
Intro DAC MAC Linux Capabilities Commercial Policies Management

Security Policies and Enforcement Mechanisms
Fall 2024

R. Sekar

1 / 32



Intro DAC MAC Linux Capabilities Commercial Policies Management

Terminology and concepts

Principals, Subjects, Objects

Principle of least privilege
Throughout execution, each subject should be given the minimal access necessary to
accomplish its task
Needs mechanisms for rights amplification and attenuation

Reference monitors
Abstract machine that mediates all access

Security kernel
Hardware, firmware and software elements that implement the reference monitor

Trusted Computing Base
Totality of protection mechanisms in the system
Smaller TCB translates to greater assurance

2 / 32



Intro DAC MAC Linux Capabilities Commercial Policies Management

Access control

Typically, three kinds of entities

User (principal)

Subject: typically, a process acting on behalf of the user

Object: files, network sockets, devices, . . .

Goal: Control access to operations performed by subjects on objects

Basic: Read, Write, Execute

Additional: Append, Create, Delete

Advanced: Change permission, ownership

3 / 32



Intro DAC MAC Linux Capabilities Commercial Policies Management ACL Vs Capabilities UNIX implementation Windows Capabilities

Discretionary Access Control

Discretionary, i.e., permissions settings at owner’s discretion
Permission on an object is set by its owner
The norm on OSes (UNIX derivatives, Windows, . . . )

Can be modeled as a matrix:

O1 O2 O3 · · ·
Alice rw w − · · ·
. . . · · · · · · · · · · · · · · ·

Zachary r wx − · · ·
Implementations
Access-control lists (ACLs)
The AC-matrix column describing access rights on an object are stored with the object
Example: O1: [Alice:rw , . . ., Zachary:r]

Capabilities
Row-wise representation of AC matrix, held by the user corresponding to the row
Example: Alice: [O1:rw , O2:w , O3:−, . . .]

4 / 32



Intro DAC MAC Linux Capabilities Commercial Policies Management ACL Vs Capabilities UNIX implementation Windows Capabilities

Managing Permissions

Improve manageability using indirection

Groups

Roles (RBAC — Role-based access control)

Inheritance

Negative permissions

5 / 32



Intro DAC MAC Linux Capabilities Commercial Policies Management ACL Vs Capabilities UNIX implementation Windows Capabilities

Implementation of DAC on UNIX: Objects

All resources are “files”

Each file has an owner and group owner

For simplicity, original UNIX did not support ACL
Instead, permissions are divided into three groups
permissions for each of: file owner, owner group, and everyone else
Owner and group owner are attributes of the file

3 bits of permission for each part: read/write/execute

For directories, the interpretation is:

read means ability to list the directory

write means ability to create files in the directory

execute means the ability to access specific files if you know the name
6 / 32



Intro DAC MAC Linux Capabilities Commercial Policies Management ACL Vs Capabilities UNIX implementation Windows Capabilities

Implementation of DAC on UNIX: Objects

Permissions on newly created files determined by umask

Start with the mode specified in the third argument of open, and turn off the bits

specified in umask

chmod for changing permission

chown for changing ownership (only root can use this syscall)

Additional 3 bits of permission

setuid, setgid and sticky bits
Today, sticky bits is used to regulate access to shared directories:
Even if the directory is writable, you can only delete your own files

More recent: Access control lists

But not in wide use, because most software is old and does not know about them.
7 / 32



Intro DAC MAC Linux Capabilities Commercial Policies Management ACL Vs Capabilities UNIX implementation Windows Capabilities

Implementation of DAC on UNIX: Subjects

Subjects inherit the userid, group and supplementary groups of the parent

Programs that perform user authentication (e.g., login, sshd) need to set this information
Exception: setuid/setgid bits
Privilege escalation mechanism
Can also be thought of as a delegation mechanism

File permission checks are performed using this userid and groups

The primary as well as supplementary groups of a process are checked for permission

No permission checks on superuser (userid 0)

Permission checks based on userid: usernames are used only for login

Objects created by a subject inherit the subject’s userid and group

File’s default group owner is determined by the subject’s primary group

But a file owner can set the file’s group any of the supplementary groups of the owner

process

8 / 32



Intro DAC MAC Linux Capabilities Commercial Policies Management ACL Vs Capabilities UNIX implementation Windows Capabilities

Effective, Real and Saved UID/GID

Effective: the uid used for determining access privileges

Real: the “real” user that is logged on, and on whose behalf a process is running

