R. Sekar

1/31



Intro Isolation Syscall interception related techniques Formulation Terminology Approaches

Untrusted Code

@ May be untrustworthy

o Intended to be benign, but may be full of vulnerabilities
e These vulnerabilities may be exploited by attackers (or other malicious processes) to run

malicious code

@ Or, may directly be malicious: may use
e Obfuscation
o Code obfuscation
o Anti-analysis techniques
@ Use of vulnerabilities to hide behavior

e (Behavioral) evasion
e Actively subvert enforcement mechanisms

2/31



@ Security is still defined in terms of policies

e But enforcement mechanisms need to be stronger in order to defeat a strong adversary.

3/31



Intro Isolation Syscall interception related techniques Formulation Terminology Approaches

Reference Monitors

@ Security policies can be enforced by reference monitors (RM)
o Key requirements
e Complete mediation
o (If interaction with user is needed) Trusted path
e With benign code, we typically assume that it won’t actively evade enforcement
mechanisms
e We can possibly maintain security even if there are ways to subvert the checks made by
the RM

4/31



Intro Isolation Syscall interception related techniques Formulation Terminology Approaches

Types of Reference Monitors

e External RM
o RM resides outside the address space of untrusted process

o Relies on memory protection
o Protect RM’s data from untrusted code Limit access to RM’s code

@ Inline RM
e Policy enforcement code runs within the address space of the untrusted process

e Cannot rely on traditional hardware-based memory protection

5/31



Intro Isolation Syscall interception related techniques Formulation Terminology Approaches

Policies and Mechanisms for Untrusted Code

@ Isolation
e Two-way isolation
o Chroot jails
o Userid-based isolation, e.g., Android apps
e Virtual machines
e One-way isolation

o Read access permitted, but write access denied

e System-call sandboxing
e Linux seccomp, seccomp-bpf and eBPF

o Delegation

@ Information flow

6/31



Intro Isolation Syscall interception related techniques chroot Userid-based isolation One-way isolation Information-flow based

chroot jails

@ Makes the specified directory to be the root

e Process (and its children) can no longer access files outside this directory

@ Requires root privilege to chroot
e For security, relinquish root privilege after chroot

o All programs, libraries, configuration and data files used by this process should be within

this chroot’ed directory

@ Isolation limited to file system
e e.g., it does not block interprocess interactions
o For this reason, chroot jail is useful mainly to limit privilege escalation; but the
mechanism is insecure against malicious code.

e Combine with other mechanisms, e.g., seccomp.

7/31



Intro Isolation Syscall interception related techniques chroot Userid-based isolation One-way isolation Information-flow based

Userid based isolation

o Create a new userid for running untrusted code
o Real user’s userid is not used, so the “Trojan horse” problem of altering permissions on

user’s files is avoided

@ Android uses one userid for each app
o Default permissions are set so that each app can read and write only the files it owns

(except a few system directories)

@ Protects against malicious interprocess interactions

o kill, ptrace, ...

@ Better than chroot, but still insufficient against malicious code
e Can subvert benign processes by creating malicious files that may be accidentally
consumed by them
@ Many sandbox escape techniques work this way 8/31



Intro Isolation Syscall interception related techniques chroot Userid-based isolation One-way isolation Information-flow based

One-way isolation

e Full isolation impacts usability
e Untrusted applications are unable to access user’s files

e Makes it difficult to use nonmalicious untrusted applications

@ One-way isolation
o Untrusted application can read any data, but writes are limited

o Cannot overwrite user files
@ More importantly, benign applications don’t ever see untrusted files ~Eliminates the possibility

of accidental compromise

9/31



Intro Isolation Syscall interception related techniques chroot Userid-based isolation One-way isolation Information-flow based

One-way isolation

@ Key issues:
e Ensuring consistent view
o Application creates a file and then reads it, or lists the directory
@ Inconsistencies typically lead to application failures
o Failures due to denied write permission

e Can overcome by creating a private copy of the file
@ Both issues overcome using copy-on-write file system

o Note:
e does not protect against loss of confidential data (without additional policies)

o Securing user interactions is still a challenge

10/31



Intro Isolation Syscall interception related techniques chroot Userid-based isolation One-way isolation Information-flow based

Securing Untrusted Code using Information Flow

@ Untrusted code = low integrity, benign code = high integrity.

e Enforce the usual information flow policy that
e Deny low integrity subject’s writes to high integrity objects
o Prevents “active subversion”
o Deny high integrity subject’s read of low integrity objects
o Prevents “passive subversion”
@ Fooling a user (or a benign application) to perform an action, e.g., click an icon on desktop.
o Exploit a benign process, e.g., benign image viewer compromised by reading a malicious image

file.

e Can provide strong guarantee of integrity.

o Not subject to “sandbox escapes.”

@ Usability issues still need to be addressed.
11/31



@ System-call based RMs

@ Linux Security Modules (LSM)

e AppArmor

12/31



Intro Isolation Syscall interception related techniques Why syscalls? Drawbacks Approaches ptrace seccomp & secomp-BPF eBPF Sy

System-call based RMs

@ OSes already implement RMs to enforce OS security policies

e Most aspects of policy are configured (e.g., file permissions), while the RM mainly

includes mechanisms to enforce these policies
@ But these are typically not flexible enough or customizable
@ More powerful and flexible policies may be realized using a customized RM

o System-calls provide a natural interface at which such a customized RM can reside

and mediate requests.

13/31



e Complete mediation: All security-related actions of processes effected via syscalls

@ Application-independent semantics

o Enables general-purpose solutions

14/31



Intro Isolation Syscall interception related techniques Why syscalls? Drawbacks Approaches ptrace seccomp & secomp-BPF eBPF Sy

Why Focus on System Calls

e Complete mediation: All security-related actions of processes effected via syscalls

@ Application-independent semantics

o Enables general-purpose solutions

@ What sorts of problems can we solve at the syscall interface?

o Mitigate/block vulnerability exploitations

Limit the scope of damage due to untrusted code and malware

Enforce richer security policies (beyond file permissions)

e Transparent application extensions

Process replay and debugging

15/31



Intro Isolation Syscall interception related techniques Why syscalls? Drawbacks Approaches ptrace seccomp & secomp-BPF eBPF Sy

Why monitor system calls?

@ Expressiveness
o Clearly defined, semantically meaningful, well-understood and well-documented
interface (except for some OSes like Windows)
e Orthogonal (each system call provides a function that is independent of other system
calls — functions that rarely, if ever, overlap)
e Can control operations for which OS access controls are ineffective, e.g., loading modules
o A large number of security-critical operations are traditionally lumped into “administrative
privilege”
e Portability: System call policies can be easily ported across similar OSes, e.g.,

various flavors of UNIX

16/31



Intro Isolation Syscall interception related techniques Why syscalls? Drawbacks Approaches ptrace seccomp & secomp-BPF eBPF Sy

Some drawbacks of system calls

o Interface is designed for functionality
e Several syscalls may be equivalent for security purposes, but a syscall policy needs to

treat them separately

o Not all relevant operations are visible

e For instance, syscall policies cannot control name-to-file translations

@ Race conditions

17/31



Intro Isolation Syscall interception related techniques Why syscalls? Drawbacks Approaches ptrace seccomp & secomp-BPF eBPF Sy

Race Conditions

e Pathname based policies are prone to race conditions
o Unless the argument data is first copied into RM, checked, and then this checked copy is

used by the system call.
e The window for exploiting TOCTTOU attacks can be increased by using a large

sequence of symbolic links in the name

o Increases the time taken by open syscall, as it may have to traverse many symlinks.
e By combining deep directories with multiple links, you can make the lookup take a very

long time
o ... despite the relatively small limit of 40 symlink resolutions per file lookup.

18/31



Intro Isolation Syscall interception related techniques Why syscalls? Drawbacks Approaches ptrace seccomp & secomp-BPF eBPF Sy

Syscall Interposition at User Level

@ Library interposition
e RM resides in the same address space

o Advantages
o high performance
o Potential for intercepting higher level operations

e Drawbacks
@ RM is unprotected, so appropriate only for benign code

@ Kernel-supported interposition, with RM residing in another process

o Advantages: Secure for untrusted code
e Drawback: High overheads due to context switches

e Example: ptrace interface on Linux

19/31



o Kernel interception
e The RM resides in the kernel
o Advantages: high performance, secure for untrusted code

e Drawbacks (pre-eBPF):
o difficult to program

20/31



Intro Isolation Syscall interception related techniques Why syscalls? Drawbacks Approaches ptrace seccomp & secomp-BPF eBPF Sy

System-call sandboxing: ptrace

@ Primary goal of ptrace is debugging
o Debuggers work on arbitrary programs since the OS provides this facility

e Early on in Linux evolution, ptrace was expanded to intercept syscalls

e Made more popular by the availability of great tools like strace

@ Review man page on ptrace.

21/31



Intro Isolation Syscall interception related techniques Why syscalls? Drawbacks Approaches ptrace seccomp & secomp-BPF eBPF Sy

System-call sandboxing: seccomp

@ Seccomp is a Linux mechanism for limiting system calls that can be made by a
process
e Processes in the seccomp sandbox can make very few system calls (exit, sigreturn, read,
write)
@ More secure than previous mechanisms, but greatly limits actions that can be
performed by a sandboxed process

o Useful if setup properly, e.g., in Chrome, Docker, NativeClient

@ Seccomp-bpf is a more recent version that permits configurable policies

o Allowable syscalls specified in the Berkeley packet filter language

o Policies can reference syscall name and arguments in registers

22/31



Intro Isolation Syscall interception related techniques Why syscalls? Drawbacks Approaches ptrace seccomp & secomp-BPF eBPF Sy

System-call sandboxing: Seccomp-BPF

@ Unfortunately, most interesting policies are out-of-scope, as they reference data in

process memory, e.g., file names

e For this reason, seccomp-bpf is not much more useful than seccomp

@ eBPF: more flexible

e Better supported for observing

e Limiting access can break things, so less support

23/31



Intro Isolation Syscall interception related techniques Why syscalls? Drawbacks Approaches ptrace seccomp & secomp-BPF eBPF Sy

What is eBPF?

e History: BPF (Berkeley Packet Filters) used in tcpdump etc. (1990s)

e Safe, user-programmable packet filters that run within the kernel
e Very limited scope
o Limited number of instructions

o Limited number of hooks
@ eBPF: Retain safe kernel programmability, but greatly expand scope
o A 64-bit general-purpose virtual instruction set
e Hooks into Linux tracepoints, kprobes, etc.

e Safety verified before loading, then JIT’ed to native code

e For safety and stability, runtime operations mainly limited to reads (on most deployments)

24/31



e Code snippets hook to Linux kernel’s well-developed tracing/hooking infrastructure

e Tracepoints (See /sys/kernel/debug/tracing/events)
o LSM hooks, kprobes (kernel function entry and exit), XDP (network stack)

25/31



Intro Isolation Syscall interception related techniques Why syscalls? Drawbacks Approaches ptrace seccomp & secomp-BPF eBPF Sy

eBPF Probes

o Code snippets hook to Linux kernel’s well-developed tracing/hooking infrastructure
e Tracepoints (See /sys/kernel/debug/tracing/events)
e LSM hooks, kprobes (kernel function entry and exit), XDP (network stack)

@ Probes written in restricted C, compiled by LLVM

o Verified for memory safety, no global variables or loops

e Very minimal set of helper functions (read memory, access key/value store)

26/31



Intro Isolation Syscall interception related techniques Why syscalls? Drawbacks Approaches ptrace seccomp & secomp-BPF eBPF Sy

eBPF Probes

o Code snippets hook to Linux kernel’s well-developed tracing/hooking infrastructure
e Tracepoints (See /sys/kernel/debug/tracing/events)
e LSM hooks, kprobes (kernel function entry and exit), XDP (network stack)
@ Probes written in restricted C, compiled by LLVM
o Verified for memory safety, no global variables or loops
e Very minimal set of helper functions (read memory, access key/value store)
@ Mainly for observability, e.g., so most hooks are limited to be read-only

e But some can respond: LSM (block), XDP (packet rewrite)

27/31



Intro Isolation Syscall interception related techniques Why syscalls? Drawbacks Approaches ptrace seccomp & secomp-BPF eBPF Sy

eBPF Probes

o Code snippets hook to Linux kernel’s well-developed tracing/hooking infrastructure

e Tracepoints (See /sys/kernel/debug/tracing/events)
e LSM hooks, kprobes (kernel function entry and exit), XDP (network stack)

@ Probes written in restricted C, compiled by LLVM

o Verified for memory safety, no global variables or loops

e Very minimal set of helper functions (read memory, access key/value store)

@ Mainly for observability, e.g., so most hooks are limited to be read-only
e But some can respond: LSM (block), XDP (packet rewrite)

e Communicate with user-level via
o Perf buffers (older mechanism, one per core), Ring buffer (newer)
e Maps (hash tables and LRU hash tables)

28/31



Intro Isolation Syscall interception related techniques Why syscalls? Drawbacks Approaches ptrace seccomp & secomp-BPF eBPF Sy

eBPF Experience

@ The verifier can be a pain to work with

o Fragile system; very fussy; unintuitive error messages.

o But overall development way faster than working directly in the kernel.
@ Code works “as is” across many distributions and kernels

o This is taken for granted at the user level.

e But in the kernel, portability often equals manual porting.
@ Occasionally, you can run into obscure errors.

e You can typically work around, or ignore because the case is so rare.

29/31



Intro Isolation Syscall interception related techniques Why syscalls? Drawbacks Approaches ptrace seccomp & secomp-BPF eBPF Sy

eBPF Summary

@ Code snippets hook to Linux kernel’s well-developed tracing/hooking infrastructure
e Tracepoints (See /sys/kernel/debug/tracing/events)
e LSM hooks
o kprobes (kernel function entry and exit)
o XDP (network stack)

@ Most common uses
e performance debugging
e network monitoring and extensions

e security monitoring

30/31



Intro Isolation Syscall interception related techniques Why syscalls? Drawbacks Approaches ptrace seccomp & secomp-BPF eBPF Sy

System-call delegation

@ Used in conjunction with strict syscall sandboxing

o Key idea: Delegate dangerous system calls to a helper process
o Helper process is trusted

@ it cannot be manipulated by untrusted process

e can implement arbitrary, application-specific access control logic

@ avoids race conditions

e Works only if
o System call semantics permits delegation
e e.g., not applicable for fork or execve — fork is usually harmless, can use fexecve instead of
execve
e Results can be transferred back transparently to untrusted process
e e.g, file descriptors can be sent over UNIX domain sockets using sendmsg

31/31



	Intro
	Formulation
	Terminology
	Approaches

	Isolation
	chroot
	Userid-based isolation
	One-way isolation
	Information-flow based

	Syscall interception related techniques
	Why syscalls?
	Drawbacks
	Approaches
	ptrace
	seccomp & secomp-BPF
	eBPF
	Syscall delegation


