Coping with NP-Completeness

- Sometimes you are faced with hard problems — problems for which no efficient solutions exist.
- **Step 1**: Try to show that the problem is \textit{NP}-complete
 - This way, you can avoid wasting a lot of time on a fruitless search for an efficient algorithm
- **Step 2a**: Sometimes, you may be able to say “let us solve a different problem”
 - you may be able leverage some special structure of your problem domain that enables a more efficient solution
- **Step 2b**: Other times, you are stuck with a difficult problem and you need to make the best of it.
 - We discuss different coping strategies in such cases.

Intelligent Exhaustive Search

- Exhaustive search will work for almost any problem
- **Hamiltonian Tour**: Consider an edge \(e \).
 - Either \(e = (u, v) \) is part of the tour, in which case you can complete the tour by finding a path from \(u \) to \(v \) in \(G - e \).
 - Or, \(e \) is not part of the tour, in which case you can find the tour by searching \(G - e \).
 - Either case leads to a recurrence \(T(m) = 2T(m - 1) \), i.e., \(T(m) = O(2^m) \). (Here \(m \) is the number of edge in \(G \).)
- **SAT**: Try all \(2^n \) possible truth assignments to the \(n \) variables in your formula.
 - The key point is to be intelligent in the way this search is conducted, so that the algorithm is faster than \(2^n \) in practice.

Backtracking

- Depth-first approach to perform exhaustive search
 - In the above example, first try to find a solution that includes \(e \)
 - Looking down further, the algorithm will make additional choices of edges to include: \(e_1, e_2, ..., e_k \)
 - Only when all paths that include \(e \) fail to be Hamiltonian, we consider the alternative (i.e., Hamiltonian path that doesn't include \(e \))
 - Key goal is to recognize and prune failing paths as quickly as possible.
Backtracking Approach for \(SAT \)

- We can improve the worst-case bound by choosing a variable that occurs most times.
 - If it occurs \(k \) times, then you have the recurrence
 \[
 T(n) = 2T(n-k)
 \]
 whose solution is \(O(2^{n/k}) \).
 - Of course, you won’t be able to repeatedly find a variable that occurs \(k \) times, so this solution is meaningless in practice — it just goes to show the exponential pruning effect of a frequently occurring variable.
- Another strategy: pick a clause with fewest number of variables, and pick those variables in sequence.
- \textbf{Exercise:} Show that the backtracking algorithm solves \(2\text{SAT} \) in polynomial time.

Backtracking Approach for \(SAT \): Complexity

- There are two cases, based on the variable \(w \) chosen for branching:
 - Case 1: Both \(w \) and \(\overline{w} \) occur in the formula. In this case, both branches are present. Moreover, both \(w \) and \(\overline{w} \) are eliminated from the formula at this point, so we have the recurrence
 \[
 T(n) = 2T(n-2) + O(n)
 \]
 - Case 2: Only one of them is present. In this case, only one of the branches needs exploring, so we have the recurrence
 \[
 T(n) = T(n-1) + O(n)
 \]
 - Clearly, case 1 will dominate, so let us ignore case 2. Case 1 yields a solution of \(O(2^{n/2}) \) or \(O(1.414^n) \), which is much better than \(2^n \).

Branch and Bound

- Generalization of backtracking to support optimization problems.
- Requires a lower bound on the cost of solutions that may result from a partial solution.
 - If the cost is higher than that of a previously encountered solution, then this subproblem need not be explored further.
- Sometimes, we may rely on estimates of cost rather than strict lower bounds.
Branch and Bound for TSP

- Begin with a vertex a — the goal is to compute a TSP that begins and ends at a.
- We begin the search by considering an edge from a to its neighbor x, another edge from x to a neighbor of x, and so on.
- Partial solutions represent a path from a to some vertex b, passing through a set $S \subseteq V$ of vertices.
- Completing a partial solution requires the computation of a low cost path from b to a using only vertices in $V - S$.

Illustration of Branch-and-Bound for TSP

Lower bound on costs of partial TSP solutions

- To complete the path from b to a, we must incur at least the following costs:
 - Cost of going from b to a vertex in $V - S$, i.e., the minimum weight edge from b to a vertex in $V - S$.
 - Cost of going from a $V - S$ vertex to a, i.e., the minimum weight edge from a to a vertex in $V - S$.
 - Minimal cost path in $V - S$ that visits all $v \in V - S$.
 - Note: Lower bound is the cost of MST for $V - S$.
- By adding the above three cost components, we arrive at a lower bound on solutions derivable from a partial solution.

Approximation Algorithms

- Relax optimality requirement: permit approximate solutions.
 - Solutions that are within a certain distance from optimum.
- Not heuristics: Approximate algorithms guarantee that solutions are within a certain distance from optimal.
 - Differs from heuristics that can sometimes return very bad solutions.
- How to define “distance from optimal?”
 - Additive: Optimal solution S_O and the Solution S_A returned by approximation algorithm differ only by a constant.
 - Quality of approximation is extremely good, but unfortunately, most problems don’t admit such approximations.
 - Factor: S_O and S_A are related by a factor.
 - Most known approximation algorithms fall into this category.
Approximation Factors

Constant: $S_A \leq kS_O$ for some fixed constant k.
- **Examples:** Vertex cover, Facility location, ...

