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Intro LIS Knapsack Chain MM LCS Overview

Overview

Another approach for optimization problems, more general and versatile than greedy
algorithms.

Optimal substructure The optimal solution contains optimal solutions to
subproblems.

Overlapping subproblems. Typically, the same subproblems are solved repeatedly.

Solve subproblems in a certain order, and remember solutions for later reuse.
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Intro LIS Knapsack Chain MM LCS Overview

DAGs and Dynamic Programming

Canonical way to represent dynamic programming

Nodes in the DAG represent subproblems
Edges capture dependencies between subproblems
Topological sorting solves subproblems in the right order
Remember subproblem solutions to avoid recomputation

Many bottom-up computations on trees/dags are instances of dynamic programming

applies to trees of recursive calls (w/ duplication), e.g., Fib

For problems in other domains, DAGs are implicit, as is the topological sort.
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Intro LIS Knapsack Chain MM LCS DAG Formulation Algorithm

Longest Increasing Subsequence

Definition
Given a sequence a1, a2, . . . , an, its LIS is a sequence

ai1, ai2, . . . , aik
that maximizes k subject to ij < ij+1 and aij ≤ aij+1 .

left-to-right order of Figure 6.1, we can always be sure that by the time we get to a node v,
we already have all the information we need to compute dist(v). We are therefore able to
compute all distances in a single pass:

initialize all dist(·) values to ∞
dist(s) = 0
for each v ∈ V \{s}, in linearized order:

dist(v) = min(u,v)∈E{dist(u) + l(u, v)}

Notice that this algorithm is solving a collection of subproblems, {dist(u) : u ∈ V }. We
start with the smallest of them, dist(s), since we immediately know its answer to be 0. We
then proceed with progressively “larger” subproblems—distances to vertices that are further
and further along in the linearization—where we are thinking of a subproblem as large if we
need to have solved a lot of other subproblems before we can get to it.
This is a very general technique. At each node, we compute some function of the values

of the node’s predecessors. It so happens that our particular function is a minimum of sums,
but we could just as well make it amaximum, in which case we would get longest paths in the
dag. Or we could use a product instead of a sum inside the brackets, in which case we would
end up computing the path with the smallest product of edge lengths.

Dynamic programming is a very powerful algorithmic paradigm in which a problem is
solved by identifying a collection of subproblems and tackling them one by one, smallest first,
using the answers to small problems to help figure out larger ones, until the whole lot of them
is solved. In dynamic programming we are not given a dag; the dag is implicit. Its nodes are
the subproblems we define, and its edges are the dependencies between the subproblems: if
to solve subproblem B we need the answer to subproblem A, then there is a (conceptual) edge
from A to B. In this case, A is thought of as a smaller subproblem than B—and it will always
be smaller, in an obvious sense.
But it’s time we saw an example.

6.2 Longest increasing subsequences
In the longest increasing subsequence problem, the input is a sequence of numbers a1, . . . , an.
A subsequence is any subset of these numbers taken in order, of the form ai1 , ai2 , . . . , aik where
1 ≤ i1 < i2 < · · · < ik ≤ n, and an increasing subsequence is one in which the numbers are
getting strictly larger. The task is to find the increasing subsequence of greatest length. For
instance, the longest increasing subsequence of 5, 2, 8, 6, 3, 6, 9, 7 is 2, 3, 6, 9:

5 2 8 6 3 6 9 7

In this example, the arrows denote transitions between consecutive elements of the opti-
mal solution. More generally, to better understand the solution space, let’s create a graph of
all permissible transitions: establish a node i for each element ai, and add directed edges (i, j)
whenever it is possible for ai and aj to be consecutive elements in an increasing subsequence,
that is, whenever i < j and ai < aj (Figure 6.2).
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Casting LIS problem using a DAG

Nodes: represent elements in the sequence

Edges: connect an element to all followers that are larger

Topological sorting: sequence already topologically sorted

Remember: Using an array L[1..n]Figure 6.2 The dag of increasing subsequences.

