
Web Security
Fall 2024

R. Sekar

1 / 101

Historical Web

Historically, the web was just a request response protocol

HTTP is stateless, which means that the server essentially processes a request
independent of prior history

Envisioned as a way for exchanging information

2 / 101

HTTP Requests

A request has the form:

HTTP supports a variety of methods, but only two matter in practice:
GET: intended for information retrieval
Typically the BODY is empty

POST: intended for submitting information
Typically the BODY contains the submitted information

3 / 101

Structure of HTTP GET request

Connect to: www.example.com

TCP Port 80 is the default for http; others may be specified explicitly in the URL.

Send: GET /index.html HTTP/1.1

Server Response:

HTTP/1.1 200 OK

Date: Mon, 23 May 2005 22:38:34 GMT

Server: Apache/1.3.3.7 (Unix) (Red-Hat/Linux)

Last-Modified: Wed, 08 Jan 2003 23:11:55 GMT

Etag: "3f80f-1b6-3e1cb03b"

Content-Length: 438

Connection: close

Content-Type: text/html; charset=UTF-8
4 / 101

GET with parameters

GET /submit_order?sessionid=79adjadf888888768&pay=yes

HTTP/1.1

User inputs sent as parameters to the request

5 / 101

POST Requests

Another way of sending requests to HTTP servers

Commonly used in FORM submissions

Message written in the BODY of the request

Sending links with malicious parameter values is difficult when a web site accepts
only POST requests.

Such links are usually included in phishing emails

But a script running on a malicious web site can as easily send a POST request (as a
GET request) to another web site.

6 / 101

HTTP Response

A response has the following form:

important response codes:

2XX: Success, e.g., 200 OK
3XX: Redirection, e.g., 301 Moved Permanently

4XX: Client-side error, e.g., 404 Not Found
5XX: Server-side error, e.g., 500 Internal Server Error

7 / 101

HTTP Response
HTTP/1.1 200 OK

Date: Tue, 21 Oct 2014 16:21:44 GMT

Server: Apache/2.2.25 (Unix) mod_ssl/2.2.25 OpenSSL/1.0.1h PHP/5.2.17

Last-Modified: Tue, 21 Oct 2014 15:37:09 GMT

ETag: "3aaa5c-850-505f09ab7f211"

Accept-Ranges: bytes

Content-Length: 2128

Content-Type: text/html

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<html><head>

<title>Is The Internet On Fire?</title>

<meta http-equiv="content-type" content="text/html; charset=UTF-8">

<link rev="made" href="mailto:jschauma@netmeister.org">

8 / 101

Cookies

HTTP is stateless, so the client must remember state and send it with every request.

Cookies are a common way to maintain state between client and server.

Client:

GET /index.html HTTP/1.1

Server:

HTTP/1.1 200 OK

Content-type: text/html

Set-Cookie: sess-id=3773777adbdad

(content of page)

9 / 101

Cookies...

Browsers send cookie with every subsequent request

GET /spec.html HTTP/1.1

Host: www.example.org

Cookie: sess-id=3773777adbdad

Now server can look up stored state through sess-id

Alternative to cookies: hidden form fields.

10 / 101

What are Cookies used for ?

Authentication

The cookie proves to the website that the client previously authenticated correctly

Personalization

Helps the website recognize the user from a previous visit

Tracking

Follow the user from site to site; learn his/her browsing behavior, preferences, and so on

11 / 101

Sessions

As long as different users have different session identifiers (present in their cookies),
the web server will be able to tell them apart

Regardless of their IP address

When users delete their cookies, the browsers no longer send out the appropriate
session identifier, and thus the web server “forgets” them

12 / 101

Session Identifiers

Long pseudo-random strings

Unique per visiting client

Each identifier is associated with a specific visitor

ID A-> User A

As sensitive as credentials (per session)

13 / 101

JavaScript

Language executed by the Web browser

Scripts are embedded in webpages

Can run before HTML is loaded, before page is viewed, while it is being viewed, or when

leaving the page

Used to implement “active” webpages and Web applications

A potentially malicious webpage gets to execute some code on user’s machine

14 / 101

JavaScript History

Developed by Brendan Eich at Netscape

Scripting language for Navigator 2

Later standardized for browser compatibility

ECMAScript Edition 3 (aka JavaScript 1.5)

