CSE 548: Algorithms

Coping with NP-Completeness

R. Sekar
Coping with NP-Completeness

- Sometimes you are faced with hard problems — problems for which no efficient solutions exist.

- **Step 1**: Try to show that the problem is \(NP \)-complete
 - This way, you can avoid wasting a lot of time on a fruitless search for an efficient algorithm
Coping with NP-Completeness

- Sometimes you are faced with hard problems — problems for which no efficient solutions exist.

Step 1: Try to show that the problem is \(NP \)-complete
 - This way, you can avoid wasting a lot of time on a fruitless search for an efficient algorithm

Step 2a: Sometimes, you may be able to say “let us solve a different problem”
 - you may be able leverage some special structure of your problem domain that enables a more efficient solution
Coping with NP-Completeness

- Sometimes you are faced with hard problems — problems for which no efficient solutions exist.

Step 1: Try to show that the problem is \(NP \)-complete
 - This way, you can avoid wasting a lot of time on a fruitless search for an efficient algorithm

Step 2a: Sometimes, you may be able to say “let us solve a different problem”
 - you may be able leverage some special structure of your problem domain that enables a more efficient solution

Step 2b: Other times, you are stuck with a difficult problem and you need to make the best of it.
 - We discuss different coping strategies in such cases.
Exhaustive search will work for almost any problem.

Hamiltonian Tour: Consider an edge $e = (u, v)$.

Either e is part of the tour, in which case you can complete the tour by finding a path from u to v in $G - e$.

Or, e is not part of the tour, in which case you can find the tour by searching $G - e$.

Either case leads to a recurrence $T(m) = 2T(m-1)$, i.e., $T(m) = O(2^m)$.

(SAT) Try all 2^n possible truth assignments to the n variables in your formula.

The key point is to be intelligent in the way this search is conducted, so that the algorithm is faster than 2^n in practice.
Intelligent Exhaustive Search

- Exhaustive search will work for almost any problem

 Hamiltonian Tour: Consider an edge e.
 - Either $e = (u, v)$ is part of the tour, in which case you can complete the tour by finding a path from u to v in $G - e$.

SAT: Try all 2^n possible truth assignments to the n variables in your formula. The key point is to be intelligent in the way this search is conducted, so that the algorithm is faster than 2^n in practice.
Intelligent Exhaustive Search

- Exhaustive search will work for almost any problem

Hamiltonian Tour: Consider an edge e.

- Either $e = (u, v)$ is part of the tour, in which case you can complete the tour by finding a path from u to v in $G - e$.
- Or, e is not part of the tour, in which case you can find the tour by searching $G - e$.

7 / 75
Exhaustive search will work for almost any problem

Hamiltonian Tour: Consider an edge e.

- Either $e = (u, v)$ is part of the tour, in which case you can complete the tour by finding a path from u to v in $G - e$.
- Or, e is not part of the tour, in which case you can find the tour by searching $G - e$.

Either case leads to a recurrence $T(m) = 2T(m - 1)$, i.e., $T(m) = O(2^m)$. (Here m is the number of edge in G.)
Intelligent Exhaustive Search

- Exhaustive search will work for almost any problem

 Hamiltonian Tour: Consider an edge e.
 - Either $e = (u, v)$ is part of the tour, in which case you can complete the tour by finding a path from u to v in $G - e$.
 - Or, e is not part of the tour, in which case you can find the tour by searching $G - e$.

 Either case leads to a recurrence $T(m) = 2T(m - 1)$, i.e., $T(m) = O(2^m)$. (Here m is the number of edge in G.)

- **SAT:** Try all 2^n possible truth assignments to the n variables in your formula.
Intelligent Exhaustive Search

- Exhaustive search will work for almost any problem

 Hamiltonian Tour: Consider an edge e.
 - Either $e = (u, v)$ is part of the tour, in which case you can complete the tour by finding a path from u to v in $G - e$.
 - Or, e is not part of the tour, in which case you can find the tour by searching $G - e$.

 Either case leads to a recurrence $T(m) = 2T(m - 1)$, i.e., $T(m) = O(2^m)$. (Here m is the number of edge in G.)

- SAT: Try all 2^n possible truth assignments to the n variables in your formula.