5 2 8 3 9 766

Notice that (1) this graph G = (V,E) is a dag, since all edges (i, j) have i < j, and (2)
there is a one-to-one correspondence between increasing subsequences and paths in this dag.
Therefore, our goal is simply to find the longest path in the dag!
Here is the algorithm:

for j = 1, 2, . . . , n:
L(j) = 1 + max{L(i) : (i, j) ∈ E}

return maxj L(j)

L(j) is the length of the longest path—the longest increasing subsequence—ending at j (plus
1, since strictly speaking we need to count nodes on the path, not edges). By reasoning in the
same way as we did for shortest paths, we see that any path to node j must pass through one
of its predecessors, and therefore L(j) is 1 plus the maximum L(·) value of these predecessors.
If there are no edges into j, we take the maximum over the empty set, zero. And the final
answer is the largest L(j), since any ending position is allowed.

This is dynamic programming. In order to solve our original problem, we have defined a
collection of subproblems {L(j) : 1 ≤ j ≤ n} with the following key property that allows them
to be solved in a single pass:

(*) There is an ordering on the subproblems, and a relation that shows how to solve
a subproblem given the answers to “smaller” subproblems, that is, subproblems
that appear earlier in the ordering.

In our case, each subproblem is solved using the relation

L(j) = 1 + max{L(i) : (i, j) ∈ E},

an expression which involves only smaller subproblems. How long does this step take? It
requires the predecessors of j to be known; for this the adjacency list of the reverse graph GR,
constructible in linear time (recall Exercise 3.5), is handy. The computation of L(j) then takes
time proportional to the indegree of j, giving an overall running time linear in |E|. This is at
most O(n2), the maximum being when the input array is sorted in increasing order. Thus the
dynamic programming solution is both simple and efficient.
There is one last issue to be cleared up: the L-values only tell us the length of the optimal

subsequence, so how do we recover the subsequence itself? This is easily managed with the
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Algorithm for LIS
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Correctness: Straight-forward

Complexity: What is it? Can it be improved?
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Intro LIS Knapsack Chain MM LCS Knapsack w/ Repetition 0-1 Knapsack Memoization

Knapsack Problem (Recap)

You have a choice of items you can pack in the sack

Maximize value of sack, subject to a weight limit ofW

item calories/lb weight

bread 1100 5
butter 3300 1
tomato 80 1
cucumber 55 2

Fractional knapsack: Fractional quantities acceptable

0-1 knapsack: Take all of one item or none at all

Knapsack w/ repetition: Take any integral number of items.

No polynomial solution for the last two, but dynamic programming can solve them in

pseudo-polynomial time of O(nW ).
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Intro LIS Knapsack Chain MM LCS Knapsack w/ Repetition 0-1 Knapsack Memoization

Knapsack w/ repetition: Identify subproblems

Consider subproblems by reducing the weight

Compute K(W ) in terms of K(W ′) forW ′ < W

WhichW ′ values to consider?

Since the ith item has a weight wi , we should consider onlyW − wi for different i.

Optimal substructure: If K(W ) is the optimal solution and it includes item i, then
K(W ) = K(W − wi) + vi
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Knapsack w/ repetition

KnapWithRep(w, v, n,W )

K [0] = 0
for w = 1 toW do
K [w] = max1≤i≤n,w[i]≤w(K [w − w[i]] + v[i])

return K [W ]

Fills the array K from left-to-right

If you construct the dag explicitly, you will see that we are looking for the longest path!

Runtime: Outer loop iterates W times, max takes O(n) time, for a total of O(nW )

time

Not polynomial: input size logarithmic (not linear) inW .
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0-1 Knapsack

Previous algorithm does not work. We need to keep track of which items have been
used up.

