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Intro LIS Knapsack Chain MM LCS Overview

Overview

@ Another approach for optimization problems, more general and versatile than greedy
algorithms.

e Optimal substructure The optimal solution contains optimal solutions to

subproblems.

@ Overlapping subproblems. Typically, the same subproblems are solved repeatedly.

@ Solve subproblems in a certain order, and remember solutions for later reuse.
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Intro LIS Knapsack Chain MM LCS Overview

DAGs and Dynamic Programming

e Canonical way to represent dynamic programming
Nodes in the DAG represent subproblems
Edges capture dependencies between subproblems
Topological sorting solves subproblems in the right order

Remember subproblem solutions to avoid recomputation
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Intro LIS Knapsack Chain MM LCS Overview

DAGs and Dynamic Programming

e Canonical way to represent dynamic programming
Nodes in the DAG represent subproblems
Edges capture dependencies between subproblems
Topological sorting solves subproblems in the right order

Remember subproblem solutions to avoid recomputation

@ Many bottom-up computations on trees/dags are instances of dynamic programming
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Intro LIS Knapsack Chain MM LCS Overview

DAGs and Dynamic Programming

e Canonical way to represent dynamic programming
Nodes in the DAG represent subproblems
Edges capture dependencies between subproblems
Topological sorting solves subproblems in the right order
Remember subproblem solutions to avoid recomputation
@ Many bottom-up computations on trees/dags are instances of dynamic programming

e applies to trees of recursive calls (w/ duplication), e.g., Fib
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Intro LIS Knapsack Chain MM LCS Overview

DAGs and Dynamic Programming

e Canonical way to represent dynamic programming
Nodes in the DAG represent subproblems
Edges capture dependencies between subproblems
Topological sorting solves subproblems in the right order

Remember subproblem solutions to avoid recomputation

@ Many bottom-up computations on trees/dags are instances of dynamic programming

e applies to trees of recursive calls (w/ duplication), e.g., Fib

@ For problems in other domains, DAGs are implicit, as is the topological sort.
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Given a sequence a;, a,, . . ., ay, its LIS is a sequence

aj, Ajy, - - -, Ajy,

that maximizes k subject to i; < i;;; and a; < a; .
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Intro LIS Knapsack Chain MM LCS DAG Formulation Algorithm

Casting LIS problem using a DAG

Nodes: represent elements in the sequence
Edges: connect an element to all followers that are larger
Topological sorting: sequence already topologically sorted

Remember: Using an array L[1..n]
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for j=1to ndo
L[[] =1+ maX(,-,j)e,_:L[i]

return max;_, L[]]




for j=1to ndo
L[[] =1+ maX(,-,j)e,_:L[i]

return max;_, L[]]
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Intro LIS Knapsack Chain MM LCS DAG Formu lation  Algorithm

Algorithm for LIS

LIS(E)
for j=1tondo
L[j] = 1+ max; jjceL[i]

return max;_,L[j]

Complexity: What is it? Can it be improved?
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@ You have a choice of items you can pack in the sack

@ Maximize value of sack, subject to a weight limit of W

|| item | calories/Ib | weight ||

cucumber
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Intro LIS Knapsack Chain MM LCS Knapsack w/ Repetition 0-1 Knapsack Memoization

Knapsack Problem (Recap)

@ You have a choice of items you can pack in the sack

@ Maximize value of sack, subject to a weight limit of W

H item ‘ calories/Ib | weight H
bread 1100 5
butter 3300 1
tomato 80 1
cucumber 55 2

Fractional knapsack: Fractional quantities acceptable
0-1 knapsack: Take all of one item or none at all

Knapsack w/ repetition: Take any integral number of items.
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Intro LIS Knapsack Chain MM LCS

Knapsack Problem (Recap)

Knapsack w/ Repetition 0-1 Knapsack Memoization

@ You have a choice of items you can pack in the sack

@ Maximize value of sack, subject to a weight limit of W

H item

‘ calories/Ib | weight H

bread
butter
tomato
cucumber

1100
3300
80
55

5

1
1
2

Fractional knapsack: Fractional quantities acceptable

0-1 knapsack: Take all of one item or none at all
Knapsack w/ repetition: Take any integral number of items.