Logarithmic: $S_A \leq O(\log^k n) \cdot S_O$.
- **Examples:** Set cover, dominating set, ...

Polynomial: $S_A \leq O(n^k) \cdot S_O$.
- **Examples:** Max Clique, Independent set, graph coloring, ...

PTAS: $S_A \leq (1 + \epsilon) \cdot S_O$ for any $\epsilon > 0$.
(“Polynomial-time approximation scheme”)

FPTAS: PTAS with runtime $O(\epsilon^{-k})$ for some k. (“Fully PTAS”)
- **Examples:** Knapsack, Bin-packing, Euclidean TSP, ...

Bin Packing

Problem
Pack objects of different weight into bins that have a fixed capacity in such a way that minimizes bins used.

- Obvious similarity to Knapsack
- Bin-packing is NP-hard
- Very good (and often very simple) approximation algorithms exist

First-fit Algorithm

A simple, greedy algorithm

FirstFit(x[1..n])

for $i = 1$ to n do
- Put $x[i]$ into the first open bin large enough to hold it

Theorem
All open bins, except possibly one, are more than half-full

Proof: Suppose that there are two bins b and b' that are less than half-full. Then, items in b' would have fitted into b, and so the FF algorithm would never have opened the bin b' — a contradiction.

Theorem
First-fit is optimal within a factor of 2: specifically, $S_A < 2S_O + 1$.

Best-Fit Algorithm

- Another simple, greedy algorithm
- Instead of using the first bin that will can hold $x[i]$, use the open bin whose remaining capacity is closest to $x[i]$
 - Prefers to keep bins close to full.
- Factor-2 optimality can established easily.
Other algorithms for Bin-packing

- **First-fit decreasing** strategy first sorts the items so that \(x[i] \geq x[i+1] \) and then runs first-fit.
- **Best-fit decreasing** strategy first sorts the items so that \(x[i] \geq x[i+1] \) and then runs best-fit.
- Both FFD and BFD achieve approximation factors of \(\frac{11}{9}S_O + \frac{6}{9} \).
- Due to the additive term, bin-packing cannot have a PTAS unless \(P = NP \).
- But \(S_A = (1+\epsilon)S_O + 1 \) is easy to achieve for any \(\epsilon > 0 \)

Set Cover

Problem
Given a collection \(S_1, \ldots, S_m \) of subsets of \(B \), find a minimum collection \(S_{i_1}, \ldots, S_{i_k} \) such that \(\bigcup_{j=1}^{k} S_{i_j} = B \)

Greedy Set Cover Algorithm

\[
GSC(S, B)
cover = \emptyset; \; covered = \emptyset
\]

while covered \(\neq B \) do

Let new be the set in \(S - cover \) containing the maximum number of elements of \(B - covered \) add new to cover; covered = covered \(\cup \) new

return cover

Analysis of Greedy Set Cover

Theorem

Greedy set cover is approximate with a factor of \(\ln n \), where \(n = |B| \)

Proof:

- Let \(k \) be the size of optimal cover, and \(n_t \) be the number of elements left uncovered after \(t \) steps of \(GSC \)
- These \(n_t \) elements are covered by \(k \) sets in optimal cover \(\Rightarrow \) each of these \(k \) sets must cover at least \(n_t/k \) uncovered elements.
- Thus, \(GSC \) will find at least one set that covers \(n_t/k \) elements.
- This yields the recurrence for bounding uncovered elements:
 \[
 U(t+1) = n_t - n_t/k = n_t(1 - 1/k) = U(t)(1 - 1/k)
 \]
- The solution to recurrence is \(n(1 - 1/k)^t < ne^{-t/k} \)
- Thus, after \(t = k \ln n \) steps, less than 1 (i.e., no) elements uncovered
- Thus, \(GSC \) computes a cover at most \(\ln n \) times the optimal cover.

Vertex Cover

- Note that a vertex cover is a set cover for \((S, E)\), where \(S = \{ (v, u) | v \in V \text{ and } (v, u) \in E \} | v \in V \} \)
- \(S \) contains a set for each vertex; this set lists all edges incident on \(v \)
- Thus \(GSC \) is an approximate algorithm for vertex cover.
- But \(\ln n \) is not a factor to be thrilled about — can we do better?
- Actually, we can do much better! That too with a very simple algorithm.
Vertex Cover

Consider any edge \((u, v)\).

- Either \(u\) or \(v\) must belong to any vertex cover.
- If we accept \(S_A = 2S_O\), then we can avoid the guesswork by simply picking both vertices!

