R. Sekar

1/32

Intro DAC MAC Linux Capabilities Commercial Policies Management

Terminology and concepts

Principals, Subjects, Objects

Principle of least privilege

e Throughout execution, each subject should be given the minimal access necessary to
accomplish its task
e Needs mechanisms for rights amplification and attenuation

@ Reference monitors

e Abstract machine that mediates all access

Security kernel

e Hardware, firmware and software elements that implement the reference monitor

Trusted Computing Base
o Totality of protection mechanisms in the system

o Smaller TCB translates to greater assurance
2/32

Intro DAC MAC Linux Capabilities Commercial Policies Management

Access control

o Typically, three kinds of entities

o User (principal)
e Subject: typically, a process acting on behalf of the user

o Object: files, network sockets, devices, ...

@ Goal: Control access to operations performed by subjects on objects
e Basic: Read, Write, Execute
o Additional: Append, Create, Delete

e Advanced: Change permission, ownership

3/32

Intro DAC MAC Linux Capabilities Commercial Policies Management ACL Vs Capabilities UNIX implementation Windows Capabilities

Discretionary Access Control

@ Discretionary, i.e., permissions settings at owner’s discretion

e Permission on an object is set by its owner
e The norm on OSes (UNIX derivatives, Windows, ...)

O, 0, | 05
. Alice rw wo| —
@ Can be modeled as a matrix:
@ Implementations M | BN
o Access-control lists (ACLs) Zachary r Wl || —

@ The AC-matrix column describing access rights on an object are stored with the object

o Example: O;: [Alice:rw, . .., Zachary:r]
o Capabilities

@ Row-wise representation of AC matrix, held by the user corresponding to the row

o Example: Alice: [Oy:rw, Oy:w, O5:—, .. .]

4/32

e Improve manageability using indirection

o Groups

o Roles (RBAC — Role-based access control)
@ Inheritance

@ Negative permissions

5/32

Intro DAC MAC Linux Capabilities Commercial Policies Management ACL Vs Capabilities UNIX implementation Windows Capabilities

Implementation of DAC on UNIX: Objects

@ All resources are “files”

e Each file has an owner and group owner

e For simplicity, original UNIX did not support ACL
o Instead, permissions are divided into three groups
@ permissions for each of: file owner, owner group, and everyone else

e Owner and group owner are attributes of the file

e 3 bits of permission for each part: read/write/execute

e For directories, the interpretation is:
o read means ability to list the directory
e write means ability to create files in the directory

e execute means the ability to access specific files if you know the name

6/32

Intro DAC MAC Linux Capabilities Commercial Policies Management ACL Vs Capabilities UNIX implementation Windows Capabilities

Implementation of DAC on UNIX: Objects

@ Permissions on newly created files determined by umask
e Start with the mode specified in the third argument of open, and turn off the bits

specified in umask
e chmod for changing permission
e chown for changing ownership (only root can use this syscall)

e Additional 3 bits of permission

e setuid, setgid and sticky bits
e Today, sticky bits is used to regulate access to shared directories:

o Even if the directory is writable, you can only delete your own files

@ More recent: Access control lists

e But not in wide use, because most software is old and does not know about them.

7/32

Intro DAC MAC Linux Capabilities Commercial Policies Management ACL Vs Capabilities UNIX implementation Windows Capabilities

Implementation of DAC on UNIX: Subjects

@ Subjects inherit the userid, group and supplementary groups of the parent
e Programs that perform user authentication (e.g., login, sshd) need to set this information
o Exception: setuid/setgid bits
o Privilege escalation mechanism
o Can also be thought of as a delegation mechanism
o File permission checks are performed using this userid and groups

o The primary as well as supplementary groups of a process are checked for permission

e No permission checks on superuser (userid 0)

e Permission checks based on userid: usernames are used only for login

@ Objects created by a subject inherit the subject’s userid and group
e File’s default group owner is determined by the subject’s primary group

e But a file owner can set the file’s group any of the supplementary groups of the owner

8/32

Intro DAC MAC Linux Capabilities Commercial Policies Management ACL Vs Capabilities UNIX implementation Windows Capabilities

Effective, Real and Saved UID/GID

o Effective: the uid used for determining access privileges
@ Real: the “real” user that is logged on, and on whose behalf a process is running