No polynomial solution for the last two, but dynamic programming can solve them in

pseudo-polynomial time of O(nW).
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e Consider subproblems by reducing the weight
o Compute K(W) in terms of K(W’) for W < W
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Intro LIS Knapsack Chain MM LCS Knapsack w/ Repetition 0-1 Knapsack Memoization

Knapsack w/ repetition: Identify subproblems

e Consider subproblems by reducing the weight
o Compute K(W) in terms of K(W’) for W < W

@ Which W’ values to consider?
e Since the ith item has a weight w;, we should consider only W — w; for different i.
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Intro LIS Knapsack Chain MM LCS Knapsack w/ Repetition 0-1 Knapsack Memoization

Knapsack w/ repetition: Identify subproblems

e Consider subproblems by reducing the weight
o Compute K(W) in terms of K(W’) for W < W

@ Which W’ values to consider?

e Since the ith item has a weight w;, we should consider only W — w; for different i.

e Optimal substructure: If K(W) is the optimal solution and it includes item i, then
K(W) = K(W— W,') + Vi
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K[o] =0
for w =1to Wdo

Klw] = maxi<icnwiij<w(K[w — wlil] + v[i])
return K[W]
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K[o] =0
for w =1to Wdo

Klw] = maxi<icnwiij<w(K[w — wlil] + v[i])
return K[W]

o Fills the array K from left-to-right
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K[o] =0
for w =1to Wdo

Klw] = maxi<icnwiij<w(K[w — wlil] + v[i])
return K[W]

o Fills the array K from left-to-right

o If you construct the dag explicitly, you will see that we are looking for the longest path!
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Intro LIS Knapsack Chain MM LCS Knapsack w/ Repetition 0-1 Knapsack Memoization

Knapsack w/ repetition

KnapWithRep(w, v, n, W)
K[0o] =0
for w =1to W do
Kw] = maxcicniico(KIw — wlill + v11)
return K[W]

o Fills the array K from left-to-right

o If you construct the dag explicitly, you will see that we are looking for the longest path!

@ Runtime: Outer loop iterates W times, max takes O(n) time, for a total of O(nW)
time
e Not polynomial: input size logarithmic (not linear) in W.
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Previous algorithm does not work. We need to keep track of which items have been

used up.
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Previous algorithm does not work. We need to keep track of which items have been

used up.

Key idea: Define 2-d array K[u, j] which computes optimal value for weight u

achievable using items 1..j
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Intro LIS Knapsack Chain MM LCS Knapsack w/ Repetition 0-1 Knapsack Memoization

0-1 Knapsack

Previous algorithm does not work. We need to keep track of which items have been

used up.

Key idea: Define 2-d array K[u, j] which computes optimal value for weight u
achievable using items 1..j

e K][u,j] can be computed from K[_, j — 1]
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Intro LIS Knapsack Chain MM LCS Knapsack w/ Repetition 0-1 Knapsack Memoization

0-1 Knapsack

Previous algorithm does not work. We need to keep track of which items have been

used up.

Key idea: Define 2-d array K[u, j] which computes optimal value for weight u
achievable using items 1..j
e K][u,j] can be computed from K[_, j — 1]
o Either item j is not included in the optimal solution. Then K{u, j] = K[u, j—1]
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Intro LIS Knapsack Chain MM LCS Knapsack w/ Repetition 0-1 Knapsack Memoization

0-1 Knapsack

Previous algorithm does not work. We need to keep track of which items have been

used up.

Key idea: Define 2-d array K[u, j] which computes optimal value for weight u
achievable using items 1..j
e K][u,j] can be computed from K[_, j — 1]
o Either item j is not included in the optimal solution. Then K{u, j] = K[u, j—1]
o Or, jisincluded, so K[u, j] = v[j] + K[u—w][j],j—1]
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Intro LIS Knapsack Chain MM LCS Knapsack w/ Repetition 0-1 Knapsack Memoization

0-1 Knapsack

Previous algorithm does not work. We need to keep track of which items have been

used up.
Key idea: Define 2-d array K[u, j] which computes optimal value for weight u

achievable using items 1..j

e K][u,j] can be computed from K[_, j — 1]
o Either item j is not included in the optimal solution. Then K{u, j] = K[u, j—1]

o Or, jisincluded, so K[u, j] = v[j] + K[u—w][j],j—1]

@ So, fill up the array K as j goes from 1to n
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Intro LIS Knapsack Chain MM LCS Knapsack w/ Repetition 0-1 Knapsack Memoization

0-1 Knapsack

Previous algorithm does not work. We need to keep track of which items have been

used up.