Key idea: Define 2-d array K [u, j] which computes optimal value for weight u
achievable using items 1..j
K [u, j] can be computed from K [_, j − 1]
Either item j is not included in the optimal solution. Then K [u, j] = K [u, j−1]

Or, j is included, so K [u, j] = v[j] + K [u−w[j], j−1]

So, fill up the array K as j goes from 1 to n
For each j, fill K as u goes from 1 to W
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0-1 Knapsack Algorithm

Knap01(w, v, n,W )

K [u, 0] = K [0, j] = 0,∀1 ≤ u ≤ W , 1 ≤ j ≤ n

for j = 1 to n do
for u = 1 toW do
if w[j] > u then K [u, j] = K [u, j−1]
else K [u, j] = max(K [u, j−1],

K [u−w[j], j−1] + v[j])

return K [W , n]

Runtime: As compared to unbounded knapsack, we have a nested loop here, but the
inner loop now executes in O(1) time. So runtime is still O(nW )
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Recursive formulation of Dynamic programming

Recursive formulation can often simplify algorithm presentation, avoiding need for
explicit scheduling

Dependencies between subproblems can be left implicit an equation such as

K [w] = K [w − w[j]] + v[j]

A call to compute K [w] will automatically result in a call to compute K [w − w[j]] because

of dependency

Can avoid solving (some) unneeded subproblems

Memoization: Remember solutions to function calls so that repeat invocations can
use previously returned solutions
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Recursive 0-1 Knapsack Algorithm

BestVal01(u, j)

if u = 0 or j = 0 return 0
if w[j] > u return BestVal01(u, j−1)
else return max(BestVal01(u, j−1), v[j] + BestVal01(u−w[j], j−1))

Much simpler in structure than iterative version

Unneeded entries are not computed, e.g. BestVal01(3, _) when all weights involved
are even

Exercise: Write a recursive version of ChainMM.

Note: mi’s give us the dimension of matrices, specifically, Mi is an mi−1 ×mi matrix

Complexity: O(n3)
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Key step in Dyn. Prog.: Identifying subproblems
Common subproblems
Finding the right subproblem takes creativity and experimentation. But there are a few
standard choices that seem to arise repeatedly in dynamic programming.

i. The input is x1, x2, . . . , xn and a subproblem is x1, x2, . . . , xi.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

The number of subproblems is therefore linear.

ii. The input is x1, . . . , xn, and y1, . . . , ym. A subproblem is x1, . . . , xi and y1, . . . , yj.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

y1 y2 y3 y4 y5 y6 y7 y8

The number of subproblems is O(mn).

iii. The input is x1, . . . , xn and a subproblem is xi, xi+1, . . . , xj .

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

The number of subproblems is O(n2).

iv. The input is a rooted tree. A subproblem is a rooted subtree.

If the tree has n nodes, how many subproblems are there?

We’ve already encountered the first two cases, and the others are coming up shortly.
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Chain Matrix Multiplication
Figure 6.6 A × B × C × D = (A × (B × C)) × D.
(a)

× ×

C DBA

×

20 × 1 1 × 1050 × 20 10 × 100

(b)

×

A B × C

×

50 × 20 20 × 10

D
10 × 100

(c)

A × (B × C)

×

50 × 10

D
10 × 100

(d)

(A × (B × C)) × D
50 × 100

6.5 Chain matrix multiplication
Suppose that we want to multiply four matrices, A×B ×C ×D, of dimensions 50× 20, 20× 1,
1 × 10, and 10 × 100, respectively (Figure 6.6). This will involve iteratively multiplying two
matrices at a time. Matrix multiplication is not commutative (in general, A×B �= B×A), but it
is associative, which means for instance that A× (B×C) = (A×B)×C. Thus we can compute
our product of four matrices in many different ways, depending on how we parenthesize it.
Are some of these better than others?
Multiplying an m × n matrix by an n × p matrix takes mnp multiplications, to a good

enough approximation. Using this formula, let’s compare several different ways of evaluating
A × B × C × D:

Parenthesization Cost computation Cost
A × ((B × C) × D) 20 · 1 · 10 + 20 · 10 · 100 + 50 · 20 · 100 120, 200
(A × (B × C)) × D 20 · 1 · 10 + 50 · 20 · 10 + 50 · 10 · 100 60, 200
(A × B) × (C × D) 50 · 20 · 1 + 1 · 10 · 100 + 50 · 1 · 100 7, 000

As you can see, the order of multiplications makes a big difference in the final running time!
Moreover, the natural greedy approach, to always perform the cheapest matrix multiplication
available, leads to the second parenthesization shown here and is therefore a failure.
How do we determine the optimal order, if we want to compute A1 × A2 × · · · × An, where

the Ai’s are matrices with dimensions m0 × m1,m1 × m2, . . . ,mn−1 × mn, respectively? The
first thing to notice is that a particular parenthesization can be represented very naturally by
a binary tree in which the individual matrices correspond to the leaves, the root is the final
product, and interior nodes are intermediate products (Figure 6.7). The possible orders in
which to do the multiplication correspond to the various full binary trees with n leaves, whose
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Chain MM: Formulating Optimal Solution

Consider outermost multiplication: (M1 × · · · ×Mj)× (Mj+1 × · · · ×Mn) — we could
compute j using dynamic programming

Optimal substructure: Note that the optimal solution for
(M1 × · · · ×Mj)× (Mj+1 × · · · ×Mn) must rely on optimal solutions to
M1 × · · · ×Mj andMj+1 × · · · ×Mn — or else we could improve the overall
solution still

Cost function: This suggests a cost function C[k, l] to denote the optimal cost of
Mk × · · · ×Ml
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Chain MM: Formulating Optimal Solution
Figure 6.7 (a) ((A × B) × C) × D; (b) A × ((B × C) × D); (c) (A × (B × C)) × D.
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number is exponential in n (Exercise 2.13). We certainly cannot try each tree, and with brute
force thus ruled out, we turn to dynamic programming.

The binary trees of Figure 6.7 are suggestive: for a tree to be optimal, its subtrees must
also be optimal. What are the subproblems corresponding to the subtrees? They are products
of the form Ai × Ai+1 × · · · × Aj . Let’s see if this works: for 1 ≤ i ≤ j ≤ n, define

C(i, j) =minimum cost of multiplying Ai × Ai+1 × · · · × Aj .

The size of this subproblem is the number of matrix multiplications, |j − i|. The smallest
subproblem is when i = j, in which case there’s nothing to multiply, so C(i, i) = 0. For j > i,
consider the optimal subtree for C(i, j). The first branch in this subtree, the one at the top,
will split the product in two pieces, of the form Ai × · · · × Ak and Ak+1 × · · · × Aj , for some k
between i and j. The cost of the subtree is then the cost of these two partial products, plus
the cost of combining them: C(i, k) + C(k + 1, j) + mi−1 · mk · mj. And we just need to find the
splitting point k for which this is smallest:

C(i, j) = min
i≤k<j

{C(i, k) + C(k + 1, j) + mi−1 · mk · mj} .

We are ready to code! In the following, the variable s denotes subproblem size.
for i = 1 to n: C(i, i) = 0
for s = 1 to n − 1:
for i = 1 to n − s:

j = i + s
C(i, j) = min{C(i, k) + C(k + 1, j) + mi−1 · mk · mj : i ≤ k < j}

return C(1, n)

The subproblems constitute a two-dimensional table, each of whose entries takes O(n) time
to compute. The overall running time is thus O(n3).

6.6 Shortest paths
We started this chapter with a dynamic programming algorithm for the elementary task of
finding the shortest path in a dag. We now turn to more sophisticated shortest-path problems
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Subproblems correspond to one of the subtrees

Since order of multiplications can’t be changed, each subtree must correspond to a
“substring” of multiplications, i.e., Mk × · · · ×Ml
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Chain MM: Formulating Optimal Solution
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Chain MM Algorithm

chainMM(m, n)

C[i, i] = 0 ∀1 ≤ i ≤ n
for s = 1 to n− 1 do
for k = 1 to n− s do
l = k + s
C[k, l] = mink≤i<l(C[k, i] + C[i + 1, l] +mk−1 ∗mi ∗ml)

return C[1, n]

Recall: subproblems correspond to substrings: Mk × · · · ×Ml

We iterate in increasing order of substring length

s goes from 1 to n− 1 and represents substring length minus 1.