Approximate Vertex Cover Algorithm

\[
AVC(G = (V, E))
\]

\[
C = \emptyset
\]

\[
\text{while } G \text{ is not empty}
\]

\[
\text{pick any } (u, v) \in E
\]

\[
C = C \cup \{u, v\}
\]

\[
G = G - \{u, v\}
\]

\[
\text{return } C
\]

Analysis of k-Cluster

Let \(x\) be the farthest point from \(\mu_1, \ldots, \mu_k\), and let \(r\) the distance to its closest center. Then, we can say:

- Cluster diameter of \(C_1, \ldots, C_k\) is at most \(2r\)
- The distance between any 2 points in \(\{x, \mu_1, \ldots, \mu_k\}\) is at least \(r\).
 - This follows from:
 - how \(\mu_i\)'s was chosen to be the farthest point from \(\mu_j\) for \(j < i\),
 - this distance to \(\mu_i\) must decrease with \(i\), and
 - when \(i = k + 1\), this distance is \(r\)
- Thus, any k-Cluster must have a diameter of at least \(r\)
 - With \(k\) circles, at least two of \(k + 1\) points must be within one of them.
 - This circle's diameter must hence be \(r\) or greater
- Thus, AC is approximate within a factor of 2.

k-Cluster

Problem

Given \(X = \{x_1, \ldots, x_n\}\) and distances between \(x_i\), partition \(X\) into \(k\) clusters in a way that minimizes maximum cluster diameter.

Approximate k-Cluster Algorithm (AC)

Pick any point \(\mu_1 \in X\) as the first cluster center

\[
\text{for } i = 2 \text{ to } k \text{ do}
\]

Choose \(\mu_i\) to be the farthest point from \(\mu_1, \ldots, \mu_{i-1}\)

Create \(k\) clusters \(C_i = \{x \in X | \mu_i\text{ is the closest center to } x\}\)

Euclidean TSP

- Our starting point is once again the MST
- Note that no TSP solution can be smaller than MST
 - Deleting an edge from TSP solution yields a spanning tree
- **Simple algorithm:**
 - Start with the MST
Approximating Euclidean TSP: An Illustration

- Start with the MST
- Make a tour that uses each MST edge twice (forward and backward)
 - This tour is like TSP in ending at the starting node, and differs from TSP by visiting some vertices and edges twice

Avoid revisits by short-circuiting to next unvisited vertex
- By triangle inequality, short-circuit distance can only be less than the distance following MST edges.
- Thus, tour length less than 2xMST, i.e., approximate within a factor 2.

Knapsack

\[knap01(w, v, n, W) \]
\[V = \sum_{j=0}^{n} v[j] \]
\[k[0, v] = 0, \forall 0 \leq v \leq V \]
\[\text{for } j = 1 \text{ to } n \text{ do} \]
\[\text{for } v = 1 \text{ to } V \text{ do} \]
\[\text{if } v[j] > v \text{ then } k[j, v] = k[j-1, v] \]
\[\text{else } k[j, v] = \min(k[j-1, v], k[j-1, v-v[j]] + w[j]) \]
\[\text{return maximum } v \text{ such that } k[n, v] \leq W \]

- Computes minimum weight of knapsack for a given value.
- Iterates over all possible items and all possible values: \(O(nV) \)
 - we derive a polynomial time approximate algorithm from this

FPTAS for 0-1 Knapsack

\[knap01FPTAS(w, v, n, W, \epsilon) \]
\[v'_i = \left[\frac{v_i}{\max_{0 \leq j \leq n} v_j} \cdot \frac{n}{\epsilon} \right] \text{, for } 1 \leq i \leq n \]
\[knap01(w, v', n, W) \]

- Rescaling consists of two steps:
 - Express value of each item relative to the most valuable item
 - If we worked with real values, this step won’t change the optimal solution
 - Multiply relative values by a factor \(n/\epsilon \) to get an integer
 - Floor operation introduces an error \(\leq 1 \) in \(v'_i \) (e.g., \(\lfloor 3.99 \rfloor = 3 \))
 - Error in \(knap01 \) output is error in \(\sum v'_i \), which is at most \(n \cdot 1 \)
 - We scale each \(v'_i \) by \(n/\epsilon \), so relative error is \(n/(n/\epsilon) = \epsilon \)
 - Thus we have achieved the desired approximation.
FPTAS for 0-1 Knapsack: Runtime

\[\text{Knap01FPTAS}(w, v, n, W, \epsilon) \]

\[v'_i = \left\lfloor \frac{v_i}{\max_{1 \leq j \leq n} v_j} \cdot \frac{n}{\epsilon} \right\rfloor, \text{ for } 1 \leq i \leq n \]

Note that we are using \textit{Knap01} with rescaled values, so the complexity is \(O(nV') \).

Note: \(V' = \sum_i^n v'_i \leq n \cdot \max_{1 \leq j \leq n} v'_j \)

It is easy to see from definition of \(v'_i \) that \(\max_{1 \leq j \leq n} v'_j = n/\epsilon \).

Substituting this into the above equation yields a complexity of:

\[O(nV') \leq O(n(n \cdot \max_{1 \leq j \leq n} v'_j)) = O(n(n \cdot (n/\epsilon))) = O(n^3/\epsilon) \]

By varying \(\epsilon \), we can trade off accuracy against runtime.