Key idea: Define 2-d array K[u, j] which computes optimal value for weight u
achievable using items 1..j
e K][u,j] can be computed from K[_, j — 1]
o Either item j is not included in the optimal solution. Then K{u, j] = K[u, j—1]
o Or, jisincluded, so K[u, j] = v[j] + K[u—w][j],j—1]
@ So, fill up the array K as j goes from 1to n

@ For each j, fill K as u goes from 1to W
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K[u,0] = K[0,]] =0,V1<u< W,1<j<n
for j = 1tondo
for u=1to Wdo
if w[j] > uthen K[u,j] = K[u,j—1]
else K[u, j| = max(K[u, j—1],
Klu—wli, j— 1] + vIj)
return K[W, n
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Intro LIS Knapsack Chain MM LCS Knapsack w/ Repetition 0-1 Knapsack Memoization

0-1 Knapsack Algorithm

Knap01(w, v, n, W)
K[u,0] = K[0,/]] =0,V1<u< W,1<j<n
for j=1tondo
for u=1to Wdo
if w[j] > uthen K[u,j] = K[u,j—1]
else K[u, j| = max(K[u, j—1],
Klu—wlil,j— 1] + i)
return K[W, n]

Runtime: As compared to unbounded knapsack, we have a nested loop here, but the

inner loop now executes in O(1) time. So runtime is still O(nW)
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Intro LIS Knapsack Chain MM LCS Knapsack w/ Repetition 0-1 Knapsack Memoization

Recursive formulation of Dynamic programming

@ Recursive formulation can often simplify algorithm presentation, avoiding need for
explicit scheduling
o Dependencies between subproblems can be left implicit an equation such as
Kw] = K[w — w[j]] + v[j]
o A call to compute K[w] will automatically result in a call to compute K[w — w[j]] because
of dependency

e Can avoid solving (some) unneeded subproblems
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Intro LIS Knapsack Chain MM LCS Knapsack w/ Repetition 0-1 Knapsack Memoization

Recursive formulation of Dynamic programming

@ Recursive formulation can often simplify algorithm presentation, avoiding need for
explicit scheduling
o Dependencies between subproblems can be left implicit an equation such as
Kw] = K[w — w[j]] + v[j]
o A call to compute K[w] will automatically result in a call to compute K[w — w[j]] because
of dependency

e Can avoid solving (some) unneeded subproblems

e Memoization: Remember solutions to function calls so that repeat invocations can

use previously returned solutions
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Intro LIS Knapsack Chain MM LCS Knapsack w/ Repetition 0-1 Knapsack Memoization

Recursive 0-1 Knapsack Algorithm

BestVal01(u, j)
ifu=0o0r;j=0return0
if w[j] > ureturn BestVal01(u,j—1)
else return max(BestVal01(u, j—1), v[j] + BestValo1(u— w[j],j—1))

@ Much simpler in structure than iterative version

@ Unneeded entries are not computed, e.g. BestVal01(3,_) when all weights involved

are even

@ Exercise: Write a recursive version of ChainMM.

Note: m;’s give us the dimension of matrices, specifically, M; is an m;_; X m; matrix
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Intro LIS Knapsack Chain MM LCS Knapsack w/ Repetition 0-1 Knapsack Memoization

Recursive 0-1 Knapsack Algorithm

BestVal01(u, j)
ifu=0o0r;j=0return0
if w[j] > ureturn BestVal01(u,j—1)
else return max(BestVal01(u, j—1), v[j] + BestValo1(u— w[j],j—1))

@ Much simpler in structure than iterative version

@ Unneeded entries are not computed, e.g. BestVal01(3,_) when all weights involved

are even

@ Exercise: Write a recursive version of ChainMM.