- The key point is to be intelligent in the way this search is conducted, so that the algorithm is faster than 2^n in practice.
Backtracking

- Depth-first approach to perform exhaustive search
Backtracking

- Depth-first approach to perform exhaustive search
 - In the above example, first try to find a solution that includes e
 - Looking down further, the algorithm will make additional choices of edges to include: $e_1, e_2, ..., e_k$
 - Only when all paths that include e fail to be Hamiltonian, we consider the alternative (i.e., Hamiltonian path that doesn’t include e)
Backtracking

- Depth-first approach to perform exhaustive search
 - In the above example, first try to find a solution that includes e
 - Looking down further, the algorithm will make additional choices of edges to include: e_1, e_2, \ldots, e_k
 - Only when all paths that include e fail to be Hamiltonian, we consider the alternative (i.e., Hamiltonian path that doesn’t include e)

- Key goal is to recognize and prune failing paths as quickly as possible.
Backtracking Approach for SAT

In the case of SAT, this test declares failure if there is an empty clause, success if there are no clauses, and uncertainty otherwise. The backtracking procedure then has the following format.

Start with some problem P_0

Let $S = \{P_0\}$, the set of active subproblems

Repeat while S is nonempty:

- Choose a subproblem $P \in S$ and remove it from S
- Expand it into smaller subproblems P_1, P_2, \ldots, P_k

 For each P_i:
 - If test(P_i) succeeds: halt and announce this solution
 - If test(P_i) fails: discard P_i
 - Otherwise: add P_i to S

Announce that there is no solution

For SAT, the choose procedure picks a clause, and the expand picks a variable within that clause. We have already discussed some reasonable ways of making such choices.

With the right test, expand, and choose routines, backtracking can be remarkably effective in practice. The backtracking algorithm we showed for SAT is the basis of many successful satisfiability programs. Another sign of quality is this: if presented with a 2SAT instance, it will always find a satisfying assignment, if one exists, in polynomial time (Exercise 9.1)!

Figure 9.1 Backtracking reveals that ϕ is not satisfiable.

\[
\begin{align*}
&w = 0 \\
&(x \lor y \lor z), (x), (x \lor \bar{y}), (y \lor \bar{z}), (z \lor \bar{w}), (\bar{w} \lor \bar{z}) \\
&w = 1 \\
&(x \lor \bar{y}), (y \lor \bar{z}), (z), (\bar{z}) \\
&x = 0 \\
&(x \lor y \lor z), (\bar{x}), (x \lor \bar{y}), (y \lor \bar{z}) \\
&x = 1 \\
&(x \lor y \lor z), (\bar{x}), (x \lor \bar{y}), (y \lor \bar{z}) \\
&y = 0 \\
&(y \lor z), (\bar{y}), (y \lor \bar{z}) \\
&y = 1 \\
&(y \lor z), (\bar{y}), (y \lor \bar{z}) \\
&z = 0 \\
&(z), (\bar{z}) \\
&z = 1 \\
&() \\
&(z), (\bar{z}) \\
&() \\
&(z), (\bar{z}) \\
&() \\
&(z), (\bar{z}) \\
&()
\end{align*}
\]
Backtracking Approach for SAT: Complexity

There are two cases, based on the variable \(w \) chosen for branching:

Case 1: Both \(w \) and \(\overline{w} \) occur in the formula. In this case, both branches are present. Moreover, both \(w \) and \(\overline{w} \) are eliminated from the formula at this point, so we have the recurrence:

\[
T(n) = 2T(n - 2) + O(n)
\]

Case 2: Only one of them is present. In this case, only one of the branches needs exploring, so we have the recurrence:

\[
T(n) = T(n - 1) + O(n)
\]

Clearly, case 1 will dominate, so let us ignore case 2. Case 1 yields a solution of \(O\left(\frac{2^n}{2}\right) \) or \(O\left(1.414^n\right) \), which is much better than \(2^n \).
There are two cases, based on the variable w chosen for branching:

Case 1: Both w and \overline{w} occur in the formula. In this case, both branches are present. Moreover, both w and \overline{w} are eliminated from the formula at this point, so we have the recurrence:

$$T(n) = 2T(n - 2) + O(n)$$

Case 2: Only one of them is present. In this case, only one of the branches needs exploring, so we have the recurrence

$$T(n) = T(n - 1) + O(n)$$
Backtracking Approach for SAT: Complexity

There are two cases, based on the variable w chosen for branching:

Case 1: Both w and \overline{w} occur in the formula. In this case, both branches are present. Moreover, both w and \overline{w} are eliminated from the formula at this point, so we have the recurrence:

$$T(n) = 2T(n - 2) + O(n)$$

Case 2: Only one of them is present. In this case, only one of the branches needs exploring, so we have the recurrence

$$T(n) = T(n - 1) + O(n)$$

Clearly, case 1 will dominate, so let us ignore case 2. Case 1 yields a solution of $O(2^{n/2})$ or $O(1.414^n)$, which is much better than 2^n.
Backtracking Approach for SAT: Improvements

- We can improve the worst-case bound by choosing a variable that occurs most times
Backtracking Approach for SAT: Improvements

- We can improve the worst-case bound by choosing a variable that occurs most times
 - If it occurs k times, then you have the recurrence

 $$T(n) = 2T(n - k)$$

 whose solution is $O(2^{n/k})$. Of course, you won't be able to repeatedly find a variable that occurs k times, so this solution is meaningless in practice — it just goes to show the exponential pruning effect of a frequently occurring variable.

Another strategy: pick a clause with fewest number of variables, and pick those variables in sequence.

Exercise: Show that the backtracking algorithm solves 2SAT in polynomial time.
Backtracking Approach for SAT: Improvements

- We can improve the worst-case bound by choosing a variable that occurs most times.
 - If it occurs k times, then you have the recurrence
 \[T(n) = 2T(n - k) \]
 whose solution is $O(2^{n/k})$.
 - Of course, you won’t be able to repeatedly find a variable that occurs k times, so this solution is meaningless in practice — it just goes to show the exponential pruning effect of a frequently occurring variable.
Backtracking Approach for \textit{SAT}: Improvements

- We can improve the worst-case bound by choosing a variable that occurs most times.
 - If it occurs k times, then you have the recurrence
 \[T(n) = 2T(n-k) \]
 whose solution is $O(2^{n/k})$.
 - Of course, you won’t be able to repeatedly find a variable that occurs k times, so this solution is meaningless in practice — it just goes to show the exponential pruning effect of a frequently occurring variable.

- Another strategy: pick a clause with fewest number of variables, and pick those variables in sequence.
Backtracking Approach for SAT: Improvements

- We can improve the worst-case bound by choosing a variable that occurs most times.
 - If it occurs \(k \) times, then you have the recurrence:
 \[
 T(n) = 2T(n - k)
 \]
 - whose solution is \(O(2^{n/k}) \).
 - Of course, you won’t be able to repeatedly find a variable that occurs \(k \) times, so this solution is meaningless in practice — it just goes to show the exponential pruning effect of a frequently occurring variable.

- Another strategy: pick a clause with fewest number of variables, and pick those variables in sequence.

- **Exercise:** Show that the backtracking algorithm solves 2SAT in polynomial time.
Branch and Bound

- Generalization of backtracking to support optimization problems
Branch and Bound

- Generalization of backtracking to support optimization problems
- Requires a lower bound on the cost of solutions that may result from a partial solution
 - If the cost is higher than that of a previously encountered solution, then this subproblem need not be explored further.
Branch and Bound

- Generalization of backtracking to support optimization problems
- Requires a lower bound on the cost of solutions that may result from a partial solution
 - If the cost is higher than that of a previously encountered solution, then this subproblem need not be explored further.
- Sometimes, we may rely on estimates of cost rather than strict lower bounds.
Branch and Bound for TSP

- Begin with a vertex a — the goal is to compute a TSP that begins and ends at a.
Branch and Bound for TSP

- Begin with a vertex a — the goal is to compute a TSP that begins and ends at a.
- We begin the search by considering an edge from a to its neighbor x, another edge from x to a neighbor of x, and so on.
Begin with a vertex a — the goal is to compute a TSP that begins and ends at a.

We begin the search by considering an edge from a to its neighbor x, another edge from x to a neighbor of x, and so on.

