OS Security Mechanisms

- Memory protection
- Access control
- User authentication
- Process security
- Boot sequence
- Miscellaneous issues

Key Issues in OS security

- Systems are layered
 - Hardware, processor, OS kernel, processes
 - Each layer needs to provide the security mechanisms needed by the higher layer
 - Each higher layer may attempt to bypass the mechanisms provided by ALL the layers below (not just the one immediately below)
- Physical security to protect hardware
- Hardware protects kernel
- OS kernel provides access control mechanisms, and ensures processes can't access each other’s memory
 - Check every use Vs check first access
 - Checking acceptable use
- Privilege escalation through trusted programs
 - “gates” or “interrupt handlers”
 - setuid programs

Memory protection

- Basis for all security
 - How? Think of a simple file access
- How to protect memory of one process from another?
 - Use hardware mechanisms
 - Segmentation
 - Paging

Memory protection

- System has at least 2 modes of operation, supervisor state and user state.
- Some instructions can only be run in supervisor state.
 - Operations to change virtual memory table can be executed in the supervisor state
- Use special instructions to transfer control to the privileged mode
 - Software interrupt
UNIX Processes and Security

- Processes have
 - Userid
 - Effective userid (euid)
 - Real userid
 - Saved userid
 - Groupid
 - Primary groupid Vs other groupids
 - Group passwords
 - Effective, real and saved gids
 - Changing userid/gid

Interprocess Communication

- Parent-to-child communication
- Signals and process groups
- Debugging and tracing
- Network connection
 - Bind
 - Connect
 - Accept
- Socket connections

Boot Sequence

- Loader loads the kernel
 - Init process (pid 0) starts execution
- Kernel modules get loaded
 - Some immediately, others when boot scripts run
- Boot scripts typically stored in /etc/init.d
 - Different run levels: 1, 2, 3 etc
 - Scripts to be run in a runlevel N are stored in the directory /etc/rcN.d/
 - Symlinks to scripts in /etc/init.d
 - Links names Sxx (for startup) or Kxx (for termination), run in ascending order of the number xx.
 - Usually firewalls, network servers, and so on are all started up from here

Other UNIX Security Issues

- Devices
 - Hard disk
 - /dev/mem, /dev/kmem
 - /dev/tty
- Mounting file systems
 - NFS files
- Search path
 - For commands
 - Libraries
- Network access
 - Firewalls
 - Network address translation (NAT)
 - Server configuration
 - Hosts.allow and hosts.deny
 - /etc/exports, ...
- Capabilities
Database Security

- **Main issue:** finer granularity protection
 - Protecting certain rows, columns, or a complex combination
 - Don’t show column X when column Y has a certain value
- **SQL security**
 - Based on users, actions and objects
 - Objects associated with owners, privileges with users
 - Privileges are of the form (grantor, grante, object, action, grantable)
- **Complex access control can be supported using views**
 - Rather than exposing a table, define a query that extracts only the information that can be exposed
 - Example: a table that represents a user’s schedule
 - May contain sensitive info (who is being met)
 - Define a view to expose only availability (not the other details) of private appointments
 - Issues: updating a view may be difficult

Statistical Security and the Inference Problem

- **Individual records in a DB may be sensitive, but we still want to permit aggregate queries**
 - Number of native americans in a state
- **Inference Problem:**
 - Ability to infer sensitive info from aggregate query results
- **Attacks**
 - Query over small aggregates
 - Evasion measures to defeat obvious defenses
- **Inference problem is very hard to solve fully**
 - Limit sizes of query sets
 - Anonymization and randomization techniques
 - Limit queries (compute worst case leak from a series of queries)