Substrings of same lengths are considered left to right,

k goes from 1 to n− s and represents the starting position of substring
41 / 93



Intro LIS Knapsack Chain MM LCS

Chain MM Algorithm

chainMM(m, n)

C[i, i] = 0 ∀1 ≤ i ≤ n

for s = 1 to n− 1 do
for k = 1 to n− s do
l = k + s

C[k, l] = mink≤i<l(C[k, i] + C[i + 1, l] +mk−1 ∗mi ∗ml)

return C[1, n]

Note: mi’s give us the dimension of matrices, specifically, Mi is an mi−1 ×mi matrix

Complexity: O(n3)
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Subsequence

Definition
A sequence a[1..m] is a subsequence of b[1..n] occurring at position r if there exist
i1, ..., ik such that a[r..(r+l − 1)] = b[i1]b[i2] · · · b[il], where ij < ij+1

The relative order of elements is preserved in a subsequence, but unlike a substring,
the elements needs not be contiguous.
Example: BDEFHJ is a subsequence of ABCDEFGHIJK
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Longest Common Subsequence

Definition (LCS)

The LCS of two sequences x[1..m] and y[1..n] is the longest sequence z[1..k] that is a
subsequence of both x and y .

Example: BEHJ is a common subsequence of ABCDEFGHIJKLM and AABBXEJHJZ

By aligning elements of z with the corresponding elements of x and y , we can
compare x and y
x : P R O F − E S S O R

z : P R O F − E S − − R

y : P R O F Fins E S −del Usub R
to identify edit operations (insert/delete/substitute) operations needed to map x to y
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Edit (Levenshtein) distance

Definition (ED)
Given sequences x and y and functions I, D and S that associate costs with each
insert, delete and substitute operations, what is the minimum cost of any the edit
sequence that transforms x into y .

Applications

Spell correction (Levenshtein automata)
diff

In the context of version control, reconcile/merge concurrent updates by different
users.
DNA sequence alignment, evolutionary trees and other applications in
computational biology
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Towards a dynamic programming solution (1)

What subproblems to consider?

Just like the LIS problem, we proceed from left to right, i.e., compute L[j] as j goes
from1 to n

But there are two strings x and y for LCS, so the subproblems correspond to
prefixes of both x and y — there are O(mn) such prefixes.

E X P O N E N T I A L
P O L Y N O M I A L

The subproblem above can be represented as E[7, 5].
E[i, j] represents the edit distance of x[1..i] and y[1..j]
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Towards a dynamic programming solution (2)

For E[k, l], consider the following possibilities:

x[k] = y[l]: in this case, E[k, l] = E[k − 1, l − 1] — the edit distance has not
increased as we extend the string by one character, since these characters match

x[k] ̸= y[l]: Three possibilities
extend E[k − 1, l] by deleting x[k]:
E[k, l] = E[k − 1, l] + DC(x[k])

extend E[k, l − 1] by inserting y[l]:
E[k, l] = E[k, l − 1] + IC(y[l])

extend E[k − 1, l − 1] by substituting x[k] with y[l]:
E[k, l] = E[k − 1, l − 1] + SC(x[k], y[l])
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increased as we extend the string by one character, since these characters match

x[k] ̸= y[l]: Three possibilities
extend E[k − 1, l] by deleting x[k]:
E[k, l] = E[k − 1, l] + DC(x[k])

extend E[k, l − 1] by inserting y[l]:
E[k, l] = E[k, l − 1] + IC(y[l])

extend E[k − 1, l − 1] by substituting x[k] with y[l]:
E[k, l] = E[k − 1, l − 1] + SC(x[k], y[l])
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Towards a dynamic programming solution (3)

E[k, l] = min( E[k − 1, l] + DC(x[k]), // ↓
E[k, l − 1] + IC(y[l]), //→
E[k − 1, l − 1] + SC(x[k], y[l])) //↘

E[0, l] =
∑l

i=1 IC(y[i])

E[k, 0] =
∑k

i=1DC(x[i])

Edit distance = E[m, n]

(Recall: m and n are lengths of strings x and y)
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Towards a dynamic programming solution (4)

Figure 6.4 (a) The table of subproblems. Entries E(i− 1, j − 1), E(i− 1, j), and E(i, j − 1) are
needed to fill in E(i, j). (b) The final table of values found by dynamic programming.