Partial solutions represent a path from a to some vertex b, passing through a set $S \subseteq V$ of vertices.
Branch and Bound for TSP

- Begin with a vertex a — the goal is to compute a TSP that begins and ends at a.
- We begin the search by considering an edge from a to its neighbor x, another edge from x to a neighbor of x, and so on.
- Partial solutions represent a path from a to some vertex b, passing through a set $S \subset V$ of vertices.
- Completing a partial solution requires the computation of a low cost path from b to a using only vertices in $V - S$.
Lower bound on costs of partial TSP solutions

- To complete the path from b to a, we must incur at least the following costs
 - Cost of going from b to a vertex in $V - S$, i.e., the minimum weight edge from b to a vertex in $V - S$
Lower bound on costs of partial TSP solutions

- To complete the path from b to a, we must incur at least the following costs:
 - Cost of going from b to a vertex in $V - S$, i.e., the minimum weight edge from b to a vertex in $V - S$
 - Cost of going from a $V - S$ vertex to a, i.e., the minimum weight edge from a to a vertex in $V - S$
Lower bound on costs of partial TSP solutions

- To complete the path from b to a, we must incur at least the following costs
 - Cost of going from b to a vertex in $V - S$, i.e, the minimum weight edge from b to a vertex in $V - S$
 - Cost of going from a $V - S$ vertex to a, i.e, the minimum weight edge from a to a vertex in $V - S$
 - Minimal cost path in $V - S$ that visits all $v \in V - S$
 - Note: Lower bound is the cost of MST for $V - S$
Lower bound on costs of partial TSP solutions

To complete the path from b to a, we must incur at least the following costs:

- Cost of going from b to a vertex in $V - S$, i.e., the minimum weight edge from b to a vertex in $V - S$
- Cost of going from a $V - S$ vertex to a, i.e., the minimum weight edge from a to a vertex in $V - S$
- Minimal cost path in $V - S$ that visits all $v \in V - S$
 - *Note:* Lower bound is the cost of MST for $V - S$

By adding the above three cost components, we arrive at a lower bound on solutions derivable from a partial solution.
Illustration of Branch-and Bound for TSP

Figure 9.2
(a) A graph and its optimal traveling salesman tour. (b) The branch-and-bound search tree, explored left to right. Boxed numbers indicate lower bounds on cost.
Approximation Algorithms

- Relax optimality requirement: permit *approximate* solutions
- Solutions that are within a certain distance from optimum
Approximation Algorithms

- Relax optimality requirement: permit *approximate* solutions
 - Solutions that are within a certain distance from optimum

Not heuristics: Approximate algorithms *guarantee* that solutions are within a certain distance from optimal

- Differs from heuristics that can sometimes return very bad solutions.
Approximation Algorithms

- Relax optimality requirement: permit *approximate* solutions
 - Solutions that are within a certain distance from optimum

Not heuristics: Approximate algorithms *guarantee* that solutions are within a certain distance from optimal

- Differs from heuristics that can sometimes return very bad solutions.

- How to define “distance from optimal?”
Approximation Algorithms

- Relax optimality requirement: permit *approximate* solutions
 - Solutions that are within a certain distance from optimum

- *Not heuristics*: Approximate algorithms *guarantee* that solutions are within a certain distance from optimal
 - Differs from heuristics that can sometimes return very bad solutions.

- How to define “distance from optimal?”
 - **Additive**: Optimal solution S_O and the Solution S_A returned by approximation algorithm differ only by a constant.
 - Quality of approximation is extremely good, but unfortunately, most problems don’t admit such approximations
Approximation Algorithms

- Relax optimality requirement: permit *approximate* solutions
 - Solutions that are within a certain distance from optimum

Not heuristics: Approximate algorithms *guarantee* that solutions are within a certain distance from optimal
- Differs from heuristics that can sometimes return very bad solutions.

How to define “distance from optimal?”

Additive: Optimal solution S_O and the Solution S_A returned by approximation algorithm differ only by a constant.
- Quality of approximation is extremely good, but unfortunately, most problems don’t admit such approximations

Factor: S_O and S_A are related by a factor.
- Most known approximation algorithms fall into this category.
Approximation Factors

Constant: \(S_A \leq kS_O \) for some fixed constant \(k \).

- *Examples:* Vertex cover, Facility location, ...

Logarithmic: \(S_A \leq O(\log k n) \cdot S_O \).

- *Examples:* Set cover, dominating set, ...

Polynomial: \(S_A \leq O(n^k) \cdot S_O \).

- *Examples:* Max Clique, Independent set, graph coloring, ...

PTAS: \(S_A \leq (1 + \varepsilon) \cdot S_O \) for any \(\varepsilon > 0 \).

("Polynomial-time approximation scheme")

FPTAS: PTAS with runtime \(O(\varepsilon^{-k}) \) for some \(k \). ("Fully PTAS")

- *Examples:* Knapsack, Bin-packing, Euclidean TSP, ...
Approximation Factors

Constant: \(S_A \leq kS_O \) for some fixed constant \(k \).
- *Examples:* Vertex cover, Facility location, ...

Logarithmic: \(S_A \leq O(\log^k n) \cdot S_O \).
- *Examples:* Set cover, dominating set, ...

"Approximation Factors"
Approximation Factors

Constant: \(S_A \leq k S_O \) for some fixed constant \(k \).

- Examples: Vertex cover, Facility location, ...

Logarithmic: \(S_A \leq O(\log^k n) \cdot S_O \).

- Examples: Set cover, dominating set, ...

Polynomial: \(S_A \leq O(n^k) \cdot S_O \).

- Examples: Max Clique, Independent set, graph coloring, ...
Approximation Factors

Constant: \(S_A \leq kS_O \) for some fixed constant \(k \).
- *Examples:* Vertex cover, Facility location, ...

Logarithmic: \(S_A \leq O(\log^k n) \cdot S_O \).
- *Examples:* Set cover, dominating set, ...

Polynomial: \(S_A \leq O(n^k) \cdot S_O \).
- *Examples:* Max Clique, Independent set, graph coloring, ...

PTAS: \(S_A \leq (1 + \epsilon) \cdot S_O \) for any \(\epsilon > 0 \).
(*“Polynomial-time approximation scheme”*"

\[S_A \leq kS_O \] for some fixed constant \(k \).

\[S_A \leq O(\log^k n) \cdot S_O \] for logarithmic factors.

\[S_A \leq O(n^k) \cdot S_O \] for polynomial factors.

\[S_A \leq (1 + \epsilon) \cdot S_O \] for PTAS, allowing \(\epsilon > 0 \).
Approximation Factors

Constant: \(S_A \leq kS_O \) for some fixed constant \(k \).

- *Examples:* Vertex cover, Facility location, ...

Logarithmic: \(S_A \leq O(\log^k n) \cdot S_O \).

- *Examples:* Set cover, dominating set, ...

Polynomial: \(S_A \leq O(n^k) \cdot S_O \).

- *Examples:* Max Clique, Independent set, graph coloring, ...

PTAS: \(S_A \leq (1 + \epsilon) \cdot S_O \) for any \(\epsilon > 0 \).

 (“Polynomial-time approximation scheme”)

FPTAS: PTAS with runtime \(O(\epsilon^{-k}) \) for some \(k \). (“Fully PTAS”)

- *Examples:* Knapsack, Bin-packing, Euclidean TSP, ...
Bin Packing

Problem
Pack objects of different weight into bins that have a fixed capacity in such a way that minimizes bins used.
Bin Packing

Problem

Pack objects of different weight into bins that have a fixed capacity in such a way that minimizes bins used.

- Obvious similarity to Knapsack
- Bin-packing is NP-hard
- Very good (and often very simple) approximation algorithms exist
First-fit Algorithm

A simple, greedy algorithm

\[
\text{FirstFit}(x[1..n])
\]

\[
\text{for } i = 1 \text{ to } n \text{ do}
\]

Put \(x[i] \) into the first open bin large enough to hold it
First-fit Algorithm

A simple, greedy algorithm

\[\text{FirstFit}(x[1..n]) \]

\[
\text{for } i = 1 \text{ to } n \text{ do }
\]

