
CSE 509
Course Summary

2

Cryptography Basics

 Algorithm Vs Key
 Symmetric key ciphers (DES, AES, …)

 Block vs stream ciphers
 Public key techniques (RSA, …)

– Encryption Vs Signing
 When to use public vs symmetric crypto

– speed of encryption vs ease of key distribution
 Hash functions (MD5, SHA, …)
 Random number generation
 Applications

 Encryption (Block vs Stream Ciphers)
 Key generation
 Authentication
 Digital signatures
 Certificates

3

User Authentication

 Something you know (secret), have (badge, smartcard) or
are (biometrics)

 Password-based authentication
 History and weaknesses
 Offline/online attacks: Differences in methods and defenses
 Brute force vs Dictionary attacks
 Ease of remembering Vs guessing
 Password theft, Phishing and trusted path
 Variants and Improvements
– Master password and password managers (ssh, browsers, …)
– Multi-factor authentication

 Biometrics
 Network authentication

– Challenge/response protocols
– SSL, SSH, OTPs, ...

4

Processor and Virtual Machine Security
 Principles behind processor and OS security

– privileged mode and privileged instructions; kernel vs user code
– memory protection
– interrupts and system calls
– virtualized resources and access control

 Efficient virtualization
– Privileged vs sensitive instructions

 Process Vs Namespace Vs System virtualization
– Docker security

 Type I and Type II VMMs
 Paravirtualization Vs full virtualization
 Implementation techniques

 Binary translation, paravirtualization, hardware-assisted virtualization
 Memory virtualization
 Security applications

 Honeypots, sandboxes, malware analysis, high-assurance VMs
 Protection from compromised OS

5

OS Security and Access Control

 Terminology: Principal, subject, object, RM, Security kernel, TCB
 Discretionary Access Control

 Access control matrix
 Groups and RBAC
 ACLs

UNIX permission model
effective, real and saved userid, primary and supplementary groups
setuid and setgid

 Capabilities
 Trojan Horse and Mandatory Access Control

 MLS: Bell-La Padula, Biba models; Benefits and drawbacks of information flow
 Domain and Type Enforcement: SELinux; Benefits and drawbacks

 POSIX Capabilities
– Model, differences with classic capabilities

 Policies and mechanisms for containing untrusted code

– chroot jails, seccomp: basic, BPF and eBPF
– one-way isolation, information flow policies

 Other types of policies: Clark-Wilson policy, Chinese wall policy

6

Principles of Secure System Design

 Least privilege
 Fail-safe defaults (default deny)
 Economy of mechanism (simplicity => assurance)
 Complete mediation (look out for ways in which an

access control mechanism may be bypassed)
 Open design (no security by obscurity)
 Separation of privilege (similar to separation of duty)
 Least common mechanism (avoid unnecessary sharing)
 Psychological acceptability (onerous security

requirements will be actively subverted by users)

7

Software Vulnerabilities: Memory Errors

 Memory corruption exploits
 Stack-smashing
 Heap overflows
 Format-string bugs
 Integer overflows

 Exploit defenses
 DEP/NX
 Canaries
 Separating control data from

other data
 Randomization

Address-space (absolute or
relative address)

Data-space
Instruction-space

– CFI

 Advanced exploits:
– ROP

– double pointer attacks

– partial overflows

– information leakage

– heapspray

 Preventing memory
errors

 Definition of memory error
 Spatial vs Temporal Errors
 Defenses

8

 Example attacks
 SQL injection
 Command injection, script injection, ...
 XSS
 Path traversal
 Format string bugs
 Memory corruption/code injection attacks

 Defenses
 Static taint analysis
 Runtime fine-grained taint-tracking: data dependence,

control dependence, implicit flows.
 Taint-aware policy enforcement

Software Vulnerabilties: Injections

9

More Software Vulnerabilities …

 Browser attacks
 XSS
 CSRF

 CWE-25
 File-name based attacks

 Symlink attacks
 TOCTTOU attacks

How to succeed in races …

10

Program Transformations for Security

 General idea
 Maintain additional metadata, check policies using this

 Source-to-source transformations
 Guarding techniques
 Randomization techniques
 Full memory error detection
 Fine-grained taint-tracking
 Control-flow integrity

11

Malicious Code

 Current threat environment: Profit-driven crime
 Types

 Viruses
 Worms
 Spam
 Phishing
 Botnets
 Rootkits
 Spyware
 DDoS
 Extortion
 Cyberwar

12

Malicious code: Stealth Techniques

 Stealth and Obfuscation
 Behavioral obfuscation

Anti-virtualization and anti-analysis techniques
Trigger-driven

 Code obfuscation
Control-flow obfuscation
Data obfuscation
Encryption and packing
Polymorphism
Metamorphism

13

Untrusted code and Web Security

 Javascript
 Vs Java
 DOM model, BOM model

 HTTP protocol
 GET Vs POST, Responses
 Maintaining state: cookies; sessions; authentication
 HTML forms, parameters, server-side processing