Saved: allows processes to temporarily relinquish privileges but then restore original
privileges

When executing a setuid executable, original euid is saved (or it could be explicitly saved)

Setting userid to saved userid is permitted

9 / 32



Intro DAC MAC Linux Capabilities Commercial Policies Management ACL Vs Capabilities UNIX implementation Windows Capabilities

DAC on Windows vs UNIX

OO-design: permissions can differ, depending on type of object
NTFS files offer additional rights: delete, modify ACL, take ownership
Files inherit permission from directory

Use of Registry for configuration data
Richer set of access permissions for registry entries (e.g., enumerate, create subkey, notify, . . . )

Mandatory file system locks

No setuid mechanism

10 / 32



Intro DAC MAC Linux Capabilities Commercial Policies Management ACL Vs Capabilities UNIX implementation Windows Capabilities

Capabilities

“Tickets” to gain access to a resource

Combine objects and access rights into one package

Transferable

Must be unforgeable

Examples

Passwords and cryptographic keys
Certificates
Anything cryptographically signed can be thought of as a capability

File descriptors
Handles to information maintained within OS kernel

Some cookies (e.g., session cookie) in web applications

11 / 32



Intro DAC MAC Linux Capabilities Commercial Policies Management ACL Vs Capabilities UNIX implementation Windows Capabilities

Implementation drawbacks

More difficult to implement than ACLs

Need forever unique object ids that don’t change

Need to use crypto or rely on OS primitives that may be hard to realize

Difficult to manage

How do we determine the permissions held by a user?

Do we want to allow them to pass around their capability? What about theft?

How long do we store them?

How can we revoke permissions?

Result: Capabilities in their purest form are not widely used in OSes

12 / 32



Intro DAC MAC Linux Capabilities Commercial Policies Management ACL Vs Capabilities UNIX implementation Windows Capabilities

Benefits

Provide a better framework than ACLs when one or more of the following
conditions hold:

Policy enforcement isn’t centralized

Parties have limited trust on each other

Rights need to move with principals

More examples
Web applications use cookies containing session ids to indicate when a user has
successfully authenticated
Can use this capability even if their IP address changes, or after a browser crash/restart

Kerberos uses capabilities for access across hosts
Uses capabilities with different time scales
Accesses within a host are typically based on the ACL mechanism of the host OS

13 / 32



Intro DAC MAC Linux Capabilities Commercial Policies Management Motivation MLS DTE

Mandatory Access Control (MAC)

DAC Limitations
1. “Trojan Horse” problem: assumes that users authorize all actions of their processes

What if a program changes permissions on a file without the user’s knowledge?

2. Provides no protection if a resource owner did not bother to set the ACL properly

To overcome these problems, MAC moves the responsibility to a central point,
typically the system administrator

Organizations want to control access to their resources

Don’t want to rely on individual employees to ensure that organizational policies are

enforced

14 / 32



Intro DAC MAC Linux Capabilities Commercial Policies Management Motivation MLS DTE

MAC Example: Multi-Level Security (MLS)

Motivation for MLS
Access control policies do not provide any way to control the manner in which
information is used
Once an entity is given access to some information, it can use this information in any way
Can share it with anyone

MLS policies control information flow, and hence control how information is used

Ensure certain global safety properties

Developed originally in the context of protecting secrets in the military

15 / 32



Intro DAC MAC Linux Capabilities Commercial Policies Management Motivation MLS DTE

MLS: Confidentiality Policies

An object is labeled with a level L

Labels correspond to points in a lattice
Typical levels used in military include:
unclassified, classified, secret, top secret

A subject is associated with a clearance level C

A subject can access an object if its clearance level is equal to or above the object’s level

In addition, information can also be compartmentalized
“Need-to-know” principle is used to decide who gets to access what information
e.g., top-secret information regarding nuclear fuel processing is made available to those working
on nuclear-related projects

16 / 32



Intro DAC MAC Linux Capabilities Commercial Policies Management Motivation MLS DTE

MLS: Bell-LaPadula Model [1973]

To prevent leakage of sensitive information, we ensure:
No “read-up:”
A subject S can read object O only if C(S) ≥ L(O)

No “write-down:”
A subject can write an object O only if L(O) ≥ C(S)

Ensures that information can flow only upwards in terms of confidentiality level

Example: a subject with top-secret-clearance reads a top-secret file and then writes
to a secret file

Without this “∗” property, this behavior would be permitted and cause “top-secret” info to

reach someone with just “secