R. Sekar
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@ Break a problem into

subproblems that are smaller
instances of the same problem

@ Recursively solve these
subproblems

@ Combine these answers to obtain

the solution to the problem
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Warmup Sorting Selection Multiplication Overview Search Exponentiation

Divide-and-Conquer: A versatile strategy

Steps

@ Break a problem into
subproblems that are smaller
instances of the same problem

@ Recursively solve these
subproblems

@ Combine these answers to obtain

the solution to the problem

Benefits

Conceptual simplification
Speed up:
@ rapidly (exponentially) reduce problem space
@ exploit commonalities in subproblem solutions
Parallelism: Divide-and-conquer algorithms are
amenable to parallelization
Locality: Their depth-first nature increases locality,

extremely important for today’s processors.
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Problem: Find a key k in an ordered collection
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Problem: Find a key k in an ordered collection

Examples: Sorted array A[n]: Compare k with A[n/2], then recursively search in
Al0---(n/2 —1)] (if kK < A[n/2]) or A[n/2-- - n] (otherwise)
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Binary Search

Problem: Find a key k in an ordered collection

Examples: Sorted array A[n]: Compare k with A[n/2], then recursively search in
A[0---(n/2 —1)] (if k < A[n/2]) or A[n/2- - n] (otherwise)
Binary search tree T: Compare k with root(T), based on the result, recursively

search left or right subtree of root.
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Binary Search

Problem: Find a key k in an ordered collection

Examples: Sorted array A[n]: Compare k with A[n/2], then recursively search in
A[0---(n/2 —1)] (if k < A[n/2]) or A[n/2- - n] (otherwise)
Binary search tree T: Compare k with root(T), based on the result, recursively
search left or right subtree of root.
B-Tree: Hybrid of the above two. Root stores an array M of m keys, and has m + 1
children. Use binary search on M to identify which child can contain k,

recursively search that subtree.
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e How many multiplications are required to compute x"?
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e How many multiplications are required to compute x"?

@ Can we use a divide-and-conquer approach to make it faster?
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e How many multiplications are required to compute x"?

e Can we use a divide-and-conquer approach to make it faster?

if n>1

y = ExpBySquaring(|n/2], x*)
if odd(n) y=xxy

return y

else return x

11/89



function mergesort(a[l...n])

Input: An array of numbers all...n]
Output: A sorted version of this array

if n>1:

return merge (mergesort (a[l...|n/2]]), mergesort (a[|n/2]+1...n]))
else:

return a

12/89



Warmup Sorting Selection Multiplication Mergesort Recurrences Quicksort Lower Bound Radix sort

Merge Sort (Continued)

function merge (z[l...k],y[l...1])
if k=0: return y[l...]]
if [=0: return z[l...k]
if z[1] <yll]:
return z[l]omerge(x[2...k],y[l...1])
else:
return y|l] omerge(z[l...k|,y[2...1])




10
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Merge Sort Illustration

10

N/ N/ N/ N/

10




Merge Sort Illustration
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Merge Sort Illustration
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e mergesort(A) makes two recursive invocations of itself, each with an array half the

size of A

o merge(A, B) takes time that is linear in |A| 4 | B
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Merge sort time complexity

e mergesort(A) makes two recursive invocations of itself, each with an array half the

size of A
o merge(A, B) takes time that is linear in |A| + |B|
@ Thus, the runtime is given by the recurrence

T(n) =2T (g) +n
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Merge sort time complexity

e mergesort(A) makes two recursive invocations of itself, each with an array half the

size of A
o merge(A, B) takes time that is linear in |A| + |B|

@ Thus, the runtime is given by the recurrence

n
T(n) =2T <§> +n
@ In divide-and-conquer algorithms, we often encounter recurrences of the form
n d
() = aT (%) + O(n")
Can we solve them once for all?
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If T(n) = aT (2) + O(n“) for constants a > 0,b > 1, and d > 0, then

o(n?), if d > log, a
T(n) = O(n?logn) ifd=log,a
O(n'°&%)  ifd < log, a
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Size n Branching factor

Size n/b

Size n/b?
Depth
log, n

e A AN A

Width alogyn — plog, a

Can be proved by induction, or by summing up the series where each term represents

the work done at one level of this tree.
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Look up “Recurrences” from CSE 150
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http://seclab.cs.sunysb.edu/sekar/cse150/ln/recurse.pdf

Warmup Sorting Selection Multiplication Mergesort Recurrences Quicksort Lower Bound Radix sort

What if Master Theorem can’t be appplied?