 Same origin policy (SOP) and Frames
– Page isolation, cookie isolation, network isolation
– Ajax and XmlHttpRequests
– Caveats: Embedded scripts, external requests
 Reflected and persistent XSS; Defenses
 CSRF and defenses

 SSL Stripping and defenses (e.g., HSTS)
 Other attacks

 Clickjacking
 Timing attacks
 Logic vulnerabilities

14

Untrusted code defense

 Untrusted code implies
strong adversary, requires
correspondingly strong
defenses

 System-call interception

– Techniques and trade-offs

 Inline-reference monitors

– Issues, challenges

– Software-based fault-isolation: RISC
Vs CISC; PittSFIeld

– Control-flow integrity

 Coarse vs fine-grained,
implementation strategies

 Sandboxing (confinement
policies)

Policies are hard to write!
Indirect attacks!
Examples: Native Client,
WebAssembly

 Isolation
Virtual machines

–VMware, Xen, KVM, Qemu
One-way isolation

–With copy-on-write
Two-way isolation

–Smart phones
– Caveats

15

Program Transformation on Binaries

 Key challenges compared to source code
 disassembly techniques and challenges
 rewriting challenges

 Dynamic translation
 Dynamo Rio, Valgrind, Qemu, Pin, …
 How it achieves speed
 Applications: Program shepherding, Taint-tracking, ...

 Static instrumentation
– Disassembly
– Lifting to machine-independent intermediate code
– Pointer fixup
– Secure instrumentation

 Issues and limitations

16

Intrusion Detection

 Network intrusions
 DDoS
 Botnets
 Reflection attacks
 Worms

 Attack stages
 Probing
 DoS
 Privilege escalation

17

Intrusion Detection

 False positives and negatives
 Observation points:

 Host-based Vs Network intrusion detection
Benefits and drawbacks

 Techniques
 Anomaly detection
 Misuse detection
 Specification-based detection

 Algorithms
 Pattern-matching
 Machine learning

18

Host-based Intrusion Detection

 System call logs
 APT Campaigns

– Challenges: Stealth, sophistication, scale, duration

– Solutions

 Evasion: Mimicry attacks

19

Static Analysis for Vulnerability Detection

 Techniques to identify potential bugs and
vulnerabilities

 Requires a model of what is good behavior, or
bad behavior
 “Good behaviors” are typically application specific, and

hard to come by
 “Bad behaviors” can be somewhat more generic

 Common software vulnerabilities
– Buffer overflow, SQL injection, …

Inconsistencies
–Access check or locking on some program paths, but not others

20

Static Analysis

 Usually require source code
 Binary code analysis limited by absence of type/bounds

information, as well as higher level control structures
 Most program properties are undecidable

 Static analysis has to approximate in order to terminate.
Approximation means that analysis can be sound or
complete, but not both.

 Sound: Guaranteed to find all vulnerabilities
 Complete: No false positives
 Practical issues: FPs and FNs, scalability, range of

properties that can be supported, ...

21

Dynamic Analysis
 Manual testing
 Random testing (“fuzz testing”)

 Vulnerabilities often arise due to insufficient testing and optimistic
assumptions about input

 This means that incorrect inputs will cause unexpected behaviors
 Random input will typically cause crashes

Using a debugger or other means, hackers can find additional information to turn
the crash into an exploit

 Coverage-guided fuzzing
 Manually assisted fuzz testing

 In many cases, random inputs don't work, as they get discarded very
early

Most of the code is not exercised
 Better to ensure that some parts of input are valid, so as to traverse

more program paths
Remaining parts of input can be fuzzed

22

Symbolic Execution

 “Intelligent” approach that chooses inputs to
ensure more coverage
 Often based on some form of symbolic execution

Variables left unbound
As conditions are tested, constraints on unbound inputs are gathered,
depending on whether “then” or “else” clause is taken

When multiple conditions are present on the value of a variables, use
a constraint solving procedure to narrow down the range

 Key challenges
Range of constraints that can be handled
state-space explosion
Many approaches choose to bind variables to concrete values when
faced with these problems

 Penetration testing
 Just another name for dynamic vulnerability testing

23

Side-channel attacks and physical security

 Covert channels
 Intentionally embedded
 Implicit flows, timing, steganographic techniques, ...

 Side channel attacks
 Timing analysis, power monitoring
 Differential fault analysis
 Emanations (keyboard, power, screen/camera, shock sensor)
 Remanence

 Physical layer attacks and tamper resistance
 transmit info by file name or metadata (e.g., timestamp)

Information retrieved by checking file presence or stat
– No need to read the file (or have read permissions on the file)

 “Port-knocking”
Transmit info by probing network ports in a certain sequence

 tcp acks or retransmissions, packet fragmentation, …

24

Side-channel attacks and physical security

 Covert channels
– Timing, implicit flows, DNS requests, ...

 Side-channels
– Execution time

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

