
Intro Isolation Syscall interception related techniques

Untrusted Code Security and Syscall Interception
Fall 2024

R. Sekar

1 / 31



Intro Isolation Syscall interception related techniques Formulation Terminology Approaches

Untrusted Code

May be untrustworthy

Intended to be benign, but may be full of vulnerabilities

These vulnerabilities may be exploited by attackers (or other malicious processes) to run

malicious code

Or, may directly be malicious: may use
Obfuscation
Code obfuscation
Anti-analysis techniques
Use of vulnerabilities to hide behavior

(Behavioral) evasion
Actively subvert enforcement mechanisms

2 / 31



Intro Isolation Syscall interception related techniques Formulation Terminology Approaches

Untrusted Code

Security is still defined in terms of policies

But enforcement mechanisms need to be stronger in order to defeat a strong adversary.

3 / 31



Intro Isolation Syscall interception related techniques Formulation Terminology Approaches

Reference Monitors

Security policies can be enforced by reference monitors (RM)
Key requirements
Complete mediation
(If interaction with user is needed) Trusted path

With benign code, we typically assume that it won’t actively evade enforcement
mechanisms

We can possibly maintain security even if there are ways to subvert the checks made by

the RM

4 / 31



Intro Isolation Syscall interception related techniques Formulation Terminology Approaches

Types of Reference Monitors

External RM

RM resides outside the address space of untrusted process
Relies on memory protection
Protect RM’s data from untrusted code Limit access to RM’s code

Inline RM

Policy enforcement code runs within the address space of the untrusted process

Cannot rely on traditional hardware-based memory protection

5 / 31



Intro Isolation Syscall interception related techniques Formulation Terminology Approaches

Policies and Mechanisms for Untrusted Code

Isolation
Two-way isolation
Chroot jails
Userid-based isolation, e.g., Android apps
Virtual machines

One-way isolation
Read access permitted, but write access denied

System-call sandboxing

Linux seccomp, seccomp-bpf and eBPF

Delegation

Information flow

6 / 31



Intro Isolation Syscall interception related techniques chroot Userid-based isolation One-way isolation Information-flow based

chroot jails

Makes the specified directory to be the root

Process (and its children) can no longer access files outside this directory

Requires root privilege to chroot

For security, relinquish root privilege after chroot

All programs, libraries, configuration and data files used by this process should be within

this chroot’ed directory

Isolation limited to file system

e.g., it does not block interprocess interactions

For this reason, chroot jail is useful mainly to limit privilege escalation; but the

mechanism is insecure against malicious code.

Combine with other mechanisms, e.g., seccomp.
7 / 31



Intro Isolation Syscall interception related techniques chroot Userid-based isolation One-way isolation Information-flow based

Userid based isolation

Create a new userid for running untrusted code

Real user’s userid is not used, so the “Trojan horse” problem of altering permissions on

user’s files is avoided

Android uses one userid for each app

Default permissions are set so that each app can read and write only the files it owns

(except a few system directories)

Protects against malicious interprocess interactions

kill, ptrace, . . .

Better than chroot, but still insufficient against malicious code
Can subvert benign processes by creating malicious files that may be accidentally
consumed by them
Many sandbox escape techniques work this way

Too much information available via /proc, as well as system directories that are
public: Can use this info to exploit benign processes via IPC

8 / 31



Intro Isolation Syscall interception related techniques chroot Userid-based isolation One-way isolation Information-flow based

One-way isolation

Full isolation impacts usability

Untrusted applications are unable to access user’s files

Makes it difficult to use nonmalicious untrusted applications

One-way isolation
Untrusted application can read any data, but writes are limited
Cannot overwrite user files
More importantly, benign applications don’t ever see untrusted files –Eliminates the possibility
of accidental compromise

9 / 31



Intro Isolation Syscall interception related techniques chroot Userid-based isolation One-way isolation Information-flow based

One-way isolation

Key issues:
Ensuring consistent view
Application creates a file and then reads it, or lists the directory
Inconsistencies typically lead to application failures

Failures due to denied write permission
Can overcome by creating a private copy of the file

Both issues overcome using copy-on-write file system

Note:

does not protect against loss of confidential data (without additional policies)

Securing user interactions is still a challenge

10 / 31



Intro Isolation Syscall interception related techniques chroot Userid-based isolation One-way isolation Information-flow based

Securing Untrusted Code using Information Flow

Untrusted code = low integrity, benign code = high integrity.

