STONY
BRAWSK

CSE 509

Course Summary



Cryptography Basics

Algorithm Vs Key

Symmetric key ciphers (DES, AES, ...)

= Block vs stream ciphers

Public key techniques (RSA, ...)
— Encryption Vs Signing

When to use public vs symmetric crypto
— speed of encryption vs ease of key distribution

Hash functions (MD5, SHA, ...)
Random number generation

Applications

= Encryption (Block vs Stream Ciphers)
= Key generation

= Authentication

= Digital signatures

® Certificates




User Authentication

¢+ Something you know (secret), have (badge, smartcard) or
are (biometrics)

¢+ Password-based authentication
" History and weaknesses
= Offline/online attacks: Differences in methods and defenses
= Brute force vs Dictionary attacks
" Ease of remembering Vs guessing
" Password theft, Phishing and trusted path
= Variants and Improvements
— Master password and password managers (ssh, browsers, ...)
— Multi-factor authentication

* Biometrics

* Network authentication

— Challenge/response protocols
— SSL, SSH, OTPs, ...




Processor and Virtual Machine Security

Principles behind processor and OS security
— privileged mode and privileged instructions; kernel vs user code
— memory protection
— interrupts and system calls
— virtualized resources and access control

Efficient virtualization
— Privileged vs sensitive instructions

Process Vs Namespace Vs System virtualization
— Docker security

Type | and Type Il VMMs

Paravirtualization Vs full virtualization

Implementation techniques

® Binary translation, paravirtualization, hardware-assisted virtualization
Memory virtualization

Security applications

" Honeypots, sandboxes, malware analysis, high-assurance VMs
= Protection from compromised OS




OS Security and Access Control

Terminology: Principal, subject, object, RM, Security kernel, TCB

Discretionary Access Control
= Access control matrix
= Groups and RBAC
= ACLs
YUNIX permission model

Yeffective, real and saved userid, primary and supplementary groups
Ysetuid and setgid

= Capabilities
Trojan Horse and Mandatory Access Control
= MLS: Bell-La Padula, Biba models; Benefits and drawbacks of information flow
= Domain and Type Enforcement: SELinux; Benefits and drawbacks
POSIX Capabilities
— Model, differences with classic capabilities
Policies and mechanisms for containing untrusted code

— chroot jails, seccomp: basic, BPF and eBPF

— one-way isolation, information flow policies
Other types of policies: Clark-Wilson policy, Chinese wall policy




Principles of Secure System Design

" | east privilege
" Fail-safe defaults (default deny)
® Economy of mechanism (simplicity => assurance)

= Complete mediation (look out for ways in which an
access control mechanism may be bypassed)

® Open design (no security by obscurity)
= Separation of privilege (similar to separation of duty)
® | east common mechanism (avoid unnecessary sharing)

" Psychological acceptability (onerous security
requirements will be actively subverted by users)




Software Vulnerabilities: Memory Errors

* Memory corruption exploits ¢ Advanced exploits:
= Stack-smashing — ROP
" Heap overflows
" Format-string bugs
" |nteger overflows

¢ Exploit defenses

— double pointer attacks
— partial overflows
— information leakage

= DEP/NX ~ heapspray
" Canaries * Preventing memory
® Separating control data from errors
other data = Definition of memory error

® Randomization

YAddress-space (absolute or .
relative address) Defenses

YData-space
Yinstruction-space
— CFI

® Spatial vs Temporal Errors




Software Vulnerabilties: Injections

¢ Example attacks
" SQL injection
® Command injection, script injection, ...
m XSS
= Path traversal
® Format string bugs
® Memory corruption/code injection attacks

¢ Defenses
B Static taint analysis

" Runtime fine-grained taint-tracking: data dependence,
control dependence, implicit flows.

® Taint-aware policy enforcement




More Software Vulnerabilities ...

* Browser attacks
m XSS
" CSRF

¢ CWE-25

* File-name based attacks

= Symlink attacks
" TOCTTOU attacks

YHow to succeed in races ...




Program Transformations for Security

¢ General idea
® Maintain additional metadata, check policies using this

¢ Source-to-source transformations
" Guarding techniques
® Randomization techniques
" Full memory error detection
" Fine-grained taint-tracking
® Control-flow integrity




Malicious Code

¢ Current threat environment: Profit-driven crime
¢ Types
" Viruses
= Worms
" Spam
® Phishing
® Botnhets
" Rootkits
" Spyware
" DDoS
= Extortion
= Cyberwar




Malicious code: Stealth Techniques

¢+ Stealth and Obfuscation

" Behavioral obfuscation
YAnti-virtualization and anti-analysis techniques
YTrigger-driven

" Code obfuscation
YControl-flow obfuscation
YData obfuscation
YEncryption and packing
YPolymorphism
YMetamorphism




Untrusted code and Web Security

Javascript
® Vs Java
= DOM model, BOM model

HTTP protocol
® GET Vs POST, Responses
® Maintaining state: cookies; sessions; authentication
= HTML forms, parameters, server-side processing