Note: m;’s give us the dimension of matrices, specifically, M; is an m;_; X m; matrix

Complexity: O(n®)
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Intro LIS Knapsack Chain MM LCS Knapsack w/ Repetition 0-1 Knapsack Memoization

Key step in Dyn. Prog.: Identifying subproblems

i. The input is =, x2, - .., x, and a subproblem is =1, x2, ..., x;.

l X1 o 3 g s e ‘ X7 s o 10

The number of subproblems is therefore linear.

ii. The inputis xi,...,x,, and yi, ..., ¥Ym- A subproblem is x, ...,x; and y1,...,%;-

l X X2 3 LXa s e ‘ X rs o 10

l Y1 Y2 Ys Ya Ys ‘ Ye Y7 Ys

The number of subproblems is O ().

iii. The inputis x,...,x, and a subproblem is x;, x; 1, ..., % .

xq To xs aza xs Te xrr Xs g X110

The number of subproblems is O(7n2?2).

iv. The input is a rooted tree. A subproblem is a rooted subtree.
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(a) (b)
I x I x == x [T x i «~
A B @ D A BxC D
50 x 20 20x1 1x10 10 x 100 50 x 20 20 x 10 10 x 100
(c) (d)
I .
Ax (B xC) (Ax(BxC))xD
50 x 10 10 x 100 50 x 100
Parenthesization Cost computation Cost
AX ((Bx )Y xD)120-1-104+20-10-100-+50-20-100 | 120,200
|C'reedy (AXx(BxC)xD|20-1-10+50-20-10+50-10-100 60, 200
(AxB)x (CxD)| 50-20-1+1-10-100+50-1-100 | 7,000
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Intro LIS Knapsack Chain MM LCS

Chain MM: Formulating Optimal Solution

Consider outermost multiplication: (M; x -+ x M;) X (Mj41 X -+ X M,) — we could

compute j using dynamic programming

Optimal substructure: Note that the optimal solution for
(My X -+ X M;) x (Mj4q X - -+ X M,) must rely on optimal solutions to
My x -+ x Mjand Mj4 X - -+ x M, — or else we could improve the overall

solution still

Cost function: This suggests a cost function C[k, [] to denote the optimal cost of
M X -+ X M,
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Figure 6.7 (a) (Ax B) x C) x D; (b) Ax ((B x C) x D); (¢) (Ax (BxC))x D.

@ Subproblems correspond to one of the subtrees
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Intro LIS Knapsack Chain MM LCS

Chain MM: Formulating Optimal Solution

Figure 6.7 (a) (A x B) x C) x D; (b) Ax ((BxC)x D); (¢) (Ax (BxC))xD.

@ Subproblems correspond to one of the subtrees

@ Since order of multiplications can’t be changed, each subtree must correspond to a

“substring” of multiplications, i.e., M X - -+ X M,
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Intro LIS Knapsack Chain MM LCS

Chain MM Algorithm

chainMM(m, n)
Cli,ij=0v1<i<n
for s=1ton— 1do
for k=1ton—sdo
[=k+s
Clk, | = ming<i<((Clk, il + C[i + 1, ] + my_y * m; * my)
return C[1,n]

@ Recall: subproblems correspond to substrings: My x --- x M,
@ We iterate in increasing order of substring length

e sgoes from 1to n— 1 and represents substring length minus 1.
@ Substrings of same lengths are considered left to right,

o k goes from 1to n— s and represents the starting position of substring
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Cli,ij=0V1<i<n

for s=1ton— 1do

for k=1ton—sdo
[=k+s
Clk, (| = ming<;<((Clk, i] + C[i + 1, ] + my_ % m; * m;)
return C[1,n]

Note: m;’s give us the dimension of matrices, specifically, M; is an m;_; X m; matrix
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Cli,ij=0V1<i<n

for s=1ton— 1do

for k=1ton—sdo
[=k+s
Clk, (| = ming<;<((Clk, i] + C[i + 1, ] + my_ % m; * m;)
return C[1,n]

Note: m;’s give us the dimension of matrices, specifically, M; is an m;_; X m; matrix

Complexity: O(n?)
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A sequence a[1..m] is a subsequence of b[1..n] occurring at position r if there exist
i1, ..., i such that afr..(r4+[ — 1)] = b[i1]b[ix] - - - blif], where i; < i}
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Intro LIS Knapsack Chain MM LCS Defn Towards Soln. Variations Seq. Alignment UNIX apps