Look up “Recurrences” from CSE 150

@ Guess and check (prove by induction)
e expand recursion for a few steps to make a guess

e in principle, can be applied to any recurrence

o Akra-Bazzi method (not covered in class)

e recurrences can be much more complex than that of Master theorem
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http://seclab.cs.sunysb.edu/sekar/cse150/ln/recurse.pdf

if [ >= hreturn;

(hh 12) =
partition(A, L, h);

gs(A, L hy);

gs(A, L, h)
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Quicksort

gs(A, L, h) [*sorts A[L. .. h]*/ | partition(A, L, h)
if [ >= hreturn; k = selectPivot(A, [, h); p = A[k];
(h, k) = swap(A, h, k);
partition(A, L, h); i=1—1;j=h
qgs(A, L, ); while true do
qs(A, b, h) do i++ while A[i] < p;

do j—— while A[j] > p;
if i > j break;
swap(A, i, j);

swap(A, i, h)

return (j,i + 1)
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General case: Given by the recurrence T(n) = n+ T(n) + T(ny)
where ny and n, are the sizes of the two sub-arrays after partition.
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General case: Given by the recurrence T(n) = n+ T(n) + T(ny)
where ny and n, are the sizes of the two sub-arrays after partition.

Best case: n; = n, = n/2. By master theorem, T(n) = O(nlog n)
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Analysis of Runtime of gs

General case: Given by the recurrence T(n) = n+ T(n1) + T(ny)
where ny and n, are the sizes of the two sub-arrays after partition.

Best case: n; = n, = n/2. By master theorem, T(n) = O(nlog n)

Worst case: n; = 1, n, = n— 1. By master theorem, T(n) = O(n?)

@ A fixed choice of pivot index, say, h, leads to worst-case behavior in common cases, e.g., input
is sorted.
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Analysis of Runtime of gs

General case: Given by the recurrence T(n) = n+ T(n1) + T(ny)
where ny and n, are the sizes of the two sub-arrays after partition.

Best case: n; = n, = n/2. By master theorem, T(n) = O(nlog n)

Worst case: n; = 1, n, = n— 1. By master theorem, T(n) = O(n?)

@ A fixed choice of pivot index, say, h, leads to worst-case behavior in common cases, e.g., input
is sorted.

Lucky/unlucky split: Alternate between best- and worst-case splits.

T(n) =n+T(1)+ + n (worst case split)

=n+1+  |(0-1) + 2T((n-1)/2)| = 2n+ 2T((n — 1)/2)
which has an O(nlog n) solution.
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Analysis of Runtime of gs

General case: Given by the recurrence T(n) = n+ T(n1) + T(ny)
where ny and n, are the sizes of the two sub-arrays after partition.

Best case: n; = n, = n/2. By master theorem, T(n) = O(nlog n)

Worst case: n; = 1, n, = n— 1. By master theorem, T(n) = O(n?)

@ A fixed choice of pivot index, say, h, leads to worst-case behavior in common cases, e.g., input
is sorted.

Lucky/unlucky split: Alternate between best- and worst-case splits.

T(n) =n+T(1)+ + n (worst case split)

=n+1+  |(0-1) + 2T((n-1)/2)| = 2n+ 2T((n — 1)/2)
which has an O(nlog n) solution.

Three-fourths split:
T(n) = n+ T(0.25n) + T(0.75n) < n+ 2T(0.75n) = O(nlog n)
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Define input distribution: All permutations equally likely
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Define input distribution: All permutations equally likely

Simplifying assumption: all elements are distinct. (Nonessential assumption)
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Average case analysis of gs

Define input distribution: All permutations equally likely
Simplifying assumption: all elements are distinct. (Nonessential assumption)

Set up the recurrence: When all permutations are qually likely, the selected pivot has an equal
chance of ending up at the ith position in the sorted order, for all 1 < i < n. Thus, we

have the following recurrence for the average case:

)=n+ — Z () + T(n—1))
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Average case analysis of gs

Define input distribution: All permutations equally likely
Simplifying assumption: all elements are distinct. (Nonessential assumption)

Set up the recurrence: When all permutations are qually likely, the selected pivot has an equal
chance of ending up at the ith position in the sorted order, for all 1 < i < n. Thus, we

have the following recurrence for the average case:

)=n+ — Z () + T(n—1))

Solve recurrence: Cannot apply the master theorem, but since it seems that we get an
O(nlog n) bound even in seemingly bad cases, we can try to establish a cnlog n bound via

induction.
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Establishing average case of gs

@ Establish base case. (Trivial.)

@ Induction step involves summation of the form 27:_11 ilog i.

Attempt 1: Bound log i above by log n. (Induction fails.)
Attempt 2: Split the sum into two parts:

n/2 n—1
ZilogH— Z ilogi
i=1 i=n/2+1

and apply the approximation to each half. (Succeeds with ¢ > 4.)
Attempt 3: Replace summation with integration. (See “Integration method” in

n
/ | x2 | 1
xlogx = — [ logx — =
& 2 & 2

=1
(Succeeds with the constraint ¢ >2)

Summations.)
n

x=1
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http://seclab.cs.sunysb.edu/sekar/cse150/ln/summation.pdf

@ Picks a pivot at random

@ What is its complexity?
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@ Picks a pivot at random

@ What is its complexity?
e For randomized algorithms, we talk about expected complexity, which is an average over

all possible values of the random variable.
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Randomized Quicksort

@ Picks a pivot at random
e What is its complexity?
e For randomized algorithms, we talk about expected complexity, which is an average over
all possible values of the random variable.
e If pivot index is picked uniformly at random over the interval [/, h], then:

e every array element is equally likely to be selected as the pivot

e every partition is equally likely
o thus, expected complexity of randomized quicksort is given by the same recurrence as the

average case of gs.
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@ Sorting algorithms can be depicted as trees: each leaf identifies the input permutation that

yields a sorted order.
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Lower bounds for comparison-based sorting

@ Sorting algorithms can be depicted as trees: each leaf identifies the input permutation that

yields a sorted order.

@ The tree has n! leaves, and hence a height of log n!. By Stirling’s approximation,
nl ~ v/2mn (2)", so, log n! = O(nlog n)
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Lower bounds for comparison-based sorting

@ Sorting algorithms can be depicted as trees: each leaf identifies the input permutation that

yields a sorted order.

@ The tree has n! leaves, and hence a height of log n!. By Stirling’s approximation,
nl ~ v/2mn (2)", so, log n! = O(nlog n)
@ No comparison-based sorting algorithm can do better!
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Bucket sort

Overview Bample

Divide: Partition input into intervals 29 25 3 49 9 37 21 43
(buckets), based on key values

@ Linear scan of input, drop into
) p p 29 2 3? 49
appropriate bucket 43

Recurse: Sort each bucket - 10-19  20-29  30-39  40-49

Combine: Concatenate bin contents ) -
21
.- .-43
25 37

21 25 29 37 43 49
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Bucket sort (Continued)

@ Bucket sort generalizes quicksort to multiple partitions

o Combination = concatenation
e Worst case quadratic bound applies

e But performance can be much better if input distribution is uniform.

Exercise: What is the runtime in this case?

@ Used by letter sorting machines in post offices
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Counting Sort

Special case of bucket sort where each bin corresponds to an interval of size 1.

@ No need to recurse. Divide = conquered!

o Makes sense only if range of key values is small (usually constant)

@ Thus, counting sort can be done in O(n) time!
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Counting Sort

Special case of bucket sort where each bin corresponds to an interval of size 1.

@ No need to recurse. Divide = conquered!
o Makes sense only if range of key values is small (usually constant)

@ Thus, counting sort can be done in O(n) time!

e Hmm. How did we beat the O(nlog n) lower bound?
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e Treat an integer as a sequence of digits

@ Sort digits using counting sort
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Radix Sorting

e Treat an integer as a sequence of digits

@ Sort digits using counting sort
LSD sorting: Sort first on least significant digit, and most significant digit last.
After each round of counting sort, results can be simply concatenated, and given

as input to the next stage.
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Warmup Sorting Selection Multiplication

Radix Sorting

Mergesort Recurrences Quicksort Lower Bound Radix sort

e Treat an integer as a sequence of digits
@ Sort digits using counting sort

LSD sorting: Sort first on least significant digit, and most significant digit last.

After each round of counting sort, results can be simply concatenated, and given
as input to the next stage.

