
Warmup Sorting Selection Multiplication

CSE 548: Algorithms
Fall 2022

R. Sekar

1 / 89

Warmup Sorting Selection Multiplication Overview Search Exponentiation

Divide-and-Conquer: A versatile strategy

Steps

Break a problem into

subproblems that are smaller

instances of the same problem

Recursively solve these

subproblems

Combine these answers to obtain

the solution to the problem

Benefits

Conceptual simplification

Speed up:

rapidly (exponentially) reduce problem space

exploit commonalities in subproblem solutions

Parallelism: Divide-and-conquer algorithms are

amenable to parallelization

Locality: Their depth-first nature increases locality,

extremely important for today’s processors.

2 / 89

Warmup Sorting Selection Multiplication Overview Search Exponentiation

Divide-and-Conquer: A versatile strategy

Steps

Break a problem into

subproblems that are smaller

instances of the same problem

Recursively solve these

subproblems

Combine these answers to obtain

the solution to the problem

Benefits

Conceptual simplification

Speed up:

rapidly (exponentially) reduce problem space

exploit commonalities in subproblem solutions

Parallelism: Divide-and-conquer algorithms are

amenable to parallelization

Locality: Their depth-first nature increases locality,

extremely important for today’s processors.

3 / 89

Warmup Sorting Selection Multiplication Overview Search Exponentiation

Topics

1. Warmup
Overview
Search
Exponentiation

2. Sorting
Mergesort

Recurrences
Quicksort
Lower Bound
Radix sort

3. Selection
Select k-th min

Priority Queues

4. Multiplication
Matrix
Multiplication
Integer
multiplication

4 / 89

Warmup Sorting Selection Multiplication Overview Search Exponentiation

Binary Search

Problem: Find a key k in an ordered collection

Examples: Sorted array A[n]: Compare k with A[n/2], then recursively search in
A[0 · · · (n/2− 1)] (if k < A[n/2]) or A[n/2 · · · n] (otherwise)

Binary search tree T : Compare k with root(T), based on the result, recursively
search left or right subtree of root.

B-Tree: Hybrid of the above two. Root stores an arrayM of m keys, and has m+ 1
children. Use binary search onM to identify which child can contain k,
recursively search that subtree.

5 / 89

Warmup Sorting Selection Multiplication Overview Search Exponentiation

Binary Search

Problem: Find a key k in an ordered collection

Examples: Sorted array A[n]: Compare k with A[n/2], then recursively search in
A[0 · · · (n/2− 1)] (if k < A[n/2]) or A[n/2 · · · n] (otherwise)

Binary search tree T : Compare k with root(T), based on the result, recursively
search left or right subtree of root.

B-Tree: Hybrid of the above two. Root stores an arrayM of m keys, and has m+ 1
children. Use binary search onM to identify which child can contain k,
recursively search that subtree.

6 / 89

Warmup Sorting Selection Multiplication Overview Search Exponentiation

Binary Search

Problem: Find a key k in an ordered collection

Examples: Sorted array A[n]: Compare k with A[n/2], then recursively search in
A[0 · · · (n/2− 1)] (if k < A[n/2]) or A[n/2 · · · n] (otherwise)

Binary search tree T : Compare k with root(T), based on the result, recursively
search left or right subtree of root.

B-Tree: Hybrid of the above two. Root stores an arrayM of m keys, and has m+ 1
children. Use binary search onM to identify which child can contain k,
recursively search that subtree.

7 / 89

Warmup Sorting Selection Multiplication Overview Search Exponentiation

Binary Search

Problem: Find a key k in an ordered collection

Examples: Sorted array A[n]: Compare k with A[n/2], then recursively search in
A[0 · · · (n/2− 1)] (if k < A[n/2]) or A[n/2 · · · n] (otherwise)

Binary search tree T : Compare k with root(T), based on the result, recursively
search left or right subtree of root.

B-Tree: Hybrid of the above two. Root stores an arrayM of m keys, and has m+ 1
children. Use binary search onM to identify which child can contain k,
recursively search that subtree.

8 / 89

Warmup Sorting Selection Multiplication Overview Search Exponentiation

Exponentiation

How many multiplications are required to compute xn?

Can we use a divide-and-conquer approach to make it faster?

9 / 89

Warmup Sorting Selection Multiplication Overview Search Exponentiation

Exponentiation

How many multiplications are required to compute xn?

Can we use a divide-and-conquer approach to make it faster?

10 / 89

Warmup Sorting Selection Multiplication Overview Search Exponentiation

Exponentiation

How many multiplications are required to compute xn?

Can we use a divide-and-conquer approach to make it faster?

ExpBySquaring(n, x)

if n > 1
y = ExpBySquaring(⌊n/2⌋, x2)
if odd(n) y = x ∗ y
return y

else return x

11 / 89

Warmup Sorting Selection Multiplication Mergesort Recurrences Quicksort Lower Bound Radix sort

Merge Sort

Binary search
The ultimate divide-and-conquer algorithm is, of course, binary search: to find a key k in a
large file containing keys z[0, 1, . . . , n− 1] in sorted order, we first compare k with z[n/2], and
depending on the result we recurse either on the first half of the file, z[0, . . . , n/2 − 1], or on
the second half, z[n/2, . . . , n− 1]. The recurrence now is T (n) = T (�n/2�)+ O(1), which is the
case a = 1, b = 2, d = 0. Plugging into our master theorem we get the familiar solution: a
running time of just O(log n).

2.3 Mergesort
The problem of sorting a list of numbers lends itself immediately to a divide-and-conquer
strategy: split the list into two halves, recursively sort each half, and then merge the two
sorted sublists.

function mergesort(a[1 . . . n])
Input: An array of numbers a[1 . . . n]
Output: A sorted version of this array

if n > 1:
return merge(mergesort(a[1 . . .�n/2�]), mergesort(a[�n/2�+ 1 . . . n]))

else:
return a

The correctness of this algorithm is self-evident, as long as a correct merge subroutine is
specified. If we are given two sorted arrays x[1 . . . k] and y[1 . . . l], how do we efficiently merge
them into a single sorted array z[1 . . . k + l]? Well, the very first element of z is either x[1] or
y[1], whichever is smaller. The rest of z[·] can then be constructed recursively.

function merge(x[1 . . . k], y[1 . . . l])
if k = 0: return y[1 . . . l]
if l = 0: return x[1 . . . k]
if x[1] ≤ y[1]:
return x[1] ◦ merge(x[2 . . . k], y[1 . . . l])

else:
return y[1] ◦ merge(x[1 . . . k], y[2 . . . l])

Here ◦ denotes concatenation. This merge procedure does a constant amount of work per
recursive call (provided the required array space is allocated in advance), for a total running
time of O(k + l). Thus merge’s are linear, and the overall time taken by mergesort is

T (n) = 2T (n/2) + O(n),

or O(n log n).

Looking back at the mergesort algorithm, we see that all the real work is done in merg-
ing, which doesn’t start until the recursion gets down to singleton arrays. The singletons are

56

12 / 89

Warmup Sorting Selection Multiplication Mergesort Recurrences Quicksort Lower Bound Radix sort

Merge Sort (Continued)

Binary search
The ultimate divide-and-conquer algorithm is, of course, binary search: to find a key k in a
large file containing keys z[0, 1, . . . , n− 1] in sorted order, we first compare k with z[n/2], and
depending on the result we recurse either on the first half of the file, z[0, . . . , n/2 − 1], or on
the second half, z[n/2, . . . , n− 1]. The recurrence now is T (n) = T (�n/2�)+ O(1), which is the
case a = 1, b = 2, d = 0. Plugging into our master theorem we get the familiar solution: a
running time of just O(log n).

2.3 Mergesort
The problem of sorting a list of numbers lends itself immediately to a divide-and-conquer
strategy: split the list into two halves, recursively sort each half, and then merge the two
sorted sublists.

function mergesort(a[1 . . . n])
Input: An array of numbers a[1 . . . n]
Output: A sorted version of this array

if n > 1:
return merge(mergesort(a[1 . . .�n/2�]), mergesort(a[�n/2�+ 1 . . . n]))

else:
return a

The correctness of this algorithm is self-evident, as long as a correct merge subroutine is
specified. If we are given two sorted arrays x[1 . . . k] and y[1 . . . l], how do we efficiently merge
them into a single sorted array z[1 . . . k + l]? Well, the very first element of z is either x[1] or
y[1], whichever is smaller. The rest of z[·] can then be constructed recursively.

function merge(x[1 . . . k], y[1 . . . l])
if k = 0: return y[1 . . . l]
if l = 0: return x[1 . . . k]
if x[1] ≤ y[1]:
return x[1] ◦ merge(x[2 . . . k], y[1 . . . l])

else:
return y[1] ◦ merge(x[1 . . . k], y[2 . . . l])

Here ◦ denotes concatenation. This merge procedure does a constant amount of work per
recursive call (provided the required array space is allocated in advance), for a total running
time of O(k + l). Thus merge’s are linear, and the overall time taken by mergesort is

T (n) = 2T (n/2) + O(n),

or O(n log n).