Subsequence

Definition
A sequence a[1..m] is a subsequence of b[1..n] occurring at position r if there exist
i1, ..., iy such that a[r..(r+{ — 1)] = b[i1]b[ix] - - - b[if], where i; < i;44

The relative order of elements is preserved in a subsequence, but unlike a substring,

the elements needs not be contiguous.
Example: BDEFH) is a subsequence of ABCDEFGHIJK
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The LCS of two sequences x[1..m] and y[1..n] is the longest sequence z[1..k] that is a

subsequence of both x and y.
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The LCS of two sequences x[1..m] and y[1..n] is the longest sequence z[1..k] that is a

subsequence of both x and y.

Example: BEHJ is a common subsequence of ABCDEFGHIJKLM and AABBXEJH]Z
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Intro LIS Knapsack Chain MM LCS Defn Towards Soln. Variations Seq. Alignment UNIX apps

Longest Common Subsequence

Definition (LCS)
The LCS of two sequences x[1..m] and y[1..n] is the longest sequence z[1..k] that is a

subsequence of both x and y.

Example: BEHJ is a common subsequence of ABCDEFGHIJKLM and AABBXEJH]Z
By aligning elements of z with the corresponding elements of x and y, we can

compare x and y
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Intro LIS Knapsack Chain MM LCS Defn Towards Soln. Variations Seq. Alignment UNIX apps

Longest Common Subsequence

Definition (LCS)
The LCS of two sequences x[1..m| and y[1..n] is the longest sequence z[1..k] that is a

subsequence of both x and y.

Example: BEHJ is a common subsequence of ABCDEFGHIJKLM and AABBXEJH]Z
By aligning elements of z with the corresponding elements of x and y, we can

compare x and y
x: P R OF - ES S O R
z: P R OF —-— E S -— - R
y: P R OF Fp E S —ga Uuw R
to identify edit operations (insert/delete/substitute) operations needed to map x to y
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Given sequences x and y and functions /, D and S that associate costs with each

insert, delete and substitute operations, what is the minimum cost of any the edit

sequence that transforms x into y.
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Intro LIS Knapsack Chain MM LCS Defn Towards Soln. Variations Seq. Alignment UNIX apps

Edit (Levenshtein) distance

Definition (ED)

Given sequences x and y and functions /, D and S that associate costs with each

insert, delete and substitute operations, what is the minimum cost of any the edit

sequence that transforms x into y.

Applications

Spell correction (Levenshtein automata)

diff

In the context of version control, reconcile/merge concurrent updates by different
users.

DNA sequence alignment, evolutionary trees and other applications in

computational biology
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What subproblems to consider?
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What subproblems to consider?

o Just like the LIS problem, we proceed from left to right, i.e., compute L[j] as j goes

from1to n
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Intro LIS Knapsack Chain MM LCS Defn Towards Soln. Variations Seq. Alignment UNIX apps

Towards a dynamic programming solution (1)

What subproblems to consider?
@ Just like the LIS problem, we proceed from left to right, i.e., compute L[] as j goes

from1to n

@ But there are two strings x and y for LCS, so the subproblems correspond to
prefixes of both x and y — there are O(mn) such prefixes.
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Intro LIS Knapsack Chain MM LCS Defn Towards Soln. Variations Seq. Alignment UNIX apps

Towards a dynamic programming solution (1)

What subproblems to consider?

@ Just like the LIS problem, we proceed from left to right, i.e., compute L[] as j goes
from1to n

@ But there are two strings x and y for LCS, so the subproblems correspond to

prefixes of both x and y — there are O(mn) such prefixes.

[EXPONEN]|TIAL

[POLYNJOMIAL

The subproblem above can be represented as E[7, 5].