Put \(x[i] \) into the first open bin large enough to hold it

Theorem

All open bins, except possibly one, are more than half-full
First-fit Algorithm

A simple, greedy algorithm

FirstFit\((x[1..n])\)

\[
\text{for } i = 1 \text{ to } n \text{ do}
\]

Put \(x[i]\) into the first open bin large enough to hold it

Theorem

All open bins, except possibly one, are more than half-full

Proof: Suppose that there are two bins \(b\) and \(b'\) that are less than half-full. Then, items in \(b'\) would have fitted into \(b\), and so the FF algorithm would never have opened the bin \(b'\) — a contradiction.
First-fit Algorithm

A simple, greedy algorithm

FirstFit(*x*[1..n])

for \(i = 1 \) to \(n \)
do
Put \(x[i] \) into the first open bin large enough to hold it

Theorem

All open bins, except possibly one, are more than half-full

Proof: Suppose that there are two bins \(b \) and \(b' \) that are less than half-full. Then, items in \(b' \) would have fitted into \(b \), and so the FF algorithm would never have opened the bin \(b' \) — a contradiction.

Theorem

First-fit is optimal within a factor of 2: specifically, \(S_A < 2S_O + 1 \).
Best-Fit Algorithm

- Another simple, greedy algorithm
- Instead of using the first bin that will can hold $x[i]$, use the open bin whose remaining capacity is closest to $x[i]$
 - Prefers to keep bins close to full.
- Factor-2 optimality can established easily.
Other algorithms for Bin-packing

- **First-fit decreasing** strategy first sorts the items so that \(x[i] \geq x[i + 1] \) and then runs first-fit.
Other algorithms for Bin-packing

- **First-fit decreasing** strategy first sorts the items so that $x[i] \geq x[i + 1]$ and then runs first-fit.

- **Best-fit decreasing** strategy first sorts the items so that $x[i] \geq x[i + 1]$ and then runs best-fit.
Other algorithms for Bin-packing

- **First-fit decreasing** strategy first sorts the items so that \(x[i] \geq x[i + 1] \) and then runs first-fit.

- **Best-fit decreasing** strategy first sorts the items so that \(x[i] \geq x[i + 1] \) and then runs best-fit.

- Both FFD and BFD achieve approximation factors of \(11/9S_O + 6/9 \).
Set Cover

Problem
Given a collection S_1, \ldots, S_m of subsets of B, find a minimum collection S_{i_1}, \ldots, S_{i_k} such that $\bigcup_{j=1}^{k} S_{i_j} = B$
Set Cover

Problem

Given a collection S_1, \ldots, S_m of subsets of B, find a minimum collection S_{i_1}, \ldots, S_{i_k} such that $\bigcup_{j=1}^k S_{i_j} = B$

Greedy Set Cover Algorithm

$GSC(S, B)$

- $cover = \emptyset$; $covered = \emptyset$
- **while** $covered \neq B$ **do**
 - Let new be the set in $S - cover$ containing
 - the maximum number of elements of $B - covered$
 - add new to $cover$; $covered = covered \cup new$
- **return** $cover$
Analysis of Greedy Set Cover

Theorem

Greedy set cover is approximate with a factor of $\ln n$, where $n = |B|$
Analysis of Greedy Set Cover

Theorem

Greedy set cover is approximate with a factor of $\ln n$, where $n = |B|$

Proof:

- Let k be the size of optimal cover, and n_t be the number of elements left uncovered after t steps of GSC.
Analysis of Greedy Set Cover

Theorem

Greedy set cover is approximate with a factor of $\ln n$, where $n = |B|$

Proof:

- Let k be the size of optimal cover, and n_t be the number of elements left uncovered after t steps of GSC.
- These n_t elements are covered by k sets in optimal cover \Rightarrow these k sets must cover n_t/k uncovered elements on average.
Analysis of Greedy Set Cover

Theorem

Greedy set cover is approximate with a factor of \(\ln n \), where \(n = |B| \)

Proof:

- Let \(k \) be the size of optimal cover, and \(n_t \) be the number of elements left uncovered after \(t \) steps of *GSC*

- These \(n_t \) elements are covered by \(k \) sets in optimal cover \(\Rightarrow \) these \(k \) sets must cover \(n_t/k \) uncovered elements on average.