Enforce the usual information flow policy that
Deny low integrity subject’s writes to high integrity objects
Prevents “active subversion”

Deny high integrity subject’s read of low integrity objects
Prevents “passive subversion”
Fooling a user (or a benign application) to perform an action, e.g., click an icon on desktop.
Exploit a benign process, e.g., benign image viewer compromised by reading a malicious image
file.

Can provide strong guarantee of integrity.

Not subject to “sandbox escapes.”

Usability issues still need to be addressed.
11 / 31



Intro Isolation Syscall interception related techniques Why syscalls? Drawbacks Approaches ptrace seccomp & secomp-BPF eBPF Syscall delegation

External Reference Monitors

System-call based RMs

Linux Security Modules (LSM)

AppArmor

12 / 31



Intro Isolation Syscall interception related techniques Why syscalls? Drawbacks Approaches ptrace seccomp & secomp-BPF eBPF Syscall delegation

System-call based RMs

OSes already implement RMs to enforce OS security policies

Most aspects of policy are configured (e.g., file permissions), while the RM mainly

includes mechanisms to enforce these policies

But these are typically not flexible enough or customizable

More powerful and flexible policies may be realized using a customized RM

System-calls provide a natural interface at which such a customized RM can reside
and mediate requests.

13 / 31



Intro Isolation Syscall interception related techniques Why syscalls? Drawbacks Approaches ptrace seccomp & secomp-BPF eBPF Syscall delegation

Why Focus on System Calls

Complete mediation: All security-related actions of processes effected via syscalls

Application-independent semantics

Enables general-purpose solutions

What sorts of problems can we solve at the syscall interface?

Mitigate/block vulnerability exploitations

Limit the scope of damage due to untrusted code and malware

Enforce richer security policies (beyond file permissions)

Transparent application extensions

Process replay and debugging

· · · · · ·

14 / 31



Intro Isolation Syscall interception related techniques Why syscalls? Drawbacks Approaches ptrace seccomp & secomp-BPF eBPF Syscall delegation

Why Focus on System Calls

Complete mediation: All security-related actions of processes effected via syscalls

Application-independent semantics

Enables general-purpose solutions

What sorts of problems can we solve at the syscall interface?

Mitigate/block vulnerability exploitations

Limit the scope of damage due to untrusted code and malware

Enforce richer security policies (beyond file permissions)

Transparent application extensions

Process replay and debugging

· · · · · ·

15 / 31



Intro Isolation Syscall interception related techniques Why syscalls? Drawbacks Approaches ptrace seccomp & secomp-BPF eBPF Syscall delegation

Why monitor system calls?

Expressiveness

Clearly defined, semantically meaningful, well-understood and well-documented

interface (except for some OSes like Windows)

Orthogonal (each system call provides a function that is independent of other system

calls — functions that rarely, if ever, overlap)
Can control operations for which OS access controls are ineffective, e.g., loading modules
A large number of security-critical operations are traditionally lumped into “administrative
privilege”

Portability: System call policies can be easily ported across similar OSes, e.g.,
various flavors of UNIX

16 / 31



Intro Isolation Syscall interception related techniques Why syscalls? Drawbacks Approaches ptrace seccomp & secomp-BPF eBPF Syscall delegation

Some drawbacks of system calls

Interface is designed for functionality

Several syscalls may be equivalent for security purposes, but a syscall policy needs to

treat them separately

Not all relevant operations are visible

For instance, syscall policies cannot control name-to-file translations

Race conditions

17 / 31



Intro Isolation Syscall interception related techniques Why syscalls? Drawbacks Approaches ptrace seccomp & secomp-BPF eBPF Syscall delegation

Race Conditions

Pathname based policies are prone to race conditions

Unless the argument data is first copied into RM, checked, and then this checked copy is

used by the system call.

The window for exploiting TOCTTOU attacks can be increased by using a large
sequence of symbolic links in the name

Increases the time taken by open syscall, as it may have to traverse many symlinks.
By combining deep directories with multiple links, you can make the lookup take a very
long time
... despite the relatively small limit of 40 symlink resolutions per file lookup.