E[i, j] represents the edit distance of x[1..i] and y[1..j]
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For E[k, [], consider the following possibilities:
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Intro LIS Knapsack Chain MM LCS Defn Towards Soln. Variations Seq. Alignment UNIX apps

Towards a dynamic programming solution (2)

For E[k, [], consider the following possibilities:
e x[k] = y[l]: in this case, E[k, [] = E[k — 1, — 1] — the edit distance has not

increased as we extend the string by one character, since these characters match
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Intro LIS Knapsack Chain MM LCS Defn Towards Soln. Variations Seq. Alignment UNIX apps

Towards a dynamic programming solution (2)

For E[k, [], consider the following possibilities:
e x[k] = y[l]: in this case, E[k, [] = E[k — 1, — 1] — the edit distance has not
increased as we extend the string by one character, since these characters match

o x[k] # y[l]: Three possibilities
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Intro LIS Knapsack Chain MM LCS Defn Towards Soln. Variations Seq. Alignment UNIX apps

Towards a dynamic programming solution (2)

For E[k, [], consider the following possibilities:
e x[k] = y[l]: in this case, E[k, [] = E[k — 1, — 1] — the edit distance has not
increased as we extend the string by one character, since these characters match
o x[k] # y|[l]: Three possibilities
o extend E[k — 1, [] by deleting x[k]:
o E[k, ] = E[k — 1,1 + DC(x[K])
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Intro LIS Knapsack Chain MM LCS Defn Towards Soln. Variations Seq. Alignment UNIX apps

Towards a dynamic programming solution (2)

For E[k, [], consider the following possibilities:
e x[k] = y[l]: in this case, E[k, [] = E[k — 1, — 1] — the edit distance has not
increased as we extend the string by one character, since these characters match
o x[k] # y|[l]: Three possibilities
o extend E[k — 1, (] by deleting x[k]:
o E[k, ] = E[k — 1,1 + DC(x[K])
o extend E[k, [ — 1] by inserting y[[]:
o E[k.[] = E[k, [ — 1]+ IC(y[0])
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Intro LIS Knapsack Chain MM LCS Defn Towards Soln. Variations Seq. Alignment UNIX apps

Towards a dynamic programming solution (2)

For E[k, [], consider the following possibilities:
e x[k] = y[l]: in this case, E[k, [] = E[k — 1, — 1] — the edit distance has not
increased as we extend the string by one character, since these characters match

o x[k] # y|[l]: Three possibilities
o extend E[k — 1, (] by deleting x[k]:
o E[k, [ = E[k — 1, 1] + DC(x[K])
o extend E[k, [ — 1] by inserting y[[]:
o Elk, (] = E[k, [— 1]+ IC(y[0])
o extend E[k — 1, [ — 1] by substituting x[k] with y[[]:
o E[k,[] = E[k — 1,{— 1] + SC(x[K], y[0)
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Intro LIS Knapsack Chain MM LCS Defn Towards Soln. Variations Seq. Alignment UNIX apps

Towards a dynamic programming solution (3)

E[k,[| = min( E[k —1,[]+ DC(x[K]), /114
Elk, [ — 1]+ IC(y[1]), /] —
Elk — 1,1 — 1]+ SC(x[k], y[1])) 1/ \,

E[0.] = Y, IC(y[i)

E[k,0] = Y, DC(x]i])

Edit distance = E[m, n]

(Recall: m and n are lengths of strings x and y)
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Intro LIS Knapsack Chain MM LCS Defn Towards Soln. Variations Seq. Alignment UNIX apps

Towards a dynamic programming solution (4)

j—1j n P OLY NOMTIA AL
0 1 2 3 4 5 6 7 8 9 10
E{1 1 2 3 4 5 6 7 8 9 10
X|2 2 2 3 4 5 6 7 8 9 10
P|3 2 3 3 4 5 6 7 8 9 10
d— L | Ol4 3 2 3 4 5 5 6 7 8 9
; R Ni5 4 3 3 4 4 5 6 7 8 9
E|{6 5 4 4 4 5 5 6 7 8 9
N(7 6 5 5 5 4 5 6 7 8 9
T|8 7 6 6 6 5 5 6 7 8 9
1|9 8 7 7 7 6 6 6 6 7 8
. conL Al10 9 8 8 8 7 7 7 7 6 7
L|11 10 9 8 9 8 8 8 8 7 6
Elk,l] = min(E[k — 1,{] + DC(x[k]), 4

Elk, [ — 1] + IC(y[0), /=
Elk — 1,0 — 1] + SC(x[K], y[)) 1/ \s
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Intro LIS Knapsack Chain MM LCS