@ Saved: allows processes to temporarily relinquish privileges but then restore original
privileges
e When executing a setuid executable, original euid is saved (or it could be explicitly saved)

e Setting userid to saved userid is permitted

9/32

Intro DAC MAC Linux Capabilities Commercial Policies Management ACL Vs Capabilities UNIX implementation Windows Capabilities

DAC on Windows vs UNIX

@ OO-design: permissions can differ, depending on type of object
o NTEFS files offer additional rights: delete, modify ACL, take ownership
o Files inherit permission from directory
o Use of Registry for configuration data

o Richer set of access permissions for registry entries (e.g., enumerate, create subkey, notify, ...)
@ Mandatory file system locks

@ No setuid mechanism

10/32

Intro DAC MAC Linux Capabilities Commercial Policies Management ACL Vs Capabilities UNIX implementation Windows Capabilities

Capabilities

@ “Tickets” to gain access to a resource
e Combine objects and access rights into one package
e Transferable

e Must be unforgeable

e Examples
e Passwords and cryptographic keys
o Certificates
o Anything cryptographically signed can be thought of as a capability
o File descriptors

o Handles to information maintained within OS kernel

e Some cookies (e.g., session cookie) in web applications

11/32

Intro DAC MAC Linux Capabilities Commercial Policies Management ACL Vs Capabilities UNIX implementation Windows Capabilities

Implementation drawbacks

e More difficult to implement than ACLs

o Need forever unique object ids that don’t change

e Need to use crypto or rely on OS primitives that may be hard to realize

e Difficult to manage
e How do we determine the permissions held by a user?
o Do we want to allow them to pass around their capability? What about theft?
e How long do we store them?

e How can we revoke permissions?

@ Result: Capabilities in their purest form are not widely used in OSes

12/32

Intro DAC MAC Linux Capabilities Commercial Policies Management ACL Vs Capabilities UNIX implementation Windows Capabilities

Benefits

@ Provide a better framework than ACLs when one or more of the following
conditions hold:
e Policy enforcement isn’t centralized
o Parties have limited trust on each other

o Rights need to move with principals

@ More examples
e Web applications use cookies containing session ids to indicate when a user has
successfully authenticated
o Can use this capability even if their IP address changes, or after a browser crash/restart
o Kerberos uses capabilities for access across hosts
o Uses capabilities with different time scales
o Accesses within a host are typically based on the ACL mechanism of the host OS

13/32

Intro DAC MAC Linux Capabilities Commercial Policies Management Motivation MLS DTE

Mandatory Access Control (MAC)

e DAC Limitations
1. “Trojan Horse” problem: assumes that users authorize all actions of their processes

e What if a program changes permissions on a file without the user’s knowledge?

2. Provides no protection if a resource owner did not bother to set the ACL properly

@ To overcome these problems, MAC moves the responsibility to a central point,
typically the system administrator
e Organizations want to control access to their resources

e Don’t want to rely on individual employees to ensure that organizational policies are

enforced

14/32

Intro DAC MAC Linux Capabilities Commercial Policies Management Motivation MLS DTE

MAC Example: Multi-Level Security (MLS)

@ Motivation for MLS
o Access control policies do not provide any way to control the manner in which

information is used
@ Once an entity is given access to some information, it can use this information in any way

o Can share it with anyone
@ MLS policies control information flow, and hence control how information is used

o Ensure certain global safety properties

@ Developed originally in the context of protecting secrets in the military

15/32

Intro DAC MAC Linux Capabilities Commercial Policies Management Motivation MLS DTE

MLS: Confidentiality Policies

@ An object is labeled with a level L

o Labels correspond to points in a lattice
o Typical levels used in military include:
o unclassified, classified, secret, top secret

@ A subject is associated with a clearance level C

e A subject can access an object if its clearance level is equal to or above the object’s level
@ In addition, information can also be compartmentalized

o “Need-to-know” principle is used to decide who gets to access what information

e e.g., top-secret information regarding nuclear fuel processing is made available to those working

on nuclear-related projects

16/32

Intro DAC MAC Linux Capabilities Commercial Policies Management Motivation MLS DTE

MLS: Bell-LaPadula Model [1973]

@ To prevent leakage of sensitive information, we ensure:
o No “read-up:”
e A subject S can read object O only if C(S) > L(O)
o No “write-down:”
@ A subject can write an object O only if L(O) > C(S)

@ Ensures that information can flow only upwards in terms of confidentiality level

e Example: a subject with top-secret-clearance reads a top-secret file and then writes
to a secret file
o Without this “x” property, this behavior would be permitted and cause “top-secret” info to

reach someone with just “secret” clearance.