18 / 31



Intro Isolation Syscall interception related techniques Why syscalls? Drawbacks Approaches ptrace seccomp & secomp-BPF eBPF Syscall delegation

Syscall Interposition at User Level

Library interposition

RM resides in the same address space
Advantages
high performance
Potential for intercepting higher level operations

Drawbacks
RM is unprotected, so appropriate only for benign code

Kernel-supported interposition, with RM residing in another process

Advantages: Secure for untrusted code

Drawback: High overheads due to context switches

Example: ptrace interface on Linux

19 / 31



Intro Isolation Syscall interception related techniques Why syscalls? Drawbacks Approaches ptrace seccomp & secomp-BPF eBPF Syscall delegation

System call interposition approaches

Kernel interception

The RM resides in the kernel

Advantages: high performance, secure for untrusted code
Drawbacks (pre-eBPF):
difficult to program

20 / 31



Intro Isolation Syscall interception related techniques Why syscalls? Drawbacks Approaches ptrace seccomp & secomp-BPF eBPF Syscall delegation

System-call sandboxing: ptrace

Primary goal of ptrace is debugging

Debuggers work on arbitrary programs since the OS provides this facility

Early on in Linux evolution, ptrace was expanded to intercept syscalls

Made more popular by the availability of great tools like strace

Review man page on ptrace.

21 / 31



Intro Isolation Syscall interception related techniques Why syscalls? Drawbacks Approaches ptrace seccomp & secomp-BPF eBPF Syscall delegation

System-call sandboxing: seccomp

Seccomp is a Linux mechanism for limiting system calls that can be made by a
process

Processes in the seccomp sandbox can make very few system calls (exit, sigreturn, read,

write)

More secure than previous mechanisms, but greatly limits actions that can be
performed by a sandboxed process

Useful if setup properly, e.g., in Chrome, Docker, NativeClient

Seccomp-bpf is a more recent version that permits configurable policies

Allowable syscalls specified in the Berkeley packet filter language

Policies can reference syscall name and arguments in registers

22 / 31



Intro Isolation Syscall interception related techniques Why syscalls? Drawbacks Approaches ptrace seccomp & secomp-BPF eBPF Syscall delegation

System-call sandboxing: Seccomp-BPF

Unfortunately, most interesting policies are out-of-scope, as they reference data in
process memory, e.g., file names

For this reason, seccomp-bpf is not much more useful than seccomp

eBPF: more flexible

Better supported for observing

Limiting access can break things, so less support

23 / 31



Intro Isolation Syscall interception related techniques Why syscalls? Drawbacks Approaches ptrace seccomp & secomp-BPF eBPF Syscall delegation

What is eBPF?

History: BPF (Berkeley Packet Filters) used in tcpdump etc. (1990s)

Safe, user-programmable packet filters that run within the kernel
Very limited scope
Limited number of instructions
Limited number of hooks

eBPF: Retain safe kernel programmability, but greatly expand scope

A 64-bit general-purpose virtual instruction set

Hooks into Linux tracepoints, kprobes, etc.

Safety verified before loading, then JIT’ed to native code

For safety and stability, runtime operations mainly limited to reads (on most deployments)

24 / 31



Intro Isolation Syscall interception related techniques Why syscalls? Drawbacks Approaches ptrace seccomp & secomp-BPF eBPF Syscall delegation

eBPF Probes

Code snippets hook to Linux kernel’s well-developed tracing/hooking infrastructure

Tracepoints (See /sys/kernel/debug/tracing/events)

LSM hooks, kprobes (kernel function entry and exit), XDP (network stack)

Probes written in restricted C, compiled by LLVM

Verified for memory safety, no global variables or loops

Very minimal set of helper functions (read memory, access key/value store)

Mainly for observability, e.g., so most hooks are limited to be read-only

But some can respond: LSM (block), XDP (packet rewrite)

Communicate with user-level via

Perf buffers (older mechanism, one per core), Ring buffer (newer)

Maps (hash tables and LRU hash tables)

25 / 31



Intro Isolation Syscall interception related techniques Why syscalls? Drawbacks Approaches ptrace seccomp & secomp-BPF eBPF Syscall delegation

eBPF Probes

Code snippets hook to Linux kernel’s well-developed tracing/hooking infrastructure