(a)

i

j − 1 j

i − 1

m GOAL

n

(b)

P O L Y N O M I A L
0 1 2 3 4 5 6 7 8 9 10

E 1 1 2 3 4 5 6 7 8 9 10
X 2 2 2 3 4 5 6 7 8 9 10
P 3 2 3 3 4 5 6 7 8 9 10
O 4 3 2 3 4 5 5 6 7 8 9
N 5 4 3 3 4 4 5 6 7 8 9
E 6 5 4 4 4 5 5 6 7 8 9
N 7 6 5 5 5 4 5 6 7 8 9
T 8 7 6 6 6 5 5 6 7 8 9
I 9 8 7 7 7 6 6 6 6 7 8
A 10 9 8 8 8 7 7 7 7 6 7
L 11 10 9 8 9 8 8 8 8 7 6

for i = 0, 1, 2, . . . ,m:
E(i, 0) = i

for j = 1, 2, . . . , n:
E(0, j) = j

for i = 1, 2, . . . ,m:
for j = 1, 2, . . . , n:

E(i, j) = min{E(i − 1, j) + 1, E(i, j − 1) + 1, E(i − 1, j − 1) + diff(i, j)}
return E(m,n)

This procedure fills in the table row by row, and left to right within each row. Each entry takes
constant time to fill in, so the overall running time is just the size of the table, O(mn).

And in our example, the edit distance turns out to be 6:

E X P O N E N − T I A L
− − P O L Y N O M I A L

The underlying dag
Every dynamic program has an underlying dag structure: think of each node as representing a
subproblem, and each edge as a precedence constraint on the order in which the subproblems
can be tackled. Having nodes u1, . . . , uk point to v means “subproblem v can only be solved
once the answers to u1, . . . , uk are known.”
In our present edit distance application, the nodes of the underlying dag correspond to

subproblems, or equivalently, to positions (i, j) in the table. Its edges are the precedence
constraints, of the form (i−1, j) → (i, j), (i, j−1) → (i, j), and (i−1, j−1) → (i, j) (Figure 6.5).
In fact, we can take things a little further and put weights on the edges so that the edit
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E[k, l] = min(E[k − 1, l] + DC(x[k]), // ↓
E[k, l − 1] + IC(y[l]), //→
E[k − 1, l − 1] + SC(x[k], y[l])) //↘
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Towards a dynamic programming solution (5)Figure 6.5 The underlying dag, and a path of length 6.

P O L Y N O M A LI

E
X
P
O
N
E
N
T

A
L

I

distances are given by shortest paths in the dag! To see this, set all edge lengths to 1, except
for {(i − 1, j − 1) → (i, j) : x[i] = y[j]} (shown dotted in the figure), whose length is 0. The
final answer is then simply the distance between nodes s = (0, 0) and t = (m,n). One possible
shortest path is shown, the one that yields the alignment we found earlier. On this path, each
move down is a deletion, each move right is an insertion, and each diagonal move is either a
match or a substitution.
By altering the weights on this dag, we can allow generalized forms of edit distance, in

which insertions, deletions, and substitutions have different associated costs.

168

E[k, l] = min(E[k − 1, l] + DC(x[k]), E[k, l − 1] + IC(y[l]), E[k − 1, l − 1] + SC(x[k], y[l]))
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Variations

Approximate prefix:
Is y approx. prefix of x?