MSD sorting: Sort first on most significant digit, and least significant digit last.

Unlike LSD sorting, we cannot concatenate after each stage.
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Radix Sorting

e Treat an integer as a sequence of digits

@ Sort digits using counting sort
LSD sorting: Sort first on least significant digit, and most significant digit last.
After each round of counting sort, results can be simply concatenated, and given
as input to the next stage.
MSD sorting: Sort first on most significant digit, and least significant digit last.

Unlike LSD sorting, we cannot concatenate after each stage.

@ Note: Radix sort does not divide inputs into smaller subsets

If you think of input as multi-dimensional data, then we break down the problem to

each dimension.
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@ Stable sorting algorithms: don’t change
order of equal elements.

@ Merge sort and LSD sort are stable.
Quicksort is not stable.
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Stable sorting algorithms

@ Stable sorting algorithms: don’t change

order of equal elements. e vl o lam|teos loaifns %QQQ
vy o | a¥a| 4 a% s
@ Merge sort and LSD sort are stable. NIRRT T e
. . 9 £ L g L 6
Quicksort is not stable.
3 6 7 7 9
TR ad & 24 ¢ vV V¥ ¢QQQ ade & 49Q$
ats
+ + vy | aa || aa
: e = v %
Why is stability important? ¢ Fey v ey aas Ty w w5 oer
@ Effect of sorting on attribute A and then B | a 7 3 5 6 7 9
i 8 . ad b (adh b v ¢ e ¢ VY Y ab b q%ﬁ
is the same as sorting on (B, A) PO o vy | ata | a%e
v @
v L] ¢ ¢ & 0t A AN ¥ @Y v
e v £ 9 0 %%

Images from Wikipedia Commons
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http://commons.wikimedia.org/wiki/File:Sorting_playing_cards_using_stable_sort.svg#mediaviewer/File:Sorting_playing_cards_using_stable_sort.svg

Warmup Sorting Selection Multiplication Mergesort Recurrences Quicksort Lower Bound Radix sort

Stable sorting algorithms

@ Stable sorting algorithms: don’t change

order of equal elements. e vl o lam|teos loaifns %QQQ
vy o | a¥a| 4 a% s
@ Merge sort and LSD sort are stable. IR X IR ETIE X LT
) . 9 £ L 5 L 6
Quicksort is not stable.
3 6 7 7 9
PO ad & 24 ¢ vV V¥ ¢QQQ ade & 49Q$
a%s
+ + vY | aa | &

; o = v %
Why is stability important? ¢ Fey v ey aas Ty w w5 oer
@ Effect of sorting on attribute A and then B a 7 3 5 5 7 ]

i 8 . ad b (adh b v ¢ e ¢ VY Y ab b q%ﬁ
is the same as sorting on (B, A) PO o vy | ata | a%e
v
@ LSD sort won’t work without this LA SN 1 R A N A 4
property!
Images from Wikipedia Commons
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Stable sorting algorithms

@ Stable sorting algorithms: don’t change

order of equal elements. e vl o lam|teos loaifns %QQQ
vy | o et s | 4% s
@ Merge sort and LSD sort are stable. IR X IR ETIE X LT
. . 9 L 5 L 6
Quicksort is not stable.
3 6 7 7 9
PO adh & 44 ¢ vy ¥ ¢QQQ ade & 49;9
PN
. + vy  Aa | as
; G = v %
Why is stability important? ¢ Fey v ey aas Ty w w5 oer
@ Effect of sorting on attribute A and then B a 7 3 5 6 7 9
i 8 . ad b (adh b v ¢ e ¢ VY Y ab b q%ﬁ
is the same as sorting on (B, A) a2 | o vy | ata | 4%
v
@ LSD sort won’t work without this LA SN 1 R A N A 4
property!
. Images from Wikipedia Commons
@ Other examples: sorting spread sheets or
tables on web pages
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@ Can use LSD or MSD sorting

o Easy if all strings are of same length.
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@ Can use LSD or MSD sorting

o Easy if all strings are of same length.

e Requires a bit more care with variable-length strings.
Starting point: use a special terminator character t < a for all valid characters a.
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Sorting strings

@ Can use LSD or MSD sorting
o Easy if all strings are of same length.
e Requires a bit more care with variable-length strings.
Starting point: use a special terminator character t < a for all valid characters a.

e Easy to devise an O(nl) algorithm, where n is the number of strings and [ is the
maximum size of any string.
e But such an algorithm is not linear in input size.
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Sorting strings

@ Can use LSD or MSD sorting
o Easy if all strings are of same length.
e Requires a bit more care with variable-length strings.
Starting point: use a special terminator character t < a for all valid characters a.

e Easy to devise an O(nl) algorithm, where n is the number of strings and [ is the
maximum size of any string.

e But such an algorithm is not linear in input size.