Looking back at the mergesort algorithm, we see that all the real work is done in merg-
ing, which doesn’t start until the recursion gets down to singleton arrays. The singletons are

56

13 / 89

Warmup Sorting Selection Multiplication Mergesort Recurrences Quicksort Lower Bound Radix sort

Merge Sort Illustration
Figure 2.4 The sequence of merge operations in mergesort.

2 3 10 1 6 7 135

102 53 137 1 6

2 5 3 7 13 1 610

Input: 10 2 3 1135 7 6

1 6 10 1332 5 7 .

merged in pairs, to yield arrays with two elements. Then pairs of these 2-tuples are merged,
producing 4-tuples, and so on. Figure 2.4 shows an example.

This viewpoint also suggests how mergesortmight be made iterative. At any given mo-
ment, there is a set of “active” arrays—initially, the singletons—which are merged in pairs to
give the next batch of active arrays. These arrays can be organized in a queue, and processed
by repeatedly removing two arrays from the front of the queue, merging them, and putting
the result at the end of the queue.

In the following pseudocode, the primitive operation inject adds an element to the end
of the queue while eject removes and returns the element at the front of the queue.

function iterative-mergesort(a[1 . . . n])
Input: elements a1, a2, . . . , an to be sorted

Q = [] (empty queue)
for i = 1 to n:

inject(Q, [ai])
while |Q| > 1:

inject(Q,merge(eject(Q),eject(Q)))
return eject(Q)

57

14 / 89

Warmup Sorting Selection Multiplication Mergesort Recurrences Quicksort Lower Bound Radix sort

Merge Sort Illustration

Figure 2.4 The sequence of merge operations in mergesort.

2 3 10 1 6 7 135

102 53 137 1 6

2 5 3 7 13 1 610

Input: 10 2 3 1135 7 6

1 6 10 1332 5 7 .

merged in pairs, to yield arrays with two elements. Then pairs of these 2-tuples are merged,
producing 4-tuples, and so on. Figure 2.4 shows an example.

This viewpoint also suggests how mergesortmight be made iterative. At any given mo-
ment, there is a set of “active” arrays—initially, the singletons—which are merged in pairs to
give the next batch of active arrays. These arrays can be organized in a queue, and processed
by repeatedly removing two arrays from the front of the queue, merging them, and putting
the result at the end of the queue.

In the following pseudocode, the primitive operation inject adds an element to the end
of the queue while eject removes and returns the element at the front of the queue.

function iterative-mergesort(a[1 . . . n])
Input: elements a1, a2, . . . , an to be sorted

Q = [] (empty queue)
for i = 1 to n:

inject(Q, [ai])
while |Q| > 1:

inject(Q,merge(eject(Q),eject(Q)))
return eject(Q)

57

15 / 89

Warmup Sorting Selection Multiplication Mergesort Recurrences Quicksort Lower Bound Radix sort

Merge Sort Illustration

Figure 2.4 The sequence of merge operations in mergesort.

2 3 10 1 6 7 135

102 53 137 1 6

2 5 3 7 13 1 610

Input: 10 2 3 1135 7 6

1 6 10 1332 5 7 .

merged in pairs, to yield arrays with two elements. Then pairs of these 2-tuples are merged,
producing 4-tuples, and so on. Figure 2.4 shows an example.

This viewpoint also suggests how mergesortmight be made iterative. At any given mo-
ment, there is a set of “active” arrays—initially, the singletons—which are merged in pairs to
give the next batch of active arrays. These arrays can be organized in a queue, and processed
by repeatedly removing two arrays from the front of the queue, merging them, and putting
the result at the end of the queue.

In the following pseudocode, the primitive operation inject adds an element to the end
of the queue while eject removes and returns the element at the front of the queue.

function iterative-mergesort(a[1 . . . n])
Input: elements a1, a2, . . . , an to be sorted

Q = [] (empty queue)
for i = 1 to n:

inject(Q, [ai])
while |Q| > 1:

inject(Q,merge(eject(Q),eject(Q)))
return eject(Q)

57

16 / 89

Warmup Sorting Selection Multiplication Mergesort Recurrences Quicksort Lower Bound Radix sort

Merge Sort Illustration

Figure 2.4 The sequence of merge operations in mergesort.

2 3 10 1 6 7 135

102 53 137 1 6

2 5 3 7 13 1 610

Input: 10 2 3 1135 7 6

1 6 10 1332 5 7 .

merged in pairs, to yield arrays with two elements. Then pairs of these 2-tuples are merged,
producing 4-tuples, and so on. Figure 2.4 shows an example.

This viewpoint also suggests how mergesortmight be made iterative. At any given mo-
ment, there is a set of “active” arrays—initially, the singletons—which are merged in pairs to
give the next batch of active arrays. These arrays can be organized in a queue, and processed
by repeatedly removing two arrays from the front of the queue, merging them, and putting
the result at the end of the queue.

In the following pseudocode, the primitive operation inject adds an element to the end
of the queue while eject removes and returns the element at the front of the queue.

function iterative-mergesort(a[1 . . . n])
Input: elements a1, a2, . . . , an to be sorted

Q = [] (empty queue)
for i = 1 to n:

inject(Q, [ai])
while |Q| > 1:

inject(Q,merge(eject(Q),eject(Q)))
return eject(Q)

57

17 / 89

Warmup Sorting Selection Multiplication Mergesort Recurrences Quicksort Lower Bound Radix sort

Merge sort time complexity

mergesort(A) makes two recursive invocations of itself, each with an array half the
size of A

merge(A,B) takes time that is linear in |A|+ |B|

Thus, the runtime is given by the recurrence

T (n) = 2T
(n
2

)
+ n

In divide-and-conquer algorithms, we often encounter recurrences of the form

T (n) = aT
(n
b

)
+ O(nd)

Can we solve them once for all?

18 / 89

Warmup Sorting Selection Multiplication Mergesort Recurrences Quicksort Lower Bound Radix sort

Merge sort time complexity

mergesort(A) makes two recursive invocations of itself, each with an array half the
size of A

merge(A,B) takes time that is linear in |A|+ |B|

Thus, the runtime is given by the recurrence

T (n) = 2T
(n
2

)
+ n

In divide-and-conquer algorithms, we often encounter recurrences of the form

T (n) = aT
(n
b

)
+ O(nd)

Can we solve them once for all?

19 / 89

Warmup Sorting Selection Multiplication Mergesort Recurrences Quicksort Lower Bound Radix sort

Merge sort time complexity

mergesort(A) makes two recursive invocations of itself, each with an array half the
size of A

merge(A,B) takes time that is linear in |A|+ |B|

Thus, the runtime is given by the recurrence

T (n) = 2T
(n
2

)
+ n

In divide-and-conquer algorithms, we often encounter recurrences of the form

T (n) = aT
(n
b

)
+ O(nd)

Can we solve them once for all?
20 / 89

Warmup Sorting Selection Multiplication Mergesort Recurrences Quicksort Lower Bound Radix sort

Master Theorem

If T (n) = aT
(
n
b

)
+ O(nd) for constants a > 0, b > 1, and d ≥ 0, then

T (n) =

O(nd), if d > logb a

O(nd log n) if d = logb a

O(nlogb a) if d < logb a

21 / 89

Warmup Sorting Selection Multiplication Mergesort Recurrences Quicksort Lower Bound Radix sort

Proof of Master Theorem
Figure 2.3 Each problem of size n is divided into a subproblems of size n/b.

Size 1

Size n/b2

Size n/b

Size n

Depth
logb n

Width alogb n = nlogb a

Branching factor a

subproblems, each of size n/bk (Figure 2.3). The total work done at this level is

ak × O
� n

bk

�d
= O(nd) ×

� a

bd

�k
.

As k goes from 0 (the root) to logb n (the leaves), these numbers form a geometric series with
ratio a/bd. Finding the sum of such a series in big-O notation is easy (Exercise 0.2), and comes
down to three cases.

1. The ratio is less than 1.
Then the series is decreasing, and its sum is just given by its first term, O(nd).

2. The ratio is greater than 1.
The series is increasing and its sum is given by its last term, O(nlogb a):

nd
� a

bd

�logb n
= nd

�
alogb n

(blogb n)d

�
= alogb n = a(loga n)(logb a) = nlogb a.

3. The ratio is exactly 1.
In this case all O(log n) terms of the series are equal to O(nd).

These cases translate directly into the three contingencies in the theorem statement.

55

Can be proved by induction, or by summing up the series where each term represents
the work done at one level of this tree.

22 / 89

Warmup Sorting Selection Multiplication Mergesort Recurrences Quicksort Lower Bound Radix sort

What if Master Theorem can’t be appplied?

Look up “Recurrences” from CSE 150

Guess and check (prove by induction)

expand recursion for a few steps to make a guess

in principle, can be applied to any recurrence

Akra-Bazzi method (not covered in class)

recurrences can be much more complex than that of Master theorem

23 / 89

http://seclab.cs.sunysb.edu/sekar/cse150/ln/recurse.pdf

Warmup Sorting Selection Multiplication Mergesort Recurrences Quicksort Lower Bound Radix sort

What if Master Theorem can’t be appplied?

Look up “Recurrences” from CSE 150

Guess and check (prove by induction)

expand recursion for a few steps to make a guess

in principle, can be applied to any recurrence

Akra-Bazzi method (not covered in class)

recurrences can be much more complex than that of Master theorem

24 / 89

http://seclab.cs.sunysb.edu/sekar/cse150/ln/recurse.pdf

Warmup Sorting Selection Multiplication Mergesort Recurrences Quicksort Lower Bound Radix sort

Quicksort

qs(A, l, h) /*sorts A[l . . . h]*/

if l >= h return;
(h1, l2) =

partition(A, l, h);
qs(A, l, h1);
qs(A, l2, h)

partition(A, l, h)

k = selectPivot(A, l, h); p = A[k];
swap(A, h, k);
i = l − 1; j = h;

while true do
do i++ while A[i] < p;
do j−− while A[j] > p;
if i ≥ j break;
swap(A, i, j);

swap(A, i, h)

return (j, i + 1)

25 / 89

Warmup Sorting Selection Multiplication Mergesort Recurrences Quicksort Lower Bound Radix sort

Quicksort

qs(A, l, h) /*sorts A[l . . . h]*/

if l >= h return;
(h1, l2) =

partition(A, l, h);
qs(A, l, h1);
qs(A, l2, h)

partition(A, l, h)

k = selectPivot(A, l, h); p = A[k];
swap(A, h, k);
i = l − 1; j = h;

while true do
do i++ while A[i] < p;
do j−− while A[j] > p;
if i ≥ j break;
swap(A, i, j);

swap(A, i, h)

return (j, i + 1)
26 / 89

Warmup Sorting Selection Multiplication Mergesort Recurrences Quicksort Lower Bound Radix sort

Analysis of Runtime of qs

General case: Given by the recurrence T (n) = n+ T (n1) + T (n2)
where n1 and n2 are the sizes of the two sub-arrays after partition.

Best case: n1 = n2 = n/2. By master theorem, T (n) = O(n log n)
Worst case: n1 = 1, n2 = n− 1. By master theorem, T (n) = O(n2)

A fixed choice of pivot index, say, h, leads to worst-case behavior in common cases, e.g., input
is sorted.

Lucky/unlucky split: Alternate between best- and worst-case splits.

T (n) = n+ T (1)+ T(n-1) + n (worst case split)

= n+ 1+ (n-1) + 2T((n-1)/2) = 2n+ 2T ((n− 1)/2)

which has an O(n log n) solution.
Three-fourths split:

T (n) = n+ T (0.25n) + T (0.75n) ≤ n+ 2T (0.75n) = O(n log n)

27 / 89

Warmup Sorting Selection Multiplication Mergesort Recurrences Quicksort Lower Bound Radix sort

Analysis of Runtime of qs

General case: Given by the recurrence T (n) = n+ T (n1) + T (n2)
where n1 and n2 are the sizes of the two sub-arrays after partition.

Best case: n1 = n2 = n/2. By master theorem, T (n) = O(n log n)

Worst case: n1 = 1, n2 = n− 1. By master theorem, T (n) = O(n2)

A fixed choice of pivot index, say, h, leads to worst-case behavior in common cases, e.g., input
is sorted.

Lucky/unlucky split: Alternate between best- and worst-case splits.

T (n) = n+ T (1)+ T(n-1) + n (worst case split)

= n+ 1+ (n-1) + 2T((n-1)/2) = 2n+ 2T ((n− 1)/2)

which has an O(n log n) solution.
Three-fourths split:

T (n) = n+ T (0.25n) + T (0.75n) ≤ n+ 2T (0.75n) = O(n log n)

28 / 89

Warmup Sorting Selection Multiplication Mergesort Recurrences Quicksort Lower Bound Radix sort

Analysis of Runtime of qs

General case: Given by the recurrence T (n) = n+ T (n1) + T (n2)
where n1 and n2 are the sizes of the two sub-arrays after partition.

Best case: n1 = n2 = n/2. By master theorem, T (n) = O(n log n)
Worst case: n1 = 1, n2 = n− 1. By master theorem, T (n) = O(n2)

A fixed choice of pivot index, say, h, leads to worst-case behavior in common cases, e.g., input
is sorted.

Lucky/unlucky split: Alternate between best- and worst-case splits.

T (n) = n+ T (1)+ T(n-1) + n (worst case split)

= n+ 1+ (n-1) + 2T((n-1)/2) = 2n+ 2T ((n− 1)/2)

which has an O(n log n) solution.
Three-fourths split:

T (n) = n+ T (0.25n) + T (0.75n) ≤ n+ 2T (0.75n) = O(n log n)

29 / 89

Warmup Sorting Selection Multiplication Mergesort Recurrences Quicksort Lower Bound Radix sort

Analysis of Runtime of qs

General case: Given by the recurrence T (n) = n+ T (n1) + T (n2)
where n1 and n2 are the sizes of the two sub-arrays after partition.

Best case: n1 = n2 = n/2. By master theorem, T (n) = O(n log n)
Worst case: n1 = 1, n2 = n− 1. By master theorem, T (n) = O(n2)

A fixed choice of pivot index, say, h, leads to worst-case behavior in common cases, e.g., input
is sorted.

Lucky/unlucky split: Alternate between best- and worst-case splits.

T (n) = n+ T (1)+ T(n-1) + n (worst case split)

= n+ 1+ (n-1) + 2T((n-1)/2) = 2n+ 2T ((n− 1)/2)

which has an O(n log n) solution.

Three-fourths split:

T (n) = n+ T (0.25n) + T (0.75n) ≤ n+ 2T (0.75n) = O(n log n)

30 / 89

Warmup Sorting Selection Multiplication Mergesort Recurrences Quicksort Lower Bound Radix sort

Analysis of Runtime of qs

General case: Given by the recurrence T (n) = n+ T (n1) + T (n2)
where n1 and n2 are the sizes of the two sub-arrays after partition.

Best case: n1 = n2 = n/2. By master theorem, T (n) = O(n log n)
Worst case: n1 = 1, n2 = n− 1. By master theorem, T (n) = O(n2)

A fixed choice of pivot index, say, h, leads to worst-case behavior in common cases, e.g., input
is sorted.

Lucky/unlucky split: Alternate between best- and worst-case splits.

T (n) = n+ T (1)+ T(n-1) + n (worst case split)

= n+ 1+ (n-1) + 2T((n-1)/2) = 2n+ 2T ((n− 1)/2)

which has an O(n log n) solution.
Three-fourths split:

T (n) = n+ T (0.25n) + T (0.75n) ≤ n+ 2T (0.75n) = O(n log n)

31 / 89

Warmup Sorting Selection Multiplication Mergesort Recurrences Quicksort Lower Bound Radix sort

Average case analysis of qs

Define input distribution: All permutations equally likely

Simplifying assumption: all elements are distinct. (Nonessential assumption)

Set up the recurrence: When all permutations are qually likely, the selected pivot has an equal

chance of ending up at the ith position in the sorted order, for all 1 ≤ i ≤ n. Thus, we

have the following recurrence for the average case:

T (n) = n+
1
n

n−1∑
i=1

(T (i) + T (n− i))

Solve recurrence: Cannot apply the master theorem, but since it seems that we get an

O(n log n) bound even in seemingly bad cases, we can try to establish a cn log n bound via

induction.

32 / 89

Warmup Sorting Selection Multiplication Mergesort Recurrences Quicksort Lower Bound Radix sort

Average case analysis of qs

Define input distribution: All permutations equally likely

Simplifying assumption: all elements are distinct. (Nonessential assumption)

Set up the recurrence: When all permutations are qually likely, the selected pivot has an equal

chance of ending up at the ith position in the sorted order, for all 1 ≤ i ≤ n. Thus, we

have the following recurrence for the average case:

T (n) = n+
1
n

n−1∑
i=1

(T (i) + T (n− i))

Solve recurrence: Cannot apply the master theorem, but since it seems that we get an

O(n log n) bound even in seemingly bad cases, we can try to establish a cn log n bound via

induction.

33 / 89

Warmup Sorting Selection Multiplication Mergesort Recurrences Quicksort Lower Bound Radix sort

Average case analysis of qs

Define input distribution: All permutations equally likely

Simplifying assumption: all elements are distinct. (Nonessential assumption)

Set up the recurrence: When all permutations are qually likely, the selected pivot has an equal

chance of ending up at the ith position in the sorted order, for all 1 ≤ i ≤ n. Thus, we

have the following recurrence for the average case:

T (n) = n+
1
n

n−1∑
i=1

(T (i) + T (n− i))

Solve recurrence: Cannot apply the master theorem, but since it seems that we get an

O(n log n) bound even in seemingly bad cases, we can try to establish a cn log n bound via

induction.

34 / 89

Warmup Sorting Selection Multiplication Mergesort Recurrences Quicksort Lower Bound Radix sort

Average case analysis of qs

Define input distribution: All permutations equally likely

Simplifying assumption: all elements are distinct. (Nonessential assumption)

Set up the recurrence: When all permutations are qually likely, the selected pivot has an equal

chance of ending up at the ith position in the sorted order, for all 1 ≤ i ≤ n. Thus, we

have the following recurrence for the average case:

T (n) = n+
1
n

n−1∑
i=1

(T (i) + T (n− i))

Solve recurrence: Cannot apply the master theorem, but since it seems that we get an

O(n log n) bound even in seemingly bad cases, we can try to establish a cn log n bound via

induction.

35 / 89

Warmup Sorting Selection Multiplication Mergesort Recurrences Quicksort Lower Bound Radix sort

Establishing average case of qs
Establish base case. (Trivial.)

Induction step involves summation of the form
∑n−1

i=1 i log i.

Attempt 1: Bound log i above by log n. (Induction fails.)
Attempt 2: Split the sum into two parts:

n/2∑
i=1

i log i +
n−1∑

i=n/2+1

i log i

and apply the approximation to each half. (Succeeds with c ≥ 4.)
Attempt 3: Replace summation with integration. (See “Integration method” in

Summations.)
n∫

x=1

x log x =
x2

2

(
log x − 1

2

)∣∣∣∣n
x=1

(Succeeds with the constraint c ≥ 2.)
36 / 89

http://seclab.cs.sunysb.edu/sekar/cse150/ln/summation.pdf

Warmup Sorting Selection Multiplication Mergesort Recurrences Quicksort Lower Bound Radix sort

RandomizedQuicksort

Picks a pivot at random

What is its complexity?

For randomized algorithms, we talk about expected complexity, which is an average over

all possible values of the random variable.

If pivot index is picked uniformly at random over the interval [l, h], then:

every array element is equally likely to be selected as the pivot

every partition is equally likely

thus, expected complexity of randomized quicksort is given by the same recurrence as the

average case of qs.

37 / 89

Warmup Sorting Selection Multiplication Mergesort Recurrences Quicksort Lower Bound Radix sort

RandomizedQuicksort

Picks a pivot at random

What is its complexity?

For randomized algorithms, we talk about expected complexity, which is an average over

all possible values of the random variable.

If pivot index is picked uniformly at random over the interval [l, h], then:

every array element is equally likely to be selected as the pivot

every partition is equally likely

thus, expected complexity of randomized quicksort is given by the same recurrence as the

average case of qs.

38 / 89

Warmup Sorting Selection Multiplication Mergesort Recurrences Quicksort Lower Bound Radix sort

RandomizedQuicksort

Picks a pivot at random

What is its complexity?

For randomized algorithms, we talk about expected complexity, which is an average over

all possible values of the random variable.

If pivot index is picked uniformly at random over the interval [l, h], then:

every array element is equally likely to be selected as the pivot

every partition is equally likely

thus, expected complexity of randomized quicksort is given by the same recurrence as the

average case of qs.

39 / 89

Warmup Sorting Selection Multiplication Mergesort Recurrences Quicksort Lower Bound Radix sort

Lower bounds for comparison-based sorting

Sorting algorithms can be depicted as trees: each leaf identifies the input permutation that

yields a sorted order.

An n log n lower bound for sorting
Sorting algorithms can be depicted as trees. The one in the following figure sorts an array of
three elements, a1, a2, a3. It starts by comparing a1 to a2 and, if the first is larger, compares
it with a3; otherwise it compares a2 and a3. And so on. Eventually we end up at a leaf, and
this leaf is labeled with the true order of the three elements as a permutation of 1, 2, 3. For
example, if a2 < a1 < a3, we get the leaf labeled “2 1 3.”

3 2 1

Yes

a2 < a3?

a1 < a2?

a1 < a3?

a2 < a3? a1 < a3?

2 3 1

2 1 3

3 1 2 1 3 2

1 2 3

No

The depth of the tree—the number of comparisons on the longest path from root to leaf,
in this case 3—is exactly the worst-case time complexity of the algorithm.
This way of looking at sorting algorithms is useful because it allows one to argue that

mergesort is optimal, in the sense that Ω(n log n) comparisons are necessary for sorting n
elements.
Here is the argument: Consider any such tree that sorts an array of n elements. Each of

its leaves is labeled by a permutation of {1, 2, . . . , n}. In fact, every permutation must appear
as the label of a leaf. The reason is simple: if a particular permutation is missing, what
happens if we feed the algorithm an input ordered according to this same permutation? And
since there are n! permutations of n elements, it follows that the tree has at least n! leaves.
We are almost done: This is a binary tree, and we argued that it has at least n! leaves.

Recall now that a binary tree of depth d has at most 2d leaves (proof: an easy induction on
d). So, the depth of our tree—and the complexity of our algorithm—must be at least log(n!).
And it is well known that log(n!) ≥ c · n log n for some c > 0. There are many ways to see

this. The easiest is to notice that n! ≥ (n/2)(n/2) because n! = 1 · 2 · · · · · n contains at least
n/2 factors larger than n/2; and to then take logs of both sides. Another is to recall Stirling’s
formula

n! ≈
�

π

�
2n +

1

3

�
· nn · e−n.

Either way, we have established that any comparison tree that sorts n elements must make,
in the worst case, Ω(n log n) comparisons, and hence mergesort is optimal!

Well, there is some fine print: this neat argument applies only to algorithms that use
comparisons. Is it conceivable that there are alternative sorting strategies, perhaps using
sophisticated numerical manipulations, that work in linear time? The answer is yes, under
certain exceptional circumstances: the canonical such example is when the elements to be
sorted are integers that lie in a small range (Exercise 2.20).

59

The tree has n! leaves, and hence a height of log n!. By Stirling’s approximation,

n! ≈
√
2πn

(n
e

)n, so, log n! = O(n log n)

No comparison-based sorting algorithm can do better!

40 / 89

Warmup Sorting Selection Multiplication Mergesort Recurrences Quicksort Lower Bound Radix sort

Lower bounds for comparison-based sorting

Sorting algorithms can be depicted as trees: each leaf identifies the input permutation that

yields a sorted order.

An n log n lower bound for sorting
Sorting algorithms can be depicted as trees. The one in the following figure sorts an array of
three elements, a1, a2, a3. It starts by comparing a1 to a2 and, if the first is larger, compares
it with a3; otherwise it compares a2 and a3. And so on. Eventually we end up at a leaf, and
this leaf is labeled with the true order of the three elements as a permutation of 1, 2, 3. For
example, if a2 < a1 < a3, we get the leaf labeled “2 1 3.”

3 2 1

Yes

a2 < a3?

a1 < a2?

a1 < a3?

a2 < a3? a1 < a3?

2 3 1

2 1 3

3 1 2 1 3 2

1 2 3

No

The depth of the tree—the number of comparisons on the longest path from root to leaf,
in this case 3—is exactly the worst-case time complexity of the algorithm.
This way of looking at sorting algorithms is useful because it allows one to argue that

mergesort is optimal, in the sense that Ω(n log n) comparisons are necessary for sorting n
elements.
Here is the argument: Consider any such tree that sorts an array of n elements. Each of

its leaves is labeled by a permutation of {1, 2, . . . , n}. In fact, every permutation must appear
as the label of a leaf. The reason is simple: if a particular permutation is missing, what
happens if we feed the algorithm an input ordered according to this same permutation? And
since there are n! permutations of n elements, it follows that the tree has at least n! leaves.
We are almost done: This is a binary tree, and we argued that it has at least n! leaves.

Recall now that a binary tree of depth d has at most 2d leaves (proof: an easy induction on
d). So, the depth of our tree—and the complexity of our algorithm—must be at least log(n!).
And it is well known that log(n!) ≥ c · n log n for some c > 0. There are many ways to see

this. The easiest is to notice that n! ≥ (n/2)(n/2) because n! = 1 · 2 · · · · · n contains at least
n/2 factors larger than n/2; and to then take logs of both sides. Another is to recall Stirling’s
formula

n! ≈
�

π

�
2n +

1

3

�
· nn · e−n.

Either way, we have established that any comparison tree that sorts n elements must make,
in the worst case, Ω(n log n) comparisons, and hence mergesort is optimal!

Well, there is some fine print: this neat argument applies only to algorithms that use
comparisons. Is it conceivable that there are alternative sorting strategies, perhaps using
sophisticated numerical manipulations, that work in linear time? The answer is yes, under
certain exceptional circumstances: the canonical such example is when the elements to be
sorted are integers that lie in a small range (Exercise 2.20).

59

The tree has n! leaves, and hence a height of log n!. By Stirling’s approximation,

n! ≈
√
2πn

(n
e

)n, so, log n! = O(n log n)

No comparison-based sorting algorithm can do better!

41 / 89

Warmup Sorting Selection Multiplication Mergesort Recurrences Quicksort Lower Bound Radix sort

Lower bounds for comparison-based sorting

Sorting algorithms can be depicted as trees: each leaf identifies the input permutation that

yields a sorted order.

An n log n lower bound for sorting
Sorting algorithms can be depicted as trees. The one in the following figure sorts an array of
three elements, a1, a2, a3. It starts by comparing a1 to a2 and, if the first is larger, compares
it with a3; otherwise it compares a2 and a3. And so on. Eventually we end up at a leaf, and
this leaf is labeled with the true order of the three elements as a permutation of 1, 2, 3. For
example, if a2 < a1 < a3, we get the leaf labeled “2 1 3.”

3 2 1

Yes

a2 < a3?

a1 < a2?

a1 < a3?

a2 < a3? a1 < a3?

2 3 1

2 1 3

3 1 2 1 3 2

1 2 3

No

The depth of the tree—the number of comparisons on the longest path from root to leaf,
in this case 3—is exactly the worst-case time complexity of the algorithm.
This way of looking at sorting algorithms is useful because it allows one to argue that

mergesort is optimal, in the sense that Ω(n log n) comparisons are necessary for sorting n
elements.
Here is the argument: Consider any such tree that sorts an array of n elements. Each of

its leaves is labeled by a permutation of {1, 2, . . . , n}. In fact, every permutation must appear
as the label of a leaf. The reason is simple: if a particular permutation is missing, what
happens if we feed the algorithm an input ordered according to this same permutation? And
since there are n! permutations of n elements, it follows that the tree has at least n! leaves.
We are almost done: This is a binary tree, and we argued that it has at least n! leaves.

Recall now that a binary tree of depth d has at most 2d leaves (proof: an easy induction on
d). So, the depth of our tree—and the complexity of our algorithm—must be at least log(n!).
And it is well known that log(n!) ≥ c · n log n for some c > 0. There are many ways to see

this. The easiest is to notice that n! ≥ (n/2)(n/2) because n! = 1 · 2 · · · · · n contains at least
n/2 factors larger than n/2; and to then take logs of both sides. Another is to recall Stirling’s
formula

n! ≈
�

π

�
2n +

1

3

�
· nn · e−n.

Either way, we have established that any comparison tree that sorts n elements must make,
in the worst case, Ω(n log n) comparisons, and hence mergesort is optimal!

Well, there is some fine print: this neat argument applies only to algorithms that use
comparisons. Is it conceivable that there are alternative sorting strategies, perhaps using
sophisticated numerical manipulations, that work in linear time? The answer is yes, under
certain exceptional circumstances: the canonical such example is when the elements to be
sorted are integers that lie in a small range (Exercise 2.20).

59

The tree has n! leaves, and hence a height of log n!. By Stirling’s approximation,

n! ≈
√
2πn

(n
e

)n, so, log n! = O(n log n)

No comparison-based sorting algorithm can do better!
42 / 89

Warmup Sorting Selection Multiplication Mergesort Recurrences Quicksort Lower Bound Radix sort

Bucket sort

Overview

Divide: Partition input into intervals
(buckets), based on key values
Linear scan of input, drop into
appropriate bucket

Recurse: Sort each bucket

Combine: Concatenate bin contents

Example

Images from Wikipedia commons
43 / 89

Warmup Sorting Selection Multiplication Mergesort Recurrences Quicksort Lower Bound Radix sort

Bucket sort (Continued)

Bucket sort generalizes quicksort to multiple partitions

Combination = concatenation

Worst case quadratic bound applies

But performance can be much better if input distribution is uniform.

Exercise: What is the runtime in this case?

Used by letter sorting machines in post offices

44 / 89

Warmup Sorting Selection Multiplication Mergesort Recurrences Quicksort Lower Bound Radix sort

Counting Sort

Special case of bucket sort where each bin corresponds to an interval of size 1.

No need to recurse. Divide = conquered!

Makes sense only if range of key values is small (usually constant)

Thus, counting sort can be done in O(n) time!

Hmm. How did we beat the O(n log n) lower bound?

45 / 89

Warmup Sorting Selection Multiplication Mergesort Recurrences Quicksort Lower Bound Radix sort

Counting Sort

Special case of bucket sort where each bin corresponds to an interval of size 1.

No need to recurse. Divide = conquered!

Makes sense only if range of key values is small (usually constant)

Thus, counting sort can be done in O(n) time!

Hmm. How did we beat the O(n log n) lower bound?

46 / 89

Warmup Sorting Selection Multiplication Mergesort Recurrences Quicksort Lower Bound Radix sort

Radix Sorting

Treat an integer as a sequence of digits

Sort digits using counting sort

LSD sorting: Sort first on least significant digit, and most significant digit last.
After each round of counting sort, results can be simply concatenated, and given
as input to the next stage.

MSD sorting: Sort first on most significant digit, and least significant digit last.
Unlike LSD sorting, we cannot concatenate after each stage.

Note: Radix sort does not divide inputs into smaller subsets

If you think of input as multi-dimensional data, then we break down the problem to
each dimension.

47 / 89

Warmup Sorting Selection Multiplication Mergesort Recurrences Quicksort Lower Bound Radix sort

Radix Sorting

Treat an integer as a sequence of digits

Sort digits using counting sort

LSD sorting: Sort first on least significant digit, and most significant digit last.
After each round of counting sort, results can be simply concatenated, and given
as input to the next stage.

MSD sorting: Sort first on most significant digit, and least significant digit last.
Unlike LSD sorting, we cannot concatenate after each stage.

Note: Radix sort does not divide inputs into smaller subsets

If you think of input as multi-dimensional data, then we break down the problem to
each dimension.

48 / 89

Warmup Sorting Selection Multiplication Mergesort Recurrences Quicksort Lower Bound Radix sort

Radix Sorting

Treat an integer as a sequence of digits

Sort digits using counting sort

LSD sorting: Sort first on least significant digit, and most significant digit last.
After each round of counting sort, results can be simply concatenated, and given
as input to the next stage.

MSD sorting: Sort first on most significant digit, and least significant digit last.
Unlike LSD sorting, we cannot concatenate after each stage.

Note: Radix sort does not divide inputs into smaller subsets

If you think of input as multi-dimensional data, then we break down the problem to
each dimension.

49 / 89

Warmup Sorting Selection Multiplication Mergesort Recurrences Quicksort Lower Bound Radix sort

Radix Sorting

Treat an integer as a sequence of digits

Sort digits using counting sort

LSD sorting: Sort first on least significant digit, and most significant digit last.
After each round of counting sort, results can be simply concatenated, and given
as input to the next stage.

MSD sorting: Sort first on most significant digit, and least significant digit last.
Unlike LSD sorting, we cannot concatenate after each stage.

Note: Radix sort does not divide inputs into smaller subsets

If you think of input as multi-dimensional data, then we break down the problem to
each dimension.

50 / 89

Warmup Sorting Selection Multiplication Mergesort Recurrences Quicksort Lower Bound Radix sort

Stable sorting algorithms

Stable sorting algorithms: don’t change
order of equal elements.

Merge sort and LSD sort are stable.
Quicksort is not stable.

Why is stability important?

Effect of sorting on attribute A and then B
is the same as sorting on ⟨B,A⟩
LSD sort won’t work without this
property!
Other examples: sorting spread sheets or
tables on web pages

51 / 89

Warmup Sorting Selection Multiplication Mergesort Recurrences Quicksort Lower Bound Radix sort

Stable sorting algorithms

Stable sorting algorithms: don’t change
order of equal elements.

Merge sort and LSD sort are stable.
Quicksort is not stable.

Why is stability important?

Effect of sorting on attribute A and then B
is the same as sorting on ⟨B,A⟩

LSD sort won’t work without this
property!
Other examples: sorting spread sheets or
tables on web pages

Images from Wikipedia Commons

52 / 89

http://commons.wikimedia.org/wiki/File:Sorting_playing_cards_using_stable_sort.svg#mediaviewer/File:Sorting_playing_cards_using_stable_sort.svg

Warmup Sorting Selection Multiplication Mergesort Recurrences Quicksort Lower Bound Radix sort

Stable sorting algorithms

Stable sorting algorithms: don’t change
order of equal elements.

Merge sort and LSD sort are stable.
Quicksort is not stable.

Why is stability important?

Effect of sorting on attribute A and then B
is the same as sorting on ⟨B,A⟩
LSD sort won’t work without this
property!

Other examples: sorting spread sheets or
tables on web pages

Images from Wikipedia Commons

53 / 89

http://commons.wikimedia.org/wiki/File:Sorting_playing_cards_using_stable_sort.svg#mediaviewer/File:Sorting_playing_cards_using_stable_sort.svg

Warmup Sorting Selection Multiplication Mergesort Recurrences Quicksort Lower Bound Radix sort

Stable sorting algorithms

Stable sorting algorithms: don’t change
order of equal elements.

Merge sort and LSD sort are stable.
Quicksort is not stable.

Why is stability important?

Effect of sorting on attribute A and then B
is the same as sorting on ⟨B,A⟩
LSD sort won’t work without this
property!
Other examples: sorting spread sheets or
tables on web pages

Images from Wikipedia Commons

54 / 89

http://commons.wikimedia.org/wiki/File:Sorting_playing_cards_using_stable_sort.svg#mediaviewer/File:Sorting_playing_cards_using_stable_sort.svg

Warmup Sorting Selection Multiplication Mergesort Recurrences Quicksort Lower Bound Radix sort

Sorting strings

Can use LSD or MSD sorting
Easy if all strings are of same length.

Requires a bit more care with variable-length strings.
Starting point: use a special terminator character t < a for all valid characters a.

Easy to devise an O(nl) algorithm, where n is the number of strings and l is the
maximum size of any string.
But such an algorithm is not linear in input size.

Exercise: Devise a linear-time string algorithm.

Given a set S of strings, your algorithm should sort in O(|S|) time, where

|S| =
∑
s∈S

|s|

55 / 89

Warmup Sorting Selection Multiplication Mergesort Recurrences Quicksort Lower Bound Radix sort

Sorting strings

Can use LSD or MSD sorting
Easy if all strings are of same length.
Requires a bit more care with variable-length strings.
Starting point: use a special terminator character t < a for all valid characters a.

Easy to devise an O(nl) algorithm, where n is the number of strings and l is the
maximum size of any string.
But such an algorithm is not linear in input size.

Exercise: Devise a linear-time string algorithm.

Given a set S of strings, your algorithm should sort in O(|S|) time, where

|S| =
∑
s∈S

|s|

56 / 89

Warmup Sorting Selection Multiplication Mergesort Recurrences Quicksort Lower Bound Radix sort

Sorting strings

Can use LSD or MSD sorting
Easy if all strings are of same length.
Requires a bit more care with variable-length strings.
Starting point: use a special terminator character t < a for all valid characters a.

Easy to devise an O(nl) algorithm, where n is the number of strings and l is the
maximum size of any string.
But such an algorithm is not linear in input size.

Exercise: Devise a linear-time string algorithm.

Given a set S of strings, your algorithm should sort in O(|S|) time, where

|S| =
∑
s∈S

|s|

57 / 89

Warmup Sorting Selection Multiplication Mergesort Recurrences Quicksort Lower Bound Radix sort

Sorting strings

Can use LSD or MSD sorting
Easy if all strings are of same length.
Requires a bit more care with variable-length strings.
Starting point: use a special terminator character t < a for all valid characters a.

Easy to devise an O(nl) algorithm, where n is the number of strings and l is the
maximum size of any string.
But such an algorithm is not linear in input size.

Exercise: Devise a linear-time string algorithm.

Given a set S of strings, your algorithm should sort in O(|S|) time, where

|S| =
∑
s∈S

|s|

58 / 89

Warmup Sorting Selection Multiplication Select k-th min Priority Queues

Select kth largest element

Obvious approach: Sort, pick kth element — wasteful, O(n log n)

Better approach: Recursive partitioning, search only on one side

qsel(A, l, h, k)

if l = h return A[l];

(h1, l2) = partition(A, l, h);

if k ≤ h1
return qsel(A, l, h1, k)

else return qsel(A, l2, h, k)

Complexity

Best case: Splits are even: T (n) = n+ T (n/2),

which has an O(n) solution.

Skewed 10%/90% T (n) ≤ n+ T (0.9n) — still linear

Worst case: T (n) = n+ T (n− 1) — quadratic!

59 / 89

Warmup Sorting Selection Multiplication Select k-th min Priority Queues

Select kth largest element

Obvious approach: Sort, pick kth element — wasteful, O(n log n)

Better approach: Recursive partitioning, search only on one side

qsel(A, l, h, k)

if l = h return A[l];

(h1, l2) = partition(A, l, h);

if k ≤ h1
return qsel(A, l, h1, k)

else return qsel(A, l2, h, k)

Complexity

Best case: Splits are even: T (n) = n+ T (n/2),

which has an O(n) solution.

Skewed 10%/90% T (n) ≤ n+ T (0.9n) — still linear

Worst case: T (n) = n+ T (n− 1) — quadratic!

60 / 89

Warmup Sorting Selection Multiplication Select k-th min Priority Queues

Select kth largest element

Obvious approach: Sort, pick kth element — wasteful, O(n log n)

Better approach: Recursive partitioning, search only on one side

qsel(A, l, h, k)

if l = h return A[l];

(h1, l2) = partition(A, l, h);

if k ≤ h1
return qsel(A, l, h1, k)

else return qsel(A, l2, h, k)

Complexity

Best case: Splits are even: T (n) = n+ T (n/2),

which has an O(n) solution.

Skewed 10%/90% T (n) ≤ n+ T (0.9n) — still linear

Worst case: T (n) = n+ T (n− 1) — quadratic!

61 / 89

Warmup Sorting Selection Multiplication Select k-th min Priority Queues

Worst-case O(n) Selection

Intuition: Spend a bit more time to select a pivot that ensures reasonably balanced
partitions

MoM Algorithm [Blum, Floyd, Pratt, Rivest and Tarjan 1973]

62 / 89

Warmup Sorting Selection Multiplication Select k-th min Priority Queues

O(n) Selection: MoM Algorithm

Quick select (qsel) takes no time to pick a pivot, but then spends O(n) to partition.

Can we spend more time upfront to make a better selection of the pivot, so that we
can avoid highly skewed splits?

Key Idea

Use the selection algorithm itself to choose the pivot.

Divide into sets of 5 elements

Compute median of each set (O(5), i.e., constant time)
Use selection recursively on these n/5 elements to pick their median
i.e., choose the median of medians (MoM) as the pivot

Partition using MoM, and recurse to find kth largest element.

63 / 89

Warmup Sorting Selection Multiplication Select k-th min Priority Queues

O(n) Selection: MoM Algorithm

Theorem: MoM-based split won’t be worse than 30%/70%

Result: Guaranteed linear-time algorithm!

Caveat: The constant factor is non-negligible; use as fall-back if random selection
repeatedly yields unbalanced splits.

64 / 89

Warmup Sorting Selection Multiplication Select k-th min Priority Queues

O(n) Selection: MoM Algorithm

Theorem: MoM-based split won’t be worse than 30%/70%

Result: Guaranteed linear-time algorithm!
Caveat: The constant factor is non-negligible; use as fall-back if random selection
repeatedly yields unbalanced splits.