Tracepoints (See /sys/kernel/debug/tracing/events)

LSM hooks, kprobes (kernel function entry and exit), XDP (network stack)

Probes written in restricted C, compiled by LLVM

Verified for memory safety, no global variables or loops

Very minimal set of helper functions (read memory, access key/value store)

Mainly for observability, e.g., so most hooks are limited to be read-only

But some can respond: LSM (block), XDP (packet rewrite)

Communicate with user-level via

Perf buffers (older mechanism, one per core), Ring buffer (newer)

Maps (hash tables and LRU hash tables)

26 / 31



Intro Isolation Syscall interception related techniques Why syscalls? Drawbacks Approaches ptrace seccomp & secomp-BPF eBPF Syscall delegation

eBPF Probes

Code snippets hook to Linux kernel’s well-developed tracing/hooking infrastructure

Tracepoints (See /sys/kernel/debug/tracing/events)

LSM hooks, kprobes (kernel function entry and exit), XDP (network stack)

Probes written in restricted C, compiled by LLVM

Verified for memory safety, no global variables or loops

Very minimal set of helper functions (read memory, access key/value store)

Mainly for observability, e.g., so most hooks are limited to be read-only

But some can respond: LSM (block), XDP (packet rewrite)

Communicate with user-level via

Perf buffers (older mechanism, one per core), Ring buffer (newer)

Maps (hash tables and LRU hash tables)

27 / 31



Intro Isolation Syscall interception related techniques Why syscalls? Drawbacks Approaches ptrace seccomp & secomp-BPF eBPF Syscall delegation

eBPF Probes

Code snippets hook to Linux kernel’s well-developed tracing/hooking infrastructure

Tracepoints (See /sys/kernel/debug/tracing/events)

LSM hooks, kprobes (kernel function entry and exit), XDP (network stack)

Probes written in restricted C, compiled by LLVM

Verified for memory safety, no global variables or loops

Very minimal set of helper functions (read memory, access key/value store)

Mainly for observability, e.g., so most hooks are limited to be read-only

But some can respond: LSM (block), XDP (packet rewrite)

Communicate with user-level via

Perf buffers (older mechanism, one per core), Ring buffer (newer)

Maps (hash tables and LRU hash tables)
28 / 31



Intro Isolation Syscall interception related techniques Why syscalls? Drawbacks Approaches ptrace seccomp & secomp-BPF eBPF Syscall delegation

eBPF Experience

The verifier can be a pain to work with

Fragile system; very fussy; unintuitive error messages.

But overall development way faster than working directly in the kernel.

Code works “as is” across many distributions and kernels

This is taken for granted at the user level.

But in the kernel, portability often equals manual porting.

Occasionally, you can run into obscure errors.

You can typically work around, or ignore because the case is so rare.

29 / 31



Intro Isolation Syscall interception related techniques Why syscalls? Drawbacks Approaches ptrace seccomp & secomp-BPF eBPF Syscall delegation

eBPF Summary

Code snippets hook to Linux kernel’s well-developed tracing/hooking infrastructure

Tracepoints (See /sys/kernel/debug/tracing/events)

LSM hooks

kprobes (kernel function entry and exit)

XDP (network stack)

Most common uses

performance debugging

network monitoring and extensions

security monitoring

30 / 31



Intro Isolation Syscall interception related techniques Why syscalls? Drawbacks Approaches ptrace seccomp & secomp-BPF eBPF Syscall delegation

System-call delegation

Used in conjunction with strict syscall sandboxing

Key idea: Delegate dangerous system calls to a helper process
Helper process is trusted
it cannot be manipulated by untrusted process
can implement arbitrary, application-specific access control logic
avoids race conditions

Works only if
System call semantics permits delegation
e.g., not applicable for fork or execve — fork is usually harmless, can use fexecve instead of
execve

Results can be transferred back transparently to untrusted process
e.g., file descriptors can be sent over UNIX domain sockets using sendmsg

31 / 31


	Intro
	Formulation
	Terminology
	Approaches

	Isolation
	chroot
	Userid-based isolation
	One-way isolation
	Information-flow based

	Syscall interception related techniques
	Why syscalls?
	Drawbacks
	Approaches
	ptrace
	seccomp & secomp-BPF
	eBPF
	Syscall delegation