Same origin policy (SOP) and Frames
— Page isolation, cookie isolation, network isolation
— Ajax and XmlIHttpRequests
— Caveats: Embedded scripts, external requests
= Reflected and persistent XSS; Defenses
" CSRF and defenses

SSL Stripping and defenses (e.g., HSTS)
Other attacks

= Clickjacking

= Timing attacks

® Logic vulnerabilities




Untrusted code defense

Untrusted code implies ¢+ Sandboxing (confinement
strong adversary, requires policies)
correspondingly strong YPolicies are hard to write!
defenses YIndirect attacks!
System-call interception YExamples: Native Client,
— Techniques and trade-offs WebAssembly
Inline-reference monitors " |solation
— Issues, challenges YVirtual machines
— Software-based fault-isolation: RISC —VMware, Xen, KVM, Qemu
Vs CISC,; PittSFleld YOne-way isolation
— Control-flow integrity —With copy-on-write
Coarse vs fine-grained, 'Two-way isolation

implementation strategies
—Smart phones

— Caveats




¢

L 4

¢

Program Transformation on Binaries

Key challenges compared to source code
= disassembly techniques and challenges
= rewriting challenges

Dynamic translation
" Dynamo Rio, Valgrind, Qemu, Pin, ...
" How it achieves speed
= Applications: Program shepherding, Taint-tracking, ...
Static instrumentation
— Disassembly
— Lifting to machine-independent intermediate code
— Pointer fixup
— Secure instrumentation

Issues and limitations




Intrusion Detection

* Network intrusions
" DDoS
® Botnets
= Reflection attacks
= Worms

¢ Attack stages
" Probing
" DoS
" Privilege escalation




¢

L 4

Intrusion Detection

False positives and negatives

Observation points:

" Host-based Vs Network intrusion detection
YBenefits and drawbacks

Techniques

= Anomaly detection

" Misuse detection

" Specification-based detection

Algorithms
= Pattern-matching
" Machine learning




Host-based Intrusion Detection

¢+ System call logs

¢ APT Campaigns
— Challenges: Stealth, sophistication, scale, duration
— Solutions

¢+ Evasion: Mimicry attacks




Static Analysis for Vulnerability Detection

* Techniques to identify potential bugs and
vulnerabilities

* Requires a model of what is good behavior, or
bad behavior

" “Good behaviors” are typically application specific, and
hard to come by

= “Bad behaviors” can be somewhat more generic

¥ Common software vulnerabilities
— Buffer overflow, SQL injection, ...
YInconsistencies

—Access check or locking on some program paths, but not others




Static Analysis

¢ Usually require source code
® Binary code analysis limited by absence of type/bounds
iInformation, as well as higher level control structures
¢ Most program properties are undecidable

® Static analysis has to approximate in order to terminate.
Approximation means that analysis can be sound or
complete, but not both.

® Sound: Guaranteed to find all vulnerabillities
= Complete: No false positives

" Practical issues: FPs and FNs, scalability, range of
properties that can be supported, ...




4

L 4

4

4

Dynamic Analysis

Manual testing

Random testing (“fuzz testing”)

= Vulnerabilities often arise due to insufficient testing and optimistic
assumptions about input

® This means that incorrect inputs will cause unexpected behaviors

= Random input will typically cause crashes

YUsing a debugger or other means, hackers can find additional information to turn
the crash into an exploit

Coverage-guided fuzzing

Manually assisted fuzz testing

® |n many cases, random inputs don't work, as they get discarded very
early
YMost of the code is not exercised

= Better to ensure that some parts of input are valid, so as to traverse
more program paths
YRemaining parts of input can be fuzzed




Symbolic Execution

¢+ “Intelligent” approach that chooses inputs to
ensure more coverage

= Often based on some form of symbolic execution
YVariables left unbound

YAs conditions are tested, constraints on unbound inputs are gathered,
depending on whether “then” or “else” clause is taken

YWhen multiple conditions are present on the value of a variables, use
a constraint solving procedure to narrow down the range
= Key challenges
YRange of constraints that can be handled
Ystate-space explosion

YMany approaches choose to bind variables to concrete values when
faced with these problems

¢ Penetration testing
= Just another name for dynamic vulnerability testing




Side-channel attacks and physical security

¢ Covert channels
" Intentionally embedded
" Implicit flows, timing, steganographic techniques, ...
¢ Side channel attacks
® Timing analysis, power monitoring
= Differential fault analysis
= Emanations (keyboard, power, screen/camera, shock sensor)
" Remanence

* Physical layer attacks and tamper resistance

® transmit info by file name or metadata (e.g., timestamp)

YInformation retrieved by checking file presence or stat
—No need to read the file (or have read permissions on the file)

" “Port-knocking”
YTransmit info by probing network ports in a certain sequence

B tcp acks or retransmissions, packet fragmentation, ...




Side-channel attacks and physical security

¢ Covert channels
— Timing, implicit flows, DNS requests, ...

¢+ Side-channels
— Execution time




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