65 / 89

Warmup Sorting Selection Multiplication Select k-th min Priority Queues

Selecting maximum element: Priority Queues

Heap

A tree-based data structure for priority queues

Heap property: F every subtree h of H

∀k ∈ keys(h) root(h) ≥ k

where keys(h) includes all keys within h
Note: No ordering of siblings or cousins
Supports insert , deleteMax and max .
Typically implemented using arrays, i.e., without
an explicit tree data structure

Images from Wikimedia Commons

66 / 89

http://commons.wikimedia.org/wiki/File:Max-Heap.svg#mediaviewer/File:Max-Heap.svg

Warmup Sorting Selection Multiplication Select k-th min Priority Queues

Selecting maximum element: Priority Queues

Heap

A tree-based data structure for priority queues
Heap property: F every subtree h of H

∀k ∈ keys(h) root(h) ≥ k

where keys(h) includes all keys within h

Note: No ordering of siblings or cousins
Supports insert , deleteMax and max .
Typically implemented using arrays, i.e., without
an explicit tree data structure

Images from Wikimedia Commons

67 / 89

http://commons.wikimedia.org/wiki/File:Max-Heap.svg#mediaviewer/File:Max-Heap.svg

Warmup Sorting Selection Multiplication Select k-th min Priority Queues

Selecting maximum element: Priority Queues

Heap

A tree-based data structure for priority queues
Heap property: F every subtree h of H

∀k ∈ keys(h) root(h) ≥ k

where keys(h) includes all keys within h
Note: No ordering of siblings or cousins

Supports insert , deleteMax and max .
Typically implemented using arrays, i.e., without
an explicit tree data structure

Images from Wikimedia Commons

68 / 89

http://commons.wikimedia.org/wiki/File:Max-Heap.svg#mediaviewer/File:Max-Heap.svg

Warmup Sorting Selection Multiplication Select k-th min Priority Queues

Selecting maximum element: Priority Queues

Heap

A tree-based data structure for priority queues
Heap property: F every subtree h of H

∀k ∈ keys(h) root(h) ≥ k

where keys(h) includes all keys within h
Note: No ordering of siblings or cousins
Supports insert , deleteMax and max .

Typically implemented using arrays, i.e., without
an explicit tree data structure

Images from Wikimedia Commons

69 / 89

http://commons.wikimedia.org/wiki/File:Max-Heap.svg#mediaviewer/File:Max-Heap.svg

Warmup Sorting Selection Multiplication Select k-th min Priority Queues

Selecting maximum element: Priority Queues

Heap

A tree-based data structure for priority queues
Heap property: F every subtree h of H

∀k ∈ keys(h) root(h) ≥ k

where keys(h) includes all keys within h
Note: No ordering of siblings or cousins
Supports insert , deleteMax and max .
Typically implemented using arrays, i.e., without
an explicit tree data structure Images from Wikimedia Commons

70 / 89

http://commons.wikimedia.org/wiki/File:Max-Heap.svg#mediaviewer/File:Max-Heap.svg

Warmup Sorting Selection Multiplication Select k-th min Priority Queues

Selecting maximum element: Priority Queues

Heap

A tree-based data structure for priority queues
Heap property: F every subtree h of H

∀k ∈ keys(h) root(h) ≥ k

where keys(h) includes all keys within h
Note: No ordering of siblings or cousins
Supports insert , deleteMax and max .
Typically implemented using arrays, i.e., without
an explicit tree data structure

Task of maintaining max is
distributed to subsets of the
entire set; alternatively, it can be
thought of as maintaining
several parallel queues with a
single head.

Images from Wikimedia Commons

71 / 89

http://commons.wikimedia.org/wiki/File:Max-Heap.svg#mediaviewer/File:Max-Heap.svg

Warmup Sorting Selection Multiplication Select k-th min Priority Queues

Binary heap

Array representation: Store heap elements in breadth-first order in the array. Node i’s
children are at indices 2 ∗ i and 2 ∗ i + 1

Conceptually, we are dealing with a balanced binary tree

Max: Element at the root of the array, extracted in O(1) time

DeleteMax: Overwrite root with last element of heap. Fix heap – takes O(log n) time,
since only the ancestors of the last node need to be fixed up.

Insert: Append element to the end of array, fix up heap

MkHeap: Fix up the entire heap. Takes O(n) time.

Heapsort: O(n log n) algorithm, MkHeap followed by n calls to DeleteMax

72 / 89

Warmup Sorting Selection Multiplication Select k-th min Priority Queues

Binary heap

Array representation: Store heap elements in breadth-first order in the array. Node i’s
children are at indices 2 ∗ i and 2 ∗ i + 1

Conceptually, we are dealing with a balanced binary tree

Max: Element at the root of the array, extracted in O(1) time

DeleteMax: Overwrite root with last element of heap. Fix heap – takes O(log n) time,
since only the ancestors of the last node need to be fixed up.

Insert: Append element to the end of array, fix up heap

MkHeap: Fix up the entire heap. Takes O(n) time.

Heapsort: O(n log n) algorithm, MkHeap followed by n calls to DeleteMax

73 / 89

Warmup Sorting Selection Multiplication Select k-th min Priority Queues

Binary heap

Array representation: Store heap elements in breadth-first order in the array. Node i’s
children are at indices 2 ∗ i and 2 ∗ i + 1

Conceptually, we are dealing with a balanced binary tree

Max: Element at the root of the array, extracted in O(1) time

DeleteMax: Overwrite root with last element of heap. Fix heap – takes O(log n) time,
since only the ancestors of the last node need to be fixed up.

Insert: Append element to the end of array, fix up heap

MkHeap: Fix up the entire heap. Takes O(n) time.

Heapsort: O(n log n) algorithm, MkHeap followed by n calls to DeleteMax

74 / 89

Warmup Sorting Selection Multiplication Select k-th min Priority Queues

Binary heap

Array representation: Store heap elements in breadth-first order in the array. Node i’s
children are at indices 2 ∗ i and 2 ∗ i + 1

Conceptually, we are dealing with a balanced binary tree

Max: Element at the root of the array, extracted in O(1) time

DeleteMax: Overwrite root with last element of heap. Fix heap – takes O(log n) time,
since only the ancestors of the last node need to be fixed up.

Insert: Append element to the end of array, fix up heap

MkHeap: Fix up the entire heap. Takes O(n) time.

Heapsort: O(n log n) algorithm, MkHeap followed by n calls to DeleteMax

75 / 89

Warmup Sorting Selection Multiplication Select k-th min Priority Queues

Binary heap

Array representation: Store heap elements in breadth-first order in the array. Node i’s
children are at indices 2 ∗ i and 2 ∗ i + 1

Conceptually, we are dealing with a balanced binary tree

Max: Element at the root of the array, extracted in O(1) time

DeleteMax: Overwrite root with last element of heap. Fix heap – takes O(log n) time,
since only the ancestors of the last node need to be fixed up.

Insert: Append element to the end of array, fix up heap

MkHeap: Fix up the entire heap. Takes O(n) time.

Heapsort: O(n log n) algorithm, MkHeap followed by n calls to DeleteMax

76 / 89

Warmup Sorting Selection Multiplication Select k-th min Priority Queues

Binary heap

Array representation: Store heap elements in breadth-first order in the array. Node i’s
children are at indices 2 ∗ i and 2 ∗ i + 1

Conceptually, we are dealing with a balanced binary tree

Max: Element at the root of the array, extracted in O(1) time

DeleteMax: Overwrite root with last element of heap. Fix heap – takes O(log n) time,
since only the ancestors of the last node need to be fixed up.

Insert: Append element to the end of array, fix up heap

MkHeap: Fix up the entire heap. Takes O(n) time.

Heapsort: O(n log n) algorithm, MkHeap followed by n calls to DeleteMax

77 / 89

Warmup Sorting Selection Multiplication Matrix Multiplication Integer multiplication

Matrix Multiplication

The product Z of two n× n matrices X and Y is given by

Zij =
n∑

k=1

XikYkj — leads to an O(n3) algorithm.

This follows by taking expected values of both sides of the following statement:

Time taken on an array of size n

≤ (time taken on an array of size 3n/4)+ (time to reduce array size to ≤ 3n/4),

and, for the right-hand side, using the familiar property that the expectation of the sum is the
sum of the expectations.
From this recurrence we conclude that T (n) = O(n): on any input, our algorithm returns

the correct answer after a linear number of steps, on the average.

The Unix sort command
Comparing the algorithms for sorting and median-finding we notice that, beyond the com-
mon divide-and-conquer philosophy and structure, they are exact opposites. Mergesort splits
the array in two in the most convenient way (first half, second half), without any regard to
the magnitudes of the elements in each half; but then it works hard to put the sorted sub-
arrays together. In contrast, the median algorithm is careful about its splitting (smaller
numbers first, then the larger ones), but its work ends with the recursive call.
Quicksort is a sorting algorithm that splits the array in exactly the same way as the me-

dian algorithm; and once the subarrays are sorted, by two recursive calls, there is nothing
more to do. Its worst-case performance is Θ(n2), like that of median-finding. But it can be
proved (Exercise 2.24) that its average case is O(n log n); furthermore, empirically it outper-
forms other sorting algorithms. This has made quicksort a favorite in many applications—
for instance, it is the basis of the code by which really enormous files are sorted.