17/32

Intro DAC MAC Linux Capabilities Commercial Policies Management Motivation MLS DTE

MLS: Biba Model (Integrity)

@ Designed to ensure integrity rather than confidentiality

e In non-military settings, integrity is more important

e Conditions
o No “read-down:”
@ A subject S can read object O only if C(S) < L(O)
@ A subject’s integrity can be compromised by reading lower integrity data, so this is disallowed
o No “write-up:”
o A subject S can write an object O only if C(S) > L(O)
o The integrity of a subject’s output can’t be greater than that of the subject itself.

@ Variation: Low Water-Mark Policy (LOMAC)

o Allow read-downs, but downgrade subject to the level of the object

@ Both policies ensure system integrity

18/32

Intro DAC MAC Linux Capabilities Commercial Policies Management Motivation MLS DTE

Problems with Information Flow

@ “Label creep:” More and more objects become sensitive, making it difficult for the

system to be used by lower-clearance subjects

@ No controlled mechanism for making exceptions
e For instance, encryption programs need to read more sensitive info and write less

sensitive (but encrypted) info
o To accommodate this, “trusted” programs are exempted from the “x”-property

e But the system provides no check on possible misuse of exceptions

@ Motivate alternate approaches, or hybrid approaches

19/32

Intro DAC MAC Linux Capabilities Commercial Policies Management Motivation MLS DTE

Alternative Approaches

o Key goal: Mitigate damage that may result from all-powerful root privileges
e Break down root privilege into a number of sub-privileges

e Decouple user privileges from program privileges

e Examples
e Domain and type enforcement
e SELinux
e AppArmor (sort of)
e Linux capabilities
@ Somewhat different from the classical notion of capabilities described earlier under DAC
e These capabilities are associated with subjects, not users — Subjects are under the control of the

0S, so many of the problems of classical capabilities can be avoided (unforgeability, unlimited

lifetime, revocation, ...)

o Independent of objects
20/32

Intro DAC MAC Linux Capabilities Commercial Policies Management Motivation MLS DTE

Domain and Type Enforcement (DTE)

@ Subjects belong to domains
o Users have default domains, but not all their processes belong to the same domain

@ Some processes transition to another domain, typically when executing another program

@ Objects belong to types

e Policies specify which domains have what access rights on which types

e Enable application of least-privilege principle

e Example: a media player may need to write its configuration or data files, but not libraries

or config files of other applications

e Domain transitions are an important feature

e Can occur on exec, as specified by policy

21/32

Intro DAC MAC Linux Capabilities Commercial Policies Management Motivation MLS DTE

DTE and SELinux

@ Security-enhanced Linux combines standard UNIX DAC with DTE
o Note: SELinux also supports other MAC mechanisms (e.g., MLS) but these are typically
not enabled/configured
@ Intuitively, the idea is to make access rights a function of (user, program, object)
o Roughly speaking, MLS requires us to trust a program (and not enforce “x”-property), or
fully trust it (i.e., it may do whatever it wants with information that it read)
e In contrast, DTE allows us to express limited trust that is a function of the program, i.e.,

grant a program only those rights that it needs to carry out its function

22/32

Intro DAC MAC Linux Capabilities Commercial Policies Management Motivation MLS DTE

DTE/SELinux Vs Information Flow

@ In practice, DTE has turned out to be “one policy per application”

o Scalability is clearly an issue

o In addition, SELinux policies are quite complex
e While DTE is able to gain additional power because it captures the fact that trust is not
transitive, this very feature makes DTE policies difficult to manage

o What are the overall system-wide assurances can be obtained, given a set of DTE policies

developed independent of each other
e Information flow policies are simpler and closely relate to high-level objectives

o Confidentiality or Integrity
e But neither approach is easy enough for widespread use