@ Exercise: Devise a linear-time string algorithm.

Given a set S of strings, your algorithm should sort in O(|S]) time, where

[SI=>_Isl

seS
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Obvious approach: Sort, pick Kkth element — wasteful, O(nlogn)

Better approach: Recursive partitioning, search only on one side
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Obvious approach: Sort, pick Kkth element — wasteful, O(nlogn)

Better approach: Recursive partitioning, search only on one side

if [ = hreturn A[l];
(h1, b) = partition(A, L, h);
if Kk < hy

return gsel(A, [, hy, k)
else return gsel(A, b, h, k)
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Select kth largest element

Obvious approach: Sort, pick kth element — wasteful, O(nlog n)

Better approach: Recursive partitioning, search only on one side

gsel(A, L, h, k) Complexity
if [= hreturn A[l]; Best case: Splits are even: T(n) = n+ T(n/2),
(h1, ) = partition(A, L, h); which has an O(n) solution.
if k < hy
return gsel(A, L, hy, k) Skewed 10%/90% T(n) < n+ T(0.9n) — still linear
else return gsel(A, b, h, k) J Worst case: T(n) = n+ T(n— 1) — quadratic!
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Intuition: Spend a bit more time to select a pivot that ensures reasonably balanced

partitions

Time Bounds for Selection

by .

Manuel Blums, Robert W. Floyd, Vaughan Pratt,
Ronald L. Rivest, and Robert E. Tarjan

Abstract

The number of comparisons reguired to select the i-th smallest of
n numbers is shown to be at most a linear function of n by analysis of
a new selection algorithm -- PICK. gpecifically, no more than

5.5%05 n comparisons are ever required. This bound is improved for
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O(n) Selection: MoM Algorithm

@ Quick select (gsel) takes no time to pick a pivot, but then spends O(n) to partition.

e Can we spend more time upfront to make a better selection of the pivot, so that we

can avoid highly skewed splits?

Key Idea
@ Use the selection algorithm itself to choose the pivot.

e Divide into sets of 5 elements

o Compute median of each set (O(5), i.e., constant time)
o Use selection recursively on these n/5 elements to pick their median

@ i.e., choose the median of medians (MoM) as the pivot

@ Partition using MoM, and recurse to find kth largest element.
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Theorem: MoM-based split won’t be worse than 30%/70%

Result: Guaranteed linear-time algorithm!
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O(n) Selection: MoM Algorithm

Theorem: MoM-based split won’t be worse than 30%/70%

Result: Guaranteed linear-time algorithm!
Caveat: The constant factor is non-negligible; use as fall-back if random selection

repeatedly yields unbalanced splits.
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@ A tree-based data structure for priority queues

Images from Wikimedia Commons
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Selecting maximum element: Priority Queues

Heap

@ A tree-based data structure for priority queues
Heap property: F every subtree h of H
Vk € keys(h) root(h) > k
where keys(h) includes all keys within h

Images from Wikimedia Commons
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Selecting maximum element: Priority Queues

Heap
@ A tree-based data structure for priority queues
Heap property: F every subtree h of H
Vk € keys(h) root(h) > k
where keys(h) includes all keys within h
Note: No ordering of siblings or cousins

Images from Wikimedia Commons
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Selecting maximum element: Priority Queues

Heap

@ A tree-based data structure for priority queues
Heap property: F every subtree h of H
Vk € keys(h) root(h) > k
where keys(h) includes all keys within h
Note: No ordering of siblings or cousins
@ Supports insert, deleteMax and max.