Towards a dynamic programming solution (5)

Defn Towards Soln. Variations Seq. Alignment UNIX apps

Elk,l] = min(E[k — 1,[] + DC

E
X
P
0
N
E
N
T
I
A
L

(x

POLYNOMTIATL

[ ])7 E[k, [ - 1] + ’C(y[ll), E[k — 1,1 1]+ SC(x[k], y[0))
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Approximate prefix:

Is y approx. prefix of x?
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Approximate prefix:

Is y approx. prefix of x? Decide based on

max1§k§mE[k, n]
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Approximate prefix:

Is y approx. prefix of x? Decide based on

max1§k§mE[k, n]

Approximate suffix:

Initialize E[k, 0] = 0, use E[m, n] to determine if y is an approximate suffix of x
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Approximate prefix:

Is y approx. prefix of x? Decide based on

max1§k§mE[k, n]

Approximate suffix:

Initialize E[k, 0] = 0, use E[m, n] to determine if y is an approximate suffix of x

Approximate substring:
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Variations

Approximate prefix:

Is y approx. prefix of x? Decide based on

maxi<k<mE[k, n]

Approximate suffix:

Initialize E[k, 0] = 0, use E[m, n] to determine if y is an approximate suffix of x

Approximate substring:

Initialize E[k, 0] = 0, use max,<x<nE[k, n] to decide if y is an approx. substring of x.

70/93



Supporting transpositions:
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Supporting transpositions:

Use a fourth term within min:
Elk — 2,1 2] + TC(x[k — 1]x[k], y[l — 1]y[])

where TC is a small value for transposed characters, and co otherwise.
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Similarity Vs Edit-distance

Edit-distance cannot be interpreted on its own, and needs to take into account the

lengths of strings involved.

Similarity can stand on its own.

S[k, ] = max(S[k — 1, (] — DC(x[k]), /4
S[k, [ — 1] — IC(y[]]), /] —
S[k—1,1— 1] — SC(x[k], y[(])) //\y

S[o, [] =

S[k,0] =

@ SC(r, r) should be negative, while IC and DC should be positive.

@ Formulations in biology are usually based on similarity
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Similarity Vs Edit-distance

Edit-distance cannot be interpreted on its own, and needs to take into account the

lengths of strings involved.

Similarity can stand on its own.
S[k, ] = max(S[k — 1, (] — DC(x[k]), /4
S[k, L — 1] — IC(y[1]), /=
S[k—1,1— 1] — SC(x[k], y[(])) //\y
S0, 0= — XL, re(yl)
S[k.0) = — -, DC(x[1)
@ SC(r, r) should be negative, while IC and DC should be positive.

@ Formulations in biology are usually based on similarity
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@ Similar to edit distance, but uses similarity scores
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@ Similar to edit distance, but uses similarity scores

@ Gaps are scored differently: a contiguous sequence of n deletions does not get penalized as

much as n times a single deletion. (same applies to insertions.)
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Global alignment (DNA, proteins, ...)

@ Similar to edit distance, but uses similarity scores

@ Gaps are scored differently: a contiguous sequence of n deletions does not get penalized as

much as n times a single deletion. (same applies to insertions.)

@ Captures the idea that large deletions/insertions are much more likely in nature than many

small ones. (Think of chromosomal crossover during meiotic cell division.)
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Global alignment (DNA, proteins, ...)

@ Similar to edit distance, but uses similarity scores

@ Gaps are scored differently: a contiguous sequence of n deletions does not get penalized as

much as n times a single deletion. (same applies to insertions.)

@ Captures the idea that large deletions/insertions are much more likely in nature than many

small ones. (Think of chromosomal crossover during meiotic cell division.)

@ Obvious formulation to support such gap metrics will lead to more expensive algorithms:
S[k, [] depends on S[k — d, [] and S[k, [ — i] for any d < k and i < [. But a more careful

formulation can get back to quadratic time
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Global alignment (DNA, proteins, ...)

@ Similar to edit distance, but uses similarity scores

@ Gaps are scored differently: a contiguous sequence of n deletions does not get penalized as

much as n times a single deletion. (same applies to insertions.)

@ Captures the idea that large deletions/insertions are much more likely in nature than many

small ones. (Think of chromosomal crossover during meiotic cell division.)

@ Obvious formulation to support such gap metrics will lead to more expensive algorithms:
S[k, [] depends on S[k — d, [] and S[k, [ — i] for any d < k and i < [. But a more careful

formulation can get back to quadratic time

Quadratic time still too slow for sequence alignment.
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e Aimed at identifying local regions of similarity, specifically, the best matches

between subsequences of x and y
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e Aimed at identifying local regions of similarity, specifically, the best matches

between subsequences of x and y

@ S[i,j] now represents the best alignment of some suffix of x[1..i] and y[1..j].
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Local alignment

@ Aimed at identifying local regions of similarity, specifically, the best matches

between subsequences of x and y
@ S[i,j] now represents the best alignment of some suffix of x[1..i] and y[1..j].

@ A new term is introduced within max, namely, zero. This means that costs can never

become negative.

@ In other words, a subsequence does not incur costs because of mismatches

preceding the subsequence.
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Local alignment

Aimed at identifying local regions of similarity, specifically, the best matches

between subsequences of x and y

S[i, j] now represents the best alignment of some suffix of x[1..i] and y[1..j].

@ A new term is introduced within max, namely, zero. This means that costs can never

become negative.

In other words, a subsequence does not incur costs because of mismatches

preceding the subsequence.

(]

This change enables regions of similarity to stand out as positive scores.
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Local alignment

@ Aimed at identifying local regions of similarity, specifically, the best matches

between subsequences of x and y
@ S[i,j] now represents the best alignment of some suffix of x[1..i] and y[1..j].

@ A new term is introduced within max, namely, zero. This means that costs can never

become negative.

@ In other words, a subsequence does not incur costs because of mismatches

preceding the subsequence.
e This change enables regions of similarity to stand out as positive scores.
e Initialize F[i,0] = F[0,j] =0
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Inear-space: I1s not so good for large m, n.
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inear-space: is not so good for large m, n.
Slow in terms of runtime

(Possibly) unacceptable in terms of space usage
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Improvements to ED Algorithm

Linear-space: O(mn) is not so good for large m, n.
Slow in terms of runtime
(Possibly) unacceptable in terms of space usage

o If we are only interested in ED, we can use linear space: retain only the last
column computed.

e But if want the actual edits, we need O(mn) space with the algorithms
discussed so far.

Linear-space algorithms developed to overcome this problem.
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Improvements to ED Algorithm

Linear-space: O(mn) is not so good for large m, n.
Slow in terms of runtime
(Possibly) unacceptable in terms of space usage

o If we are only interested in ED, we can use linear space: retain only the last
column computed.

e But if want the actual edits, we need O(mn) space with the algorithms
discussed so far.

Linear-space algorithms developed to overcome this problem.
Better overall performance: O(md) space and runtime if the max. distance < d.

In the interest of time, we won’t cover these extensions. They are fairly involved,
but not necessarily hard.
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LCS application: UNIX diff

Each line is considered a “character:”
@ Number of lines far smaller than number of characters
e Difference at the level of lines is easy to convey to users
@ Much higher degree of confidence when things line up. Leads to better results on
programs.
But does not work that well on document types where line breaks are not

meaningful, e.g., text files where each paragraph is a line.

Aligns lines that are preserved.

@ The edits are then printed in the familiar “diff” format.
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Software patches often distributed as “diffs” Programs such as patch can apply

these patches to source code or any other file.
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Software patches often distributed as “diffs” Programs such as patch can apply

these patches to source code or any other file.

Concurrent updates in version control systems are resolved using LCS.
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LCS applications: version control, patch,...

Software patches often distributed as “diffs.” Programs such as patch can apply

these patches to source code or any other file.

Concurrent updates in version control systems are resolved using LCS.
@ Let x be the version in the repository
@ Suppose that user A checks it out, edits it to get version y
@ Meanwhile, B also checks out x, edits it to z.
o If x — y edits target a disjoint set of locations from those targeted by the

x — z edits, both edits can be committed; otherwise a conflict is reported.
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o A general approach for optimization problems

e Applicable in the presence of:
e Optimal substructure
e A natural ordering among subproblems
e Numerous subproblems (often, exponential), but only some (polynomial number) are

distinct
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