- Thus, *GSC* will find at least one set that covers \(n_t/k \) elements.
Analysis of Greedy Set Cover

Theorem

Greedy set cover is approximate with a factor of \(\ln n \), where \(n = |B| \)

Proof:

- Let \(k \) be the size of optimal cover, and \(n_t \) be the number of elements left uncovered after \(t \) steps of \(GSC \).
- These \(n_t \) elements are covered by \(k \) sets in optimal cover \(\Rightarrow \) these \(k \) sets must cover \(n_t/k \) uncovered elements on average.
- Thus, \(GSC \) will find at least one set that covers \(n_t/k \) elements.
- This yields the recurrence for bounding uncovered elements:
 \[
 U(t + 1) = n_t - n_t/k = n_t(1 - 1/k) = U(t)(1 - 1/k)
 \]
Analysis of Greedy Set Cover

Theorem

Greedy set cover is approximate with a factor of $\ln n$, where $n = |B|$

Proof:

- Let k be the size of optimal cover, and n_t be the number of elements left uncovered after t steps of GSC.
- These n_t elements are covered by k sets in optimal cover \Rightarrow these k sets must cover n_t/k uncovered elements on average.
- Thus, GSC will find at least one set that covers n_t/k elements.
- This yields the recurrence for bounding uncovered elements:
 \[
 U(t+1) = n_t - n_t/k = n_t(1 - 1/k) = U(t)(1 - 1/k)
 \]
- The solution to recurrence is $n(1 - 1/k)^t < ne^{-t/k}$.
Analysis of Greedy Set Cover

Theorem

Greedy set cover is approximate with a factor of $\ln n$, where $n = |B|$

Proof:

- Let k be the size of optimal cover, and n_t be the number of elements left uncovered after t steps of GSC.
- These n_t elements are covered by k sets in optimal cover \Rightarrow these k sets must cover n_t/k uncovered elements on average.
- Thus, GSC will find at least one set that covers n_t/k elements.
- This yields the recurrence for bounding uncovered elements:
 \[U(t + 1) = n_t - n_t/k = n_t(1 - 1/k) = U(t)(1 - 1/k) \]
- The solution to recurrence is $n(1 - 1/k)^t < ne^{-t/k}$
- Thus, after $t = k \ln n$ steps, less than 1 (i.e., no) elements uncovered.
Analysis of Greedy Set Cover

Theorem

Greedy set cover is approximate with a factor of $\ln n$, where $n = |B|$.

Proof:

- Let k be the size of optimal cover, and n_t be the number of elements left uncovered after t steps of GSC.
- These n_t elements are covered by k sets in optimal cover \Rightarrow these k sets must cover n_t/k uncovered elements on average.
- Thus, GSC will find at least one set that covers n_t/k elements.
- This yields the recurrence for bounding uncovered elements: $U(t + 1) = n_t - n_t/k = n_t(1 - 1/k) = U(t)(1 - 1/k)$.
- The solution to recurrence is $n(1 - 1/k)^t < ne^{-t/k}$.
- Thus, after $t = k \ln n$ steps, less than 1 (i.e., no) elements uncovered.
- Thus, GSC computes a cover at most $\ln n$ times the optimal cover.
Vertex Cover

- Note that a vertex cover is a set cover for \((S, E)\), where

\[
S = \{\{(v, u)\mid (v, u) \in E\}\mid v \in V\}
\]

- i.e., \(S\) contains a set for each vertex; this set lists all edges incident on \(v\)
Vertex Cover

Note that a vertex cover is a set cover for (S, E), where

$$S = \{\{(v, u) | (v, u) \in E\} | v \in V\}$$

i.e., S contains a set for each vertex; this set lists all edges incident on v

Thus GSC is an approximate algorithm for vertex cover.
Vertex Cover

- Note that a vertex cover is a set cover for \((S, E)\), where
 \[S = \{(v, u) | (v, u) \in E \} | v \in V \]

i.e., \(S\) contains a set for each vertex; this set lists all edges incident on \(v\)
- Thus \(GSC\) is an approximate algorithm for vertex cover.
- But \(\ln n\) is not a factor to be thrilled about — can we do better?
 - Actually, we can do much better! That too with a very simple algorithm.
Vertex Cover

Consider any edge \((u, v)\).