Images from Wikimedia Commons
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Selecting maximum element: Priority Queues

Heap
fog

@ A tree-based data structure for priority queues @ @
Heap property: F every subtree h of H

Wk € keys(h) root(h) > k a7 (3) (s) (1)

where keys(h) includes all keys within h
Note: No ordering of siblings or cousins e °

@ Supports insert, deleteMax and max.
o Typically implemented using arrays, i.e., without
an explicit tree data structure Images from Wikimedia Commons
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Selecting maximum element: Priority Queues

fog
Heap @ @

o A tree-based data structure for priority queues Q e @ o

Heap property: F every subtree h of H
Vk € keys(h) root(h) > k e 0
where keys(h) includes all keys within h
Note: No ordering of siblings or cousins
@ Supports insert, deleteMax and max.
e Typically implemented using arrays, i.e., without

Task of maintaining max is
distributed to subsets of the
entire set; alternatively, it can be

ke thought of as maintaining
an explicit tree data structure el ezl eremes it &

single head.

Images from Wikimedia Commons
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Array representation: Store heap elements in breadth-first order in the array. Node i’s

children are at indices 2 jand 2 % i + 1

@ Conceptually, we are dealing with a balanced binary tree
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Binary heap

Array representation: Store heap elements in breadth-first order in the array. Node i’s
children are at indices 2 x jand 2 x j 4 1

@ Conceptually, we are dealing with a balanced binary tree

Max: Element at the root of the array, extracted in O(1) time
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Binary heap

Array representation: Store heap elements in breadth-first order in the array. Node i’s
children are at indices 2 x jand 2 x j 4 1

@ Conceptually, we are dealing with a balanced binary tree
Max: Element at the root of the array, extracted in O(1) time

DeleteMax: Overwrite root with last element of heap. Fix heap — takes O(log n) time,

since only the ancestors of the last node need to be fixed up.
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Binary heap

Array representation: Store heap elements in breadth-first order in the array. Node i’s
children are at indices 2 x jand 2 x j 4 1

@ Conceptually, we are dealing with a balanced binary tree
Max: Element at the root of the array, extracted in O(1) time

DeleteMax: Overwrite root with last element of heap. Fix heap — takes O(log n) time,

since only the ancestors of the last node need to be fixed up.

Insert: Append element to the end of array, fix up heap
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Binary heap

Array representation: Store heap elements in breadth-first order in the array. Node i’s
children are at indices 2 x jand 2 x j 4 1

@ Conceptually, we are dealing with a balanced binary tree
Max: Element at the root of the array, extracted in O(1) time

DeleteMax: Overwrite root with last element of heap. Fix heap — takes O(log n) time,

since only the ancestors of the last node need to be fixed up.
Insert: Append element to the end of array, fix up heap

MkHeap: Fix up the entire heap. Takes O(n) time.
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Binary heap

Array representation: Store heap elements in breadth-first order in the array. Node i’s
children are at indices 2 x jand 2 x j 4 1

@ Conceptually, we are dealing with a balanced binary tree
Max: Element at the root of the array, extracted in O(1) time

DeleteMax: Overwrite root with last element of heap. Fix heap — takes O(log n) time,

since only the ancestors of the last node need to be fixed up.
Insert: Append element to the end of array, fix up heap
MkHeap: Fix up the entire heap. Takes O(n) time.
Heapsort: O(nlog n) algorithm, MkHeap followed by n calls to DeleteMax
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The product Z of two n x n matrices X and Y is given by

Z; = Z XiYi; — leads to an O(n*) algorithm.
=

J
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Divide-and-conquer Matrix Multiplication

Divide X and Y into four n/2 x

X =

n/2 submatrices
A B

and Y =
CD] G H

Recursively invoke matrix multiplication on these submatrices:

A B ]
XY =

E F AE + BG AF + BH

C D

Divided, but did not conquer! T(n) = 8T(n/2) + O(n?), which is still O(n*)

G H CE+ DG CF+ DH
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Strassen’s Matrix Multiplication

Strassen showed that 7 multiplications are enough:

XY = where
P, = A(F — H) P; = (A+ D)(E + H)
P, = (C+ D)E P,=(A-C)(E+ F)
P, = D(G — E)

Now, the recurrence T(n) = 7T(n/2) + O(n*) has O(n'°&7 = n*8') solution!

Best-to-date complexity is about O(n**), but this algorithm is not very practical.
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Same high-level strategy as Strassen — but predates Strassen.

Divide: n-digit numbers into halves, each with n/2-digits:
« = [@Ta]="ata
b = (o [ & |-+t

ab = 2"a;b; + 2”/2(a1b0 + biag) + agbo

arby + bray = (a1 a ao)(b1 T bo) — a1b1 — agby
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Karatsuba’s Algorithm

Same high-level strategy as Strassen — but predates Strassen.