2.5 Matrix multiplication
The product of two n×nmatrices X and Y is a third n×n matrix Z = XY , with (i, j)th entry

Zij =

n�

k=1

XikYkj.

To make it more visual, Zij is the dot product of the ith row of X with the jth column of Y :

X Y Z

i

j

(i, j)
× =

In general, XY is not the same as Y X; matrix multiplication is not commutative.
The preceding formula implies an O(n3) algorithm for matrix multiplication: there are n2

entries to be computed, and each takes O(n) time. For quite a while, this was widely believed

62

78 / 89

Warmup Sorting Selection Multiplication Matrix Multiplication Integer multiplication

Divide-and-conquer Matrix Multiplication

Divide X and Y into four n/2× n/2 submatrices

X =

[
A B

C D

]
and Y =

[
E F

G H

]
Recursively invoke matrix multiplication on these submatrices:

XY =

[
A B

C D

][
E F

G H

]
=

[
AE + BG AF + BH

CE + DG CF + DH

]
Divided, but did not conquer! T (n) = 8T (n/2) + O(n2), which is still O(n3)

79 / 89

Warmup Sorting Selection Multiplication Matrix Multiplication Integer multiplication

Strassen’s Matrix Multiplication

Strassen showed that 7 multiplications are enough:

XY =

[
P6 + P5 + P4 − P2 P1 + P2

P3 + P4 P1 − P3 + P5 − P7

]
where

P1 = A(F − H) P5 = (A+ D)(E + H)

P2 = (A+ B)H P6 = (B− D)(G + H)

P3 = (C + D)E P7 = (A− C)(E + F)

P4 = D(G − E)
Now, the recurrence T (n) = 7T (n/2) + O(n2) has O(nlog2 7 = n2.81) solution!
Best-to-date complexity is about O(n2.4), but this algorithm is not very practical.

80 / 89

Warmup Sorting Selection Multiplication Matrix Multiplication Integer multiplication

Karatsuba’s Algorithm
Same high-level strategy as Strassen — but predates Strassen.

Divide: n-digit numbers into halves, each with n/2-digits:

a = a1 a0 = 2n/2a1 + a0

b = b1 b0 = 2n/2b1 + b0

ab = 2na1b1 + 2n/2(a1b0 + b1a0) + a0b0

Key point — Instead of 4 multiplications, we can get by with 3 since:

a1b0 + b1a0 = (a1 + a0)(b1 + b0)− a1b1 − a0b0

Recursively compute a1b1, a0b0 and (a1 + a0)(b1 + b0).

Recurrence T (n) = 3T (n/2) + O(n) has an O(nlog2 3 = n1.59) solution!
Note: This trick for using 3 (not 4) multiplications first noted by Gauss (1777-1855).

81 / 89

Warmup Sorting Selection Multiplication Matrix Multiplication Integer multiplication

Karatsuba’s Algorithm
Same high-level strategy as Strassen — but predates Strassen.

Divide: n-digit numbers into halves, each with n/2-digits:

a = a1 a0 = 2n/2a1 + a0

b = b1 b0 = 2n/2b1 + b0

ab = 2na1b1 + 2n/2(a1b0 + b1a0) + a0b0

Key point — Instead of 4 multiplications, we can get by with 3 since:

a1b0 + b1a0 = (a1 + a0)(b1 + b0)− a1b1 − a0b0

Recursively compute a1b1, a0b0 and (a1 + a0)(b1 + b0).

Recurrence T (n) = 3T (n/2) + O(n) has an O(nlog2 3 = n1.59) solution!

Note: This trick for using 3 (not 4) multiplications first noted by Gauss (1777-1855).

82 / 89

Warmup Sorting Selection Multiplication Matrix Multiplication Integer multiplication

Karatsuba’s Algorithm
Same high-level strategy as Strassen — but predates Strassen.

Divide: n-digit numbers into halves, each with n/2-digits:

a = a1 a0 = 2n/2a1 + a0

b = b1 b0 = 2n/2b1 + b0

ab = 2na1b1 + 2n/2(a1b0 + b1a0) + a0b0

Key point — Instead of 4 multiplications, we can get by with 3 since:

a1b0 + b1a0 = (a1 + a0)(b1 + b0)− a1b1 − a0b0

Recursively compute a1b1, a0b0 and (a1 + a0)(b1 + b0).

Recurrence T (n) = 3T (n/2) + O(n) has an O(nlog2 3 = n1.59) solution!
Note: This trick for using 3 (not 4) multiplications first noted by Gauss (1777-1855).

83 / 89

Warmup Sorting Selection Multiplication Matrix Multiplication Integer multiplication

Faster algorithms for Integer Multiplication

Toom-Cook Multiplication: Generalize Karatsuba
Divide into n > 2 parts

FFT (Fast Fourier Transformation) based multiplication (Schonhage-Strassen)

Can be more easily understood when integer multiplication is viewed as a
polynomial multiplication.

84 / 89

Warmup Sorting Selection Multiplication Matrix Multiplication Integer multiplication

Integer Multiplication Revisited

An integer represented using digits
an−1 . . . a0

over a base d (i.e., 0 ≤ ai < d) is very similar to the polynomial

A(x) =
n−1∑
i=0

aix i

Specifically, the value of the integer is A(d).

Integer multiplication follows the same steps as polynomial multiplication:
an−1 . . . a0 × bn−1 . . . b0 = (A(x)× B(x))(d)

85 / 89

Warmup Sorting Selection Multiplication Matrix Multiplication Integer multiplication

Polynomials: Basic Properties

Horner’s rule

An nth degree polynomial
∑n

i=0 aix
i can be evaluated in O(n) time:

((· · · ((anx + an−1)x + an−2)x + · · ·+ a1)x + a0)

Roots and Interpolation

An nth degree polynomial A(x) has exactly n roots r1, ..., rn. In general, ri’s are complex and
need not be distinct.
It can be represented as a product of sums using these roots:

A(x) =
n∑

i=1

aix i =
n∏

i=0

(xi − ri)

Alternatively, A(x) can be specified uniquely by specifying n+ 1 points (xi, yi) on it, i.e.,
A(xi) = yi .

86 / 89

Warmup Sorting Selection Multiplication Matrix Multiplication Integer multiplication

Operations on Polynomials

Representation Add Mult

Coefficients O(n) O(n2)

Roots ? O(n)

Points O(n) O(n)
Note: Point representation is the best for computation! But usually, only the
coefficients are given

Solution: Convert to point form by evaluating A(x) at selected points.

But conversion defeats the purpose: requires O(n) evaluations, each taking O(n) time,
thus we are back to O(n2) total time.

Toom (and FFT) Idea: Choose evaluation points judiciously to speed up evaluation

87 / 89

Warmup Sorting Selection Multiplication Matrix Multiplication Integer multiplication

Integer Multiplication Summary

Algorithms implemented in libraries for arbitrary precision arithmetic, with
applications in public key cryptography, computer algebra systems, etc.

GNU MP is a popular library, uses various algorithms based on input size: naive,
Karatsuba, Toom-3, Toom-4, or Schonhage-Strassen (at about 50K digits).

Karatsuba is Toom-2. Toom-N is based on

Evaluating a polynomial at 2N points,

performing point-wise multiplication, and

interpolating to get back the polynomial, while

minimizing the operations needed for interpolation

88 / 89

Warmup Sorting Selection Multiplication Matrix Multiplication Integer multiplication

Integer Multiplication Summary

Algorithms implemented in libraries for arbitrary precision arithmetic, with
applications in public key cryptography, computer algebra systems, etc.

GNU MP is a popular library, uses various algorithms based on input size: naive,
Karatsuba, Toom-3, Toom-4, or Schonhage-Strassen (at about 50K digits).

Karatsuba is Toom-2. Toom-N is based on

Evaluating a polynomial at 2N points,

performing point-wise multiplication, and

interpolating to get back the polynomial, while

minimizing the operations needed for interpolation

89 / 89

	Warmup
	Overview
	Search
	Exponentiation

	Sorting
	Mergesort
	Recurrences
	Quicksort
	Lower Bound
	Radix sort

	Selection
	Select k-th min
	Priority Queues

	Multiplication
	Matrix Multiplication
	Integer multiplication