- Either \(u\) or \(v\) must belong to any vertex cover.
- If we accept \(S_A = 2S_O\), we can avoid the guesswork by simply picking both vertices!
Vertex Cover

Consider any edge \((u, v)\).

- Either \(u\) or \(v\) must belong to any vertex cover.
- If we accept \(S_A = 2S_O\), we can avoid the guesswork by simply picking both vertices!

Approximate Vertex Cover Algorithm

\[
\begin{align*}
&AVC(G = (V, E)) \\
&C = \emptyset \\
&\textbf{while } G \text{ is not empty} \\
&\quad \text{pick any } (u, v) \in E \\
&\quad C = C \cup \{u, v\} \\
&\quad G = G - \{u, v\} \\
&\text{return } C
\end{align*}
\]
Our starting point is once again the MST

Note that no TSP solution can be smaller than MST
 - Deleting an edge from TSP solution yields a spanning tree

Simple algorithm:
 - Start with the MST
Approximating Euclidean TSP: An Illustration

- Start with the MST
- Make a tour that uses each MST edge twice (forward and backward)
 - This tour is like TSP in ending at the starting node, and differs from TSP by visiting some vertices and edges twice
Avoid revisits by short-circuiting to next unvisited vertex

By triangle inequality, short-circuit distance can only be less than the distance following MST edges.

- Thus, tour length less than 2xMST, i.e., approximate within a factor 2.
Knapsack

\[V = \sum_{j=0}^{n} v[j] \]
\[K[j, 0] = 0, \forall 0 \leq j \leq V \]

\[\text{for } j = 1 \text{ to } n \text{ do} \]
\[\quad \text{for } v = 1 \text{ to } V \text{ do} \]
\[\quad \quad \text{if } v[j] > v \text{ then } K[j, v] = K[j-1, v] \]
\[\quad \quad \text{else } K[j, v] = \min(K[j-1, v], K[j-1, v-v[j]] + w[j]) \]
\[\text{return maximum } v \text{ such that } K[n, v] \leq W \]

- Computes minimum weight of knapsack for a given value.
- Iterates over all possible items and all possible values: \(O(nV) \)
 - we derive a polynomial time approximate algorithm from this
FPTAS for 0-1 Knapsack

\(Knap_{01}^{FPTAS}(w, v, n, W, \epsilon) \)

\[
v'_i = \left\lceil \frac{v_i}{\max_{1 \leq j \leq n} v_j} \cdot \frac{n}{\epsilon} \right\rceil , \text{ for } 1 \leq i \leq n
\]

\(Knap_{01}(w, v', n, W) \)

- Rescaling consists of two steps:
 - Express value of each item relative to the most valuable item
 - If we worked with real values, this step won’t change the optimal solution
 - Multiply relative values by a factor \(n/\epsilon \) to get an integer

- Floor operation introduces an error \(\leq 1 \) in \(v'_i \) (e.g., \(\lfloor 3.99 \rfloor = 3 \))

- Error in \(Knap_{01} \) output = error in \(\sum v'_i \), which is at most \(n \cdot 1 \)

- We scale each \(v'_i \) by \(n/\epsilon \), so relative error is \(n/(n/\epsilon) = \epsilon \)
FPTAS for 0-1 Knapsack: Runtime

\[Knap01FPTAS(w, v, n, W, \epsilon) \]

\[v'_i = \frac{v_i}{\max_{1 \leq j \leq n} v_j} \cdot \frac{n}{\epsilon} , \text{ for } 1 \leq i \leq n \]

Note that we are using \(Knap01 \) with rescaled values, so the complexity is \(O(nV') \).

Note: \(V' = \sum_1^n v'_i \leq n \cdot \max_{1 \leq j \leq n} v'_j \)

It is easy to see from definition of \(v'_i \) that \(\max_{1 \leq j \leq n} v'_j = n/\epsilon \). Substituting this into the above equation yields a complexity of:

\[O(nV') \leq O(n(n \cdot \max_{1 \leq i \leq n} v'_i)) = O(n(n \cdot (n/\epsilon))) = O(n^3/\epsilon) \]

By varying \(\epsilon \), we can trade off accuracy against runtime.