Divide: n-digit numbers into halves, each with n/2-digits:
a = [@ [@]=2"a+a

ab = 2”611 b1 + 2”/2(a1 b() + b1ao) + aob()

Key point — Instead of 4 multiplications, we can get by with 3 since:

arby + bray = (a1 + ao)(b1 + bo) — a1by — agby

Recursively compute aiby, agby and (a3 + ag) (b1 + by).
Recurrence T(n) = 3T(n/2) + O(n) has an O(n'°823 = n'-*°) solution!
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Karatsuba’s Algorithm

Same high-level strategy as Strassen — but predates Strassen.

Divide: n-digit numbers into halves, each with n/2-digits:
a = [@ [@]=2"a+a

ab = 2”611 b1 + 2”/2(a1 b() + b1ao) + aob()

Key point — Instead of 4 multiplications, we can get by with 3 since:

arby + bray = (a1 + ao)(b1 + bo) — a1by — agby

Recursively compute aiby, agby and (a3 + ag) (b1 + by).

Recurrence T(n) = 3T(n/2) + O(n) has an O(n'°823 = n'-*°) solution!
Note: This trick for using 3 (not 4) multiplications first noted by Gauss (1777-1855).
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Faster algorithms for Integer Multiplication

@ Toom-Cook Multiplication: Generalize Karatsuba
e Divide into n > 2 parts

o FFT (Fast Fourier Transformation) based multiplication (Schonhage-Strassen)

@ Can be more easily understood when integer multiplication is viewed as a
polynomial multiplication.
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Integer Multiplication Revisited

@ An integer represented using digits
an—1...qQ

over a base d (i.e., 0 < a; < d) is very similar to the polynomial

n—1

A(x) = Z ax’'

i=0

Specifically, the value of the integer is A(d).

@ Integer multiplication follows the same steps as polynomial multiplication:

An—1...dy X bp_1... by = (A(x) x B(x))(d)
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Polynomials: Basic Properties

Horner’s rule
An n't degree polynomial "7, a;x’ can be evaluated in O(n) time:
(- ((anx + an—1)x + ap—2)x + -+ - + a1)x + ap)

Roots and Interpolation

@ An n't degree polynomial A(x) has exactly nroots ry, ..., r,. In general, r;’s are complex and
need not be distinct.

@ It can be represented as a product of sums using these roots:
n n

A(x) = Z ax' = [(xi — r)
i=1 i=0
@ Alternatively, A(x) can be specified uniquely by specifying n+ 1 points (x;, y;) on it, i.e.,
A(X,') = Vi
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Operations on Polynomials

Representation | Add | Mult
Coefficients O(n) | O(n?)
Roots ? O(n)
Points O(n) | O(n)
Note: Point representation is the best for computation! But usually, only the

coefficients are given
Solution: Convert to point form by evaluating A(x) at selected points.

But conversion defeats the purpose: requires O(n) evaluations, each taking O(n) time,
thus we are back to O(n?) total time.

Toom (and FFT) Idea: Choose evaluation points judiciously to speed up evaluation

87/89



Warmup Sorting Selection Multiplication Matrix Multiplication Integer multiplication

Integer Multiplication Summary

e Algorithms implemented in libraries for arbitrary precision arithmetic, with

applications in public key cryptography, computer algebra systems, etc.

@ GNU MP is a popular library, uses various algorithms based on input size: naive,

Karatsuba, Toom-3, Toom-4, or Schonhage-Strassen (at about 50K digits).

@ Karatsuba is Toom-2. Toom-N is based on

o Evaluating a polynomial at 2N points,

performing point-wise multiplication, and

interpolating to get back the polynomial, while

minimizing the operations needed for interpolation
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Integer Multiplication Summary

e Algorithms implemented in libraries for arbitrary precision arithmetic, with

applications in public key cryptography, computer algebra systems, etc.

@ GNU MP is a popular library, uses various algorithms based on input size: naive,

Karatsuba, Toom-3, Toom-4, or Schonhage-Strassen (at about 50K digits).

@ Karatsuba is Toom-2. Toom-N is based on

o Evaluating a polynomial at 2N points,

performing point-wise multiplication, and

interpolating to get back the polynomial, while

minimizing the operations needed for interpolation
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