Decide based on

max1≤k≤mE[k, n]

Approximate suffix:
Initialize E[k, 0] = 0, use E[m, n] to determine if y is an approximate suffix of x

Approximate substring:
Initialize E[k, 0] = 0, use max1≤k≤mE[k, n] to decide if y is an approx. substring of x .
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More variations

Supporting transpositions:

Use a fourth term within min:

E[k − 2, l − 2] + TC(x[k − 1]x[k], y[l − 1]y[l])

where TC is a small value for transposed characters, and∞ otherwise.
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Similarity Vs Edit-distance

Edit-distance cannot be interpreted on its own, and needs to take into account the
lengths of strings involved.

Similarity can stand on its own.
S[k, l] = max(S[k − 1, l]− DC(x[k]), // ↓

S[k, l − 1]− IC(y[l]), // →
S[k − 1, l − 1]− SC(x[k], y[l])) // ↘

S[0, l] =
S[k, 0] =
SC(r, r) should be negative, while IC and DC should be positive.
Formulations in biology are usually based on similarity
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Edit-distance cannot be interpreted on its own, and needs to take into account the
lengths of strings involved.

Similarity can stand on its own.
S[k, l] = max(S[k − 1, l]− DC(x[k]), // ↓

S[k, l − 1]− IC(y[l]), // →
S[k − 1, l − 1]− SC(x[k], y[l])) // ↘

S[0, l] = −∑l
i=1 IC(y[i])

S[k, 0] = −∑k
i=1 DC(x[i])

SC(r, r) should be negative, while IC and DC should be positive.
Formulations in biology are usually based on similarity
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Global alignment (DNA, proteins, ...)

Similar to edit distance, but uses similarity scores

Gaps are scored differently: a contiguous sequence of n deletions does not get penalized as

much as n times a single deletion. (same applies to insertions.)

Captures the idea that large deletions/insertions are much more likely in nature than many

small ones. (Think of chromosomal crossover during meiotic cell division.)

Obvious formulation to support such gap metrics will lead to more expensive algorithms:

S[k, l] depends on S[k − d, l] and S[k, l − i] for any d < k and i < l. But a more careful

formulation can get back to quadratic time

Quadratic time still too slow for sequence alignment.
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Local alignment

Aimed at identifying local regions of similarity, specifically, the best matches
between subsequences of x and y

S[i, j] now represents the best alignment of some suffix of x[1..i] and y[1..j].

A new term is introduced within max , namely, zero. This means that costs can never
become negative.

In other words, a subsequence does not incur costs because of mismatches
preceding the subsequence.

This change enables regions of similarity to stand out as positive scores.

Initialize F [i, 0] = F [0, j] = 0
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Improvements to ED Algorithm
Linear-space: O(mn) is not so good for large m, n.

Slow in terms of runtime
(Possibly) unacceptable in terms of space usage

If we are only interested in ED, we can use linear space: retain only the last
column computed.
But if want the actual edits, we need O(mn) space with the algorithms
discussed so far.

Linear-space algorithms developed to overcome this problem.

Better overall performance: O(md) space and runtime if the max. distance ≤ d .

In the interest of time, we won’t cover these extensions. They are fairly involved,
but not necessarily hard.
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LCS application: UNIX diff

Each line is considered a “character:”

Number of lines far smaller than number of characters
Difference at the level of lines is easy to convey to users
Much higher degree of confidence when things line up. Leads to better results on
programs.
But does not work that well on document types where line breaks are not

meaningful, e.g., text files where each paragraph is a line.

Aligns lines that are preserved.

The edits are then printed in the familiar “diff” format.
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LCS applications: version control, patch,...

Software patches often distributed as “diffs.” Programs such as patch can apply
these patches to source code or any other file.

Concurrent updates in version control systems are resolved using LCS.

Let x be the version in the repository
Suppose that user A checks it out, edits it to get version y

Meanwhile, B also checks out x , edits it to z .
If x −→ y edits target a disjoint set of locations from those targeted by the
x −→ z edits, both edits can be committed; otherwise a conflict is reported.
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Summary

A general approach for optimization problems

Applicable in the presence of:

Optimal substructure

A natural ordering among subproblems

Numerous subproblems (often, exponential), but only some (polynomial number) are

distinct
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