it is not a DAG

@ When the algorithm outputs v, it has already output v’s ancestors

22/46

Intro DFS DAGs SCC BFS Paths and Matrices Topological Sort

Topological Sort

topoSort(V, E)
while |V| # 0
if there is a vertex v in V with in-degree of 0

output v
V=V -—{v}) E=E—{ec E|leisincident on v})
else output “graph is cyclic”; break

Correctness:
o If there is no vertex with in-degree 0, it is not a DAG

@ When the algorithm outputs v, it has already output v’s ancestors

Performance: What is the runtime? Can it be improved using DFS properties of DAGs?

23/46

Intro DFS DAGs SCC BFS Paths and Matrices

Strongly Connected Components (SCC)

For directed graphs, SCCs are the equivalent of connected
components in undirected graphs.

Definition (SCC)

e Two vertices u and v in a directed graph are connected if there is a

path from u to v and vice-versa.

o A directed graph is strongly connected if any pair of vertices in the
graph are connected.

@ A subgraph of a directed graph is said to be an SCC if it is a maximal
subgraph that is strongly connected.

24/ 46

25/46

Every directed graph is a dag of its strongly connected components.

(b)

26/46

Intro DFS DAGs SCC BFS Paths and Matrices

Towards an Algorithm for Computing SCCs

@ Pick a sink SCC.

@ Output all nodes in this SCC.

e We can just do a DFS starting from any node v in this SCC!
@ Because this is a sink SCC, this DFS cannot reach any other SCC, so will only output this SCC.

@ Delete these nodes from the graph and repeat the whole process.

27/46

Intro DFS DAGs SCC BFS Paths and Matrices

Towards an Algorithm for Computing SCCs

@ Pick a sink SCC.

@ Output all nodes in this SCC.

e We can just do a DFS starting from any node v in this SCC!
@ Because this is a sink SCC, this DFS cannot reach any other SCC, so will only output this SCC.

@ Delete these nodes from the graph and repeat the whole process.

\ But how do we find a node in the sink SCC?

28/46

o When explore(u) returns, it has visited all (and only) the nodes reachable from u.

e If C and C' are SCCs and there is an edge from C to C' then:
the highest post number in C will be larger than the highest post number in C'.

29/46

Intro DFS DAGs SCC BFS Paths and Matrices

Towards an Algorithm for Computing SCCs

Property

@ When explore(u) returns, it has visited all (and only) the nodes reachable from u.
@ If C and C'" are SCCs and there is an edge from C to C' then:
the highest post number in C will be larger than the highest post number in C'.

Corollary

The node that receives the highest post number after DFS must be in a source SCC.

30/46

Intro DFS DAGs SCC BFS Paths and Matrices

Towards an Algorithm for Computing SCCs

Property

@ When explore(u) returns, it has visited all (and only) the nodes reachable from u.

@ If C and C'" are SCCs and there is an edge from C to C' then:
the highest post number in C will be larger than the highest post number in C'.

Corollary
The node that receives the highest post number after DFS must be in a source SCC.

Property
For a graph G, let Gg denote the graph formed by reversing every edge in G. Then
@ The SCCs of G and Gy, are identical.

@ A source SCC of Gy is a sink SCC of G.

37746

Intro DFS DAGs SCC BFS Paths and Matrices

An Algorithm for Computing SCCs

1. Construct Gg from G by reversing every edge in the given graph G.

2. The node v with the highest post number is in a source SCC of Gg.

e So, v must be in a sink SCC of G.
3. Invoke explore(v) in G to output this sink SCC.

4. Delete these nodes from G and Gg, and repeat from Step 2.

32/46

Intro DFS DAGs SCC BFS Paths and Matrices

An Algorithm for Computing SCCs

1. Construct Gg from G by reversing every edge in the given graph G.

2. The node v with the highest post number is in a source SCC of Gg.
e So, v must be in a sink SCC of G.

3. Invoke explore(v) in G to output this sink SCC.

4. Delete these nodes from G and Gg, and repeat from Step 2.

| Can we do all this in linear time?

33/46

@ Traverse the graph by “levels”

o BFS(v) visits v first
o Then it visits all immediate children of v

o then it visits children of children of v, and so on.

34/46

Intro DFS DAGs SCC BFS Paths and Matrices

Breadth-first Search (BFS)

@ Traverse the graph by “levels”
o BFS(v) visits v first
o Then it visits all immediate children of v

e then it visits children of children of v, and so on.

@ As compared to DFS, BFS uses a queue (rather than a stack) to remember vertices

that still need to be explored

35/46

foreach u € V do visited[u] = false
q = {s}, visited[s] = true

while g is nonempty do
u = deque(q)
foreach edge (u,v) € E do
if not visited[v] then

queue(q, v); visited[v] = true

36/46

37/46

Order Queue contents

of visitation | after processing node 9
[S]

[AC D E]

[C D FE B]j

D E B @ © @ ®

I B]

[B]

i (B)

THTAQAR®

38/46

Intro DFS DAGs SCC BFS Paths and Matrices

Shortest Paths and BFS

BFS automatically computes shortest paths!
bfs(V,E,s)
foreach u € V do dist[u] = oo
g = {s}, dist[s] =0
while g is nonempty do
u = deque(q)
foreach edge (u,v) € E do
if dist[v] = oo then
queue(q, v); dist[v] = dist[u] + 1

39/46

Intro DFS DAGs SCC BFS Paths and Matrices
Shortest Paths and BFS

BFS automatically computes shortest paths!
bfs(V,E,s)
foreach u € V do dist[u] = oo
g = {s}, dist[s] =0
while g is nonempty do
u = deque(q)
foreach edge (u,v) € E do
if dist[v] = oo then
queue(q, v); dist[v] = dist[u] + 1

But not all paths are created equal! We would like to compute shortest weighted path

— a topic of future lecture.
40/ 46

A graph and its boolean matrix representation

S O =~ O

S O O =

S O = O

S = =2 O

41/46

@ Let A be the adjacency matrix for a graph G, and
B = A x A. Now, B;; = 1iff there is path in the
graph of length 2 from v; to v;

42/46

Intro DFS DAGs SCC BFS Paths and Matrices

Graph paths and Boolean Matrices

@ Let A be the adjacency matrix for a graph G, and
B = A x A. Now, Bj; = 1iff there is path in the
graph of length 2 from v; to v;

@ Let C = A+ B. Then Cj; = 1iff there is path of

length < 2 between v; and v;

43/ 46

Intro DFS DAGs SCC BFS Paths and Matrices

Graph paths and Boolean Matrices

01 0 0

A | T O T

@ Let A be the adjacency matrix for a graph G, and 0 0 01

0000
B = A x A. Now, Bj; = 1iff there is path in the g _

1T 0 1 1

graph of length 2 from v; to v;

o010

@ Let C = A+ B. Then Cj; = 1iff there is path of 0000
length < 2 between v; and v; - vow d

0 1 0 1

@ Define A* = A"+ A"+ A2+ ... If D= A* then ; 101 1

Dj; = 1iff v; is reachable from v;. A= 0 0 0 O
L0 0 0 0|

44/46

o Redefine operations on matrix elements so that 4+ becomes min, and * becomes

integer addition.

45/ 46

o Redefine operations on matrix elements so that 4+ becomes min, and * becomes

integer addition.

e D = A* then D; = k iff the shortest path from v; to v; is of length k

46/ 46

	Intro
	Overview

	DFS
	DAGs
	Topological Sort

	SCC
	BFS
	Paths and Matrices