Related to Java in name only

Name was part of a marketing deal

“Java is to JavaScript as car is to carpet”

Various implementations available:

SpiderMonkey, RhinoJava, Others

15 / 101

Aside: Java Security

With binary code, memory and type safety issues complicate the problem of
untrusted code

Java and Javascript rely on safe languages to avoid low-level issues
avoid low-level issues arising in C, C++ and binary code
No buffer overflows

Code can only be created and executed through sanctioned pathways, e.g., class loader
Access-control restrictions associated with classes are strictly enforced
Can’t circumvent public/private restrictions by casting etc.

16 / 101

Java vs JavaScript

Java originally developed to support “active web pages”

Applets were intended to allow local execution of untrusted code

Security was achieved by restricting access to local resources, e.g., files

Drawbacks:

Poor integration with the browser environment

Focus on (OS) integrity rather than confidentiality

These factors led to the development of Javascript

17 / 101

Java vs JavaScript (continued)

Javascript takes a different approach

Language safety is still the basis

Use this basis to provide a safe interface to the browser environment

The security model is object-oriented

What are the browser resources, which ones are accessible to untrusted code

Browser is the platform, not the underlying OS

It is not about whether untrusted code can access local files, but whether the
browser permits it (“trusted dialogs”)

Cookie-based model of browser security evolved in conjunction with Javascript,
leading to excellent support for the same

18 / 101

Common Uses of JavaScript

Page embellishments and special effects

Dynamic content manipulation

Form validation

Numerous complex applications:

Office 360, Google Maps, . . .

Most web pages today are mainly Javascript Single-Page Applications

“Content” fetched continuously and displayed under the control of (asynchronous)

Javascript (AJAX)

19 / 101

JavaScript in Webpages

Embedded in HTML as a <script> element:

Written directly inside a <script> element:
<script> alert("Hello World!") </script>

In a file linked as the src attribute of a <script> element:
<script type="text/JavaScript" src="functions.js"></script>

As an event handler attribute:

As a pseudo-URL referenced by a link:
Click me

20 / 101

Document Object Model (DOM)

HTML page is structured data

DOM is an object-oriented representation of the hierarchical HTML structure

Properties include:

document.alinkColor

document.URL

document.forms[]

document.links[]

Methods include:

document.write(document.referrer)

item These change the content of the page!

Also includes the Browser Object Model (BOM):

Window, Document, Frames[], History, Location, Navigator (browser type/version)

21 / 101

Browser and Document Structure

22 / 101

Reading Properties with JavaScript

23 / 101

Page Manipulation with JavaScript

24 / 101

All the Functional Pieces are in Place

Now we can create personalized and dynamic websites. Yay!

But what about security?

How do we stop websites from snooping around in each other’s business?

25 / 101

Goals of Web Security

Safely browse the Web
A malicious website cannot steal information from or modify legitimate sites or otherwise
harm the user . . .
. . . even if visited concurrently with a legitimate site - in a separate browser window, tab, or even
iframe on the same webpage
Based on Same Origin Policy (SOP)

A malicious website cannot steal or modify information on the local machine, nor can it
interact in any way with local applications
Based on JavaScript safety and web browser design and implementation (Browser security)

26 / 101

Web Security Concerns

Authentication: Securely identify users on top of the stateless HTTP protocol.

Confidentiality: Protect any sensitive data that websites serve to the browser from
other websites, and the user’s own sensitive data outside the browser from any
website.

Integrity: ensure that the data and the code served to users cannot be tampered with.

27 / 101

Authentication Methods

HTTP Authentication: Username/password supplied in HTTP headers.

Cookie Authentication:

User submits login credentials via an HTML form.

Server verifies credentials and sets a session cookie.

Browser sends the cookie with each request to maintain the session.

Hidden-Form Authentication

Similar to cookie authentication, but session information is stored in hidden form fields.

28 / 101

Cookie-Based Authentication

HTTP is stateless, so cookies are used to manage user sessions.

User Authentication: Cookies are sent automatically for convenience.

Server Authentication: Uses SSL + Certification Authorities.

29 / 101

Lifetime of Cookies and HTTP Authentication Credentials

Temporary cookies are cached until the browser shuts down. Persistent ones cached
until their expiration date.

HTTP authentication credentials are cached in memory and shared by all browser
windows of a single browser instance.

Caching depends only on browser instance lifetime, not on whether original
window is open

30 / 101

Confidentiality

No mutual trust among parties.

Confidentiality achieved through Isolation: Same-Origin Policy (SOP).

Partition the Web into domains and isolate sensitive data such as cookies, network data

and DOM nodes.

31 / 101

All of These Should Be Safe

32 / 101

Same-Origin Policy (SOP)

The SOP partitions the web into domains (according to their DNS origin) and
isolates sensitive data from scripts running in other domains.

Sensitive data includes:

Cookies.

Web page content (DOM isolation).

Network responses (Network isolation).

33 / 101

SOP: Cookie Isolation

Each domain has its own set of independently managed cookies, and these are
embedded only in requests to the same domain.

Only scripts running from the same domain and responses from the same domain
can read and write cookies

HTTP-Only cookies

34 / 101

SOP: Page Content Isolation

The basic unit of isolation in a browser is a <frame>.

document.write refers to the current frame

DOM Isolation:

Scripts can only access DOM elements from the same domain.

Frames embedded in a page are part of the DOM tree of the parent, but the policy still

applies

document.frames[0].title

is only accessible if the parent is from the same origin.

35 / 101

Domains vs Subdomains

Subdomains

E.g. private.example.com vs forum.example.com
Considered different origin

Possibility to relax the origin to example.com using document.domain

Possibility to use cookies on example.com

Completely separate domains

E.g. private.example.com vs exampleforum.com
Considered different origin, without possibility of relaxation

No possibility of shared cookies

36 / 101

SOP: Network Isolation

Scripts can send requests to arbitrary sites

Weakest aspect of SOP, but stricter isolation will prohibit many legitimate uses

But scripts cannot read responses from any server

They can still send blind requests to other domains.
Is it safe for a malicious script to issue a request if it cannot read the response?
CSRF (discussed later)

Exception: XmlHttpRequests (XHR) permit scripts to read responses from their
origin server.

37 / 101

Embedding and SOP: Caveats

For embedded content, origin of the content may be different from the domain used
for SOP checks

Scripts retrieved from domain B and embedded in domain A run with A’s privileges.
Akin to user A running an executable written by B in a UNIX environment.
Cross-site scripting attacks exploit this!
as do script inclusion attacks!

38 / 101

Limitations of SOP

SOP is rigid and imposes an all-or-nothing approach:

Developers can embed the resource (allow all) or open it in an iframe (allow none)

Cannot import script libraries without blindly trusting them.

SOP does not limit outgoing requests

39 / 101

Coping with SOP Limitations

How to interact with cross-origin resources?
Network requests:
CORS (Cross-Origin Request Sharing for XHR)

JavaScript access: postMessage API
Allows interaction through a generic message-passing interface.
Suited to access components with a limited interface.

Other alternatives for cross-origin script interaction
Embed scripts from other origin, but enforce policies to ensure security
Example: AdJail, AdSafe, FBJS (mostly, research efforts)

Technically feasible for full Javascript, but policy specification is difficult

Lighter-weight solutions possible if user is restricted to a subset of Javascript

40 / 101

Integrity

Network data integrity: HTTPS/DNSSEC

Also used to authenticate the server (e.g Banks) and ensure network confidentiality.

Public-key protocol used to establish a session key to encrypt traffic.

Browser data integrity: SOP

Think of integrity as write access on confidential resources. SOP protects from read as

well as write accesses

41 / 101

Despite the Same-Origin Policy

Many vulnerabilities still exist:

Cross-site Scripting (XSS)

Cross-site Request Forgery (CSRF)

Session Hijacking

Session Fixation

SSL Stripping

Clickjacking

And more . . .

42 / 101

Two Sides of Web Security

Web browser

Responsible for securely confining Web content presented by visited websites

Web applications

Online merchants, banks, blogs, Google Apps . . .
Mix of server-side and client-side code
Server-side code written in PHP, Ruby, ASP, JSP, ... runs on the Web server
Client-side code written in JavaScript... runs in the Web browser

Many potential bugs: XSS, CSRF, SQL injection

43 / 101

Where Does the Attacker Live ?

44 / 101

Threat Model 1: Web Attacker

Benign actors: User, network, and the website.

Malicious actor: An unrelated website “attacker.com.”

Can obtain an SSL/TLS certificate ($0)

Entice users to visit attacker.com

Phishing email, Search results, Ads or blind luck

Attacker’s Facebook app

Attacker has no other access to user machine!

Variation: “iframe attacker”
An iframe with malicious content included in a otherwise honest webpage
Syndicated advertising, mashups, etc.

45 / 101

Attacks on Authentication

CSRF and Clickjacking

Confused deputy attacks that cause the victim browser to send authenticated requests for

the attacker’s benefit

CSRF: Cross-site request forgery: attacker sends requests to another web site,

impersonating browser user
Clickjacking: User intends to click on one link, but the browser recognizes a link on
another site
Achieved using overlaid frames and by manipulating visibility related attributes

46 / 101

CSRF

47 / 101

Cross-site Request Forgery (CSRF)

<form method="POST" action="/changepass">

...

New Password: <input type="password" name="password">

</form>

Browser makes the following request:

GET http://www.examplesite.com/changepass?password=newpassword HTTP/1.1

Let’s say the application didn’t authenticate password change request using any
means other than cookies.

An attacker can easily forge the request!

Attack works because: (a) Cookies are sent by default, and (b) SOP does not restrict
cross-origin submissions. 48 / 101

POST Example

POST requests can also be forged

Attacker lures the client to visit his/her web page

<iframe name="hiddenframe" style="display:none">

<form method="POST" name="evilform" target="hiddenframe"

action="http://www.examplesite.com/update_password">

<input type="hidden" name="password" value="evilhax0r">

</form>

<script>document.evilform.submit()</script>

</iframe>

49 / 101

CSRF and Authentication status

The classic CSRF attack abuses a user’s existing session cookies with a victim
website

Does that mean that CSRF is a non-issue when a user is logged out?

No! (although many still think “yes”)
In certain cases, an attacker can log in a victim with his credentials using an unprotected
login form and still manage some sort of abuse
Login CSRF

50 / 101

Possible Targets of CSRF

Banks

Transfer money from victim’s account to attacker’s account

E-commerce Sites

Purchase items using the victim’s account and ship them to the attacker

Forums and Social Networks sites

Post articles using the victim’s identity

Home/Intranet Firewalls

Reconfigure firewall to permit connections from the Internet to a host behind the firewall

Note that victim user’s location is exploited: the attacker (typically) cannot communicate

with the firewall, but the user’s browser can.

51 / 101

Preventing CSRF

HTTP requests originating from user action are indistinguishable from those
initiated by attacker

Need methods to distinguish valid requests

Inspecting Referrer Headers.

Validation via User-Provided Secret.

Validation via Action Token.

52 / 101

Inspecting Referrer Headers

Referrer header specifies the URI of document originating the request

Assuming requests from our site are good, don’t serve requests not from our site

Unfortunately, Referrer information may be suppressed by browsers (or firewalls)
for privacy reasons

53 / 101

Validation via User-Provided Secret

Can require user to enter secret (e.g. login password) along with requests that make
server-side state changes or transactions

Example: The change password form could ask for the user’s current password

Security vs convenience: use only for infrequent, “high-value” transactions

Password or profile changes.

Expensive commercial/financial operations.

54 / 101

Validation via Action Token

Add special action tokens as hidden fields to authorized forms to distinguish from
forgeries

Need to generate and validate tokens so that malicious 3rd party can’t guess or
forge token

Token should be a nonce that is unpredictable

Same-origin policy prevents 3rd party from inspecting the form to find the token

This token can be used to distinguish genuine and forged forms

55 / 101

Clickjacking

56 / 101

So you click . . .

Nothing happens.

Or something happens

But you don’t get that free iphone that you were promised

Continue browsing

Time to check email

Go to GMail

57 / 101

Where are my mails bro ?!?

58 / 101

59 / 101

Clickjacking Defenses

Disallow hidden frames

There are many ways to make a frame imperceptible

Restrict framing

X-Frame-Options header

SAMEORIGIN

Allow-from <uri>

DENY;

Content security policy(supercedes X-frame)

Content-Security-Policy: frame-ancestors ’self’

Content-Security-Policy: frame-ancestors a.com b.org

Content-Security-Policy: frame-ancestors ’none’
60 / 101

Cross-Site Scripting (XSS)

Attacker manages to inject his/her script within the page delivered by another site

Different types of XSS:

Reflected: Part of the URI used in the response.

Persistent: Stored data is used in the response.

DOM-Based: Data is used by client-side scripts.

61 / 101

What Can an Attacker Do with XSS?

Short answer: “Almost anything”
Mother of all vulnerabilities (subsumes them all)
Naturally: this is attacker’s malicious code

Long answer(non exhaustive):

Exfiltrate your cookies (session hijacking)

Make arbitrary changes to the page (phishing).

Steal all data available in the web application.

Make requests in your name

Redirect the browser to a malicious page.

Tunnel requests to other sites.

62 / 101

Reflected XSS Example

Host www.vulnerable.site displays name submitted using a web form

With benign data, the following request may result in:

GET /welcome.cgi?name=Joe%20Hacker HTTP/1.0

And the website responds:

<HTML>

<Title>Welcome!</Title>

Hi Joe Hacker

Welcome to our system

</HTML>

Malicious request:

GET /welcome.cgi?name=<script>...</script> HTTP/1.0
63 / 101

Reflected XSS Summary

Attacker causes victim to click on maliciously crafted link

Typically contains a malicious script as a parameter

request goes to vulnerable web site

web site does not properly check its input

returns a page that contains the malicious script

which operates with privileges of the vulnerable site

can perform any action that the user can perform

send the cookie (or other private info) to the attacker

perform sensitive action, e.g., withdraw money

64 / 101

Persistent XSS

Malicious script permanently stored on server

Still requires:

An attack that stores the script on the server

Script should be used in a page visited by victim user

User totally unaware of the vulnerability/exploit

More stealthy, damaging and long-lasting
How can this be possible?
Think of a blog, or social networking web site: input from one user is rendered in the page
shown to another

65 / 101

DOM-Based XSS

DOM-Based refers to how the script comes about

Plain XSS: malicious script is already present in the page from server

DOM-based XSS:

server delivers an initial page content and a legitimate script
execution of this script constructs the rest of the page using DOM operations
document.write, document.appendChild, etc.

malicious script content manifests during this construction

Orthogonal to reflected vs persistent categorization

DOM-based XSS can be of either kind

66 / 101

Preventing XSS

Server should not send untrusted data to the browser that could result in the
creation of an unintended (and unauthorized) script

Easier said than done:
Scripts can appear in many contexts:
<script> tags: inline scripts
src attributes: refer to external scripts by name
javascript URLs
event handlers

Can be “injected” into non-script fields:
Usual “close the quotes and new content” trick

67 / 101

Defending Against XSS

Blacklisting:

E.g. No <, >, script, document.cookie, etc.
Intuitively correct, but it should NOT be relied upon
There are too many ways to insert script content
See XSS Cheat Sheet for hundreds of possibilities

Whitelisting: Whenever possible

E.g. this field should be a number, nothing more nothing less

68 / 101

Defending Against XSS

Always escape user-input:

Neutralize “control” characters for all contexts

Content Security Policy:

Whitelist for resources

Defense-in-depth: backup mechanism if primary defenses fail

69 / 101

Content Security Policy

Example:

Content-Security-Policy: default-src https://cdn.example.net;

frame-src ’none’; object-src ’none’; image-src self;

CSP is very powerful:

Great if you are writing something from scratch
Not so great if you have to rewrite something to CSP
E.g. Convert all inline JavaScript code to files

70 / 101

Content Security Policy v2

CSP was great in theory but still hasn’t caught up in practice

CSP v2.0 supports two new features to help adopt CSP:

Script nonces for inline scripts

Hashes for inline scripts
Read more here:
https://blog.mozilla.org/security/2014/10/04/csp-for-the-web-we-have/

71 / 101

Browser XSS Filters

Some browsers try to help by attempting to detect reflected XSS and stop them

Internet Explorer was the first to introduce this
Chrome followed a bit later, with a more complete approach that addressed some of IE’s
problems
Unfortunately, Chrome’s filter regressed in some aspects, stopping fewer attacks than IE in tests

Firefox invested in an XSS filter but later abandoned its efforts
PaleMoon, a Firefox clone, imported the XSS filter developed at Stony Brook

72 / 101

Browser XSS filters

Attempt 1: Use string (or regexp) matching to identify suspicious content within
request parameters (NoScript)

Example: excise “<script>”, “data:”, etc. from parameters

Problem: High False Positives make it unsuitable for general use

Attempt 2: Filter only if suspicious parameter is reflected, i.e., its value appears in
the HTML response (IE/Edge)

FPs can still be too high

Mitigate using very strict matching rules (IE/Edge, Chrome)

Unfortunately, this leads to false negatives and filter evasion

73 / 101

Browser XSS filters

Attempt 3: Filter if suspicious reflected content is used in a dangerous context in the
HTML response (Firefox filter)
Example: “data:” can safely appear outside HTML tags

In our filter, this reduces FPs sufficiently to enable use of approximate matching

Result: Evasion resistant XSS filtering

74 / 101

Script Inclusion

What if an attacker can’t find an XSS vulnerability in a website

Can he somehow still get to run malicious JavaScript?

Perhaps. . . by abusing existing trust between the target site and other sites

75 / 101

Remote JavaScript libraries

This means that if, foo.com, decides to send you malicious JavaScript, the code can
do anything in the mybank.com domain

Why would foo.com send malicious code?

Why not?

Change of control of the domain

Compromised

76 / 101

Timing attacks

Scenario: I want to know if you are logged into your Gmail

I may, or may not be able to load the page in an iframe, depending on the Xframe-options

Even if I can load it, I still can’t peek in it

What if I try to load mail.google.com as an image?

The browser will fetch the page with your cookies and then the parser will at some point

throw an error that this is not an image

77 / 101

Timing attacks

The size of a page is often dependent on whether you are logged in or not

(Over)simplified attack:

Fast error: not-logged in

Slow error: logged-in

78 / 101

Getting one measurement

1

1Code sample from: Exposing Private Information by Timing Web Applications By Bortz et al.
79 / 101

Web Threat Models

Web attacker

Network attacker

Passive: wireless eavesdropper

Active: evil Wi-Fi router, DNS poisoning

Malware attacker

Malicious code executes directly on victim’s computer

To infect victim’s computer, can exploit software bugs (e.g., buffer overflow) or convince

user to install malicious content (how?)

Masquerade as an antivirus program, video codec, etc.

80 / 101

SSL Stripping

Let’s say that a website exists only over HTTPS

No HTTP pages

Two scenarios

1. User types https://www.securesite.com and the browser directly tries to communicate

the remote server over a secure channel

2. User types http://www.securesite.com (or just securesite .com) and the site will redirect

the user to the secure version (using an HTTP redirection/Meta header)

81 / 101

Normal page load

82 / 101

Page load when attacker is present

83 / 101

SSL Stripping

Same thing can happen when sites deliver HTTPS-targeted forms over an HTTP
connection (typically for performance or outsourcing purposes)

84 / 101

Defenses

Use full-site SSL in combination with Secure cookie and HTTP-only Cookie

HSTS: HTTP Strict Transport Security

Force the browser to always contact the server over an encrypted channel , regardless of

what the user asks

HTTP Header
Strict-Transport-Security: max-age=31536000

85 / 101

Defenses

What about the very first time you visit a website?

What if a MITM is located on your network and will therefore strip SSL and suppress

HSTS?

Answer:

Preloaded HSTS: Websites can ask browsers to mark them as HSTS in a special

browser-vendor-updated database

86 / 101

Threat model 3: Malicious Client

In these scenarios:

The server is benign
The client is malicious
The client can send arbitrary requests to the server, not bound by the HTML interfaces

The attacker is after information at the server-side

Steal databases

Gain access to server

Manipulate server-side programs for gain

87 / 101

OWASP Top 10

88 / 101

Injection Attacks

SQL injection

Steal sensitive data about specific user

All username, password (hashes) info

. . .

Command injection

Install malware on server, run reconnaissance commands, probe serverside network,inject

into command streams for backend servers, . . .

We discussed these attacks and their defenses before

Defenses need to be mindful of trust boundaries, e.g., don’t rely on client-side sanitization

if the attacker is the client

89 / 101

Redirects, Cookies, and Header Injection

Need to filter and validate user input inserted into HTTP response headers

Ex: servlet returns HTTP redirect

HTTP/1.1 302 Moved

Content-Type: text/html; charset=ISO-8859-1

Location: %(redir_url)s

<html>

<head><title>Moved</title></head>

<body>Moved here</body> </html>

Attacker Injects:(URI-encodes newlines)

oops:foo\r\nSet-Cookie: SESSION=13af..3b;

domain=mywwwservice.com\r\n\r\n

<script>evil()</script>
90 / 101

Logic Vulnerabilities

HTTP parameter tampering vulnerabilities are a subset of logic vulnerabilities in
web applications

Logic vulnerabilities typically rely on breaking assumptions made by architects and
developers

Step 2 can only be performed after Step 1

Users cannot change parameters that they cannot see

Etc.

91 / 101

Examples of logic vulnerabilities

Unlike vulnerabilities discussed so far, logic vulnerabilities don’t have a clear,
narrow definition

This makes them hard to identify, especially by automated vulnerability discovery
tools

We will see a few real-world examples based on the book “The Web Application
Hackers Handbook”

92 / 101

Case Study: Password change

A website allows its users to change their password, by filling out a form with their
current password, and their new password

Administrators can also change a user’s password but they don’t need to provide a
user’s current password

String existingPassword = request.getParameter("existingPassword");

if(null == existingPassword){

trace("Old password not supplied, must be an administrator");

return true;

}

else{

trace("veryifying user’s old password");

...

} 93 / 101

Case Study: Password change

The code that handles these two cases is the same and the developer assumes that
if the “existingPassword” parameter is not present, this must be because the current
request came from an administrative UI

All the attackers has to do is drop the “existingPassword” HTTP parameter from the
outgoing request

94 / 101

Case Study: Bulk Discounts

An online shop gives users discounts when they buy some products together

E.g. If you purchase an antivirus solution, and a personal firewall, and antispam software

then you are entitled to 25% discount on each product

Abuse

Add all products in your basket to get the discount and then remove the ones you don’t

want

95 / 101

Case Study: Escaping from escaping

A web application has to pass user-controllable input as an argument to an
operating system command.

The developer creates a list of special shell metacharacters that need escaping

; | & < > ‘ space and newline

If any of these are present in the input, the code escapes them by prepending them
with a backslash

-\

96 / 101

Case Study: Escaping from escaping

If an attacker types

foo;ls

The code converts it to

foo\;ls

What if an attacker types an escape character

foo\;ls

Will become

foo\\;ls

Which amounts to escaping the backslash but not the semicolon.

97 / 101

Weaknesses Leading to Attacks

Trusting embedded content

Embedded scripts have same privilege as surrounding page (XSS)

Embedded content can target browser flaws, e.g., buffer overflows in the browser or JS

engine

Not restricting outgoing network requests

Unauthorized requests to third-party sites (CSRF)
Include trusted party content in a frame
Abuse trust in third party, e.g., to improve odds of successful phishing
Clickjacking

Attacking third-party sites, e.g., portscanning or launching exploits

Ease of leaking sensitive data acquired (e.g., send cookie to attacker)

98 / 101

Weaknesses Leading to Attacks

Allowing Turing-complete computation for arbitrary sites

Bitcoin mining

Side-channel attacks

Heapspray, JIT-spray and JIT-ROP attacks

Weaknesses in lower layers

In-network attacks, e.g., man-in-the-middle

DNS compromise

99 / 101

Weaknesses Leading to Attacks

Application development environments that blur trust boundaries

Trusting client-side: browser and/or scripts running on a web page (Parameter tampering,

. . .)

Good old application logic or implementation vulnerabilities

SQL injection, command injection, HTTP parameter pollution, . . .

100 / 101

Credits

Many of the slides here are the courtesy of Nick Nikiforakis and Venkat
Venkatakrishnan

101 / 101