23/32

Intro DAC MAC Linux Capabilities Commercial Policies Management

Linux (POSIX) Capabilities

@ Goal: Decompose root privilege into a number of “capabilities”
o CAP_CHOWN
o CAP_DAC_OVERRIDE
o CAP_NET BIND_SERVICE
o CAP_SETUID
CAP_SYS_MODULE
CAP_SYS_PTRACE

e Differs from classical capabilities

e Captures access rights, but not associated with any object
o Unforgeable only because the capabilities are never present in the subject
e They are maintained by the OS kernel for every process, similar to how subject ownership is

maintained in the kernel
24/32

Intro DAC MAC Linux Capabilities Commercial Policies Management

Linux (POSIX) Capabilities

o Effective, Permitted and Inheritable capabilities
e Somewhat related to (and guided by) effective, real and saved userids

o Effective: accesses will be checked against this set
e Permitted: superset of effective, cannot be increased
o Effective set can be set to include any subset of permitted
o Inheritable: capabilities retained after execve
o At execve, permitted and effective sets are masked with inheritable

@ Attaching capabilities to executables
o Allowed: capabilities not in this set are taken away on execve
o Forced: “setuid”-like feature — given to executable even if parent does not have the
capability

o Effective: Indicates which of the permitted bits are to be transferred to effective

25/32

Intro DAC MAC Linux Capabilities Commercial Policies Management

Commercial Policies

e High-level policies in commercial environments differ from those in military
environments.
e Examples:

e Chinese Wall (conflict of interest)
o Clark-Wilson

e Common principles:
e Separation of duty: critical functions need to be performed by multiple users.

o Auditing: ensure actions can be traced and attributed, and if necessary, reverted

(recoverability).

26/32

Intro DAC MAC Linux Capabilities Commercial Policies Management

Clark-Wilson Policy

@ Focuses on data integrity rather than confidentiality.

o Based on the observation that in the “real-world,” errors and fraud are associated with
loss of data integrity.
@ Based on the concept of well-formed transactions (WFTs):

o Data is processed by a series of WFTs.
o Each WFT takes the system from one consistent state to another:

e Operations within a WFT may temporarily make system state inconsistent.

27/32

Intro DAC MAC Linux Capabilities Commercial Policies Management

Clark-Wilson Policy

e What about the integrity of WFTs?
e WFTs ensure that the system state is consistent, but don’t guarantee that the
transactions themselves were correct.
o Was that a fraudulent money transfer?

@ Was that travel voucher properly inspected?

o Relies primarily on separation of duty.
e Auditing to verify integrity of transactions

@ Recovery: Maintain adequate logs so that WFTs in error can be undone.

28/32

Intro DAC MAC Linux Capabilities Commercial Policies Management

Chinese Wall Policy

@ Addresses “conflict of interest”
e Common in the context of the financial industry.

e Regulatory compliance, auditing, advising, consulting, etc.

@ Defined in terms of:
o CD: objects related to a single company.

e COl classes: sets of companies that are competitors.
e Policy: no person can have access to two CDs in the same COlI class.

o Implies past, present, or future access.

29/32

@ Goal: simplify the setup and administration of security policies.

@ Topics:
o Role-based access control (RBAC).
o Administrative policies:
@ Who can change what policies.

o Delegation and trust management.

30/32

Intro DAC MAC Linux Capabilities Commercial Policies Management

RBAC

@ Roles vs groups: Essentially the same mechanism but different interpretations.

o Role: a set of permissions.

o Group: a set of users.

@ An extra level of indirection to simplify policy management.
o Based on the functions performed by a user, he/she is given one or more roles.
@ When the user’s responsibilities change, the user’s roles are updated.
@ When the permissions needed to perform a function are changed, the corresponding role’s

permissions are updated. — Does not require any updating of user information.

31/32

Intro DAC MAC Linux Capabilities Commercial Policies Management

Delegation

e Ability to transfer certain rights to another entity so that it may act on behalf of the
first entity.

o Essential for scalability and in the context of distributed systems.

e Implementation:

o The issue is one of trust and granularity.
o Multiple levels of delegation rely on a chain of trust.

o Can be implemented using certificates.

@ Trust management:
e Systems designed to manage delegation and enforce security policies in the presence of

delegation rules and certificates.

32/32

	Intro
	DAC
	ACL Vs Capabilities
	UNIX implementation
	Windows
	Capabilities

	MAC
	Motivation
	MLS
	DTE

	Linux Capabilities
	Commercial Policies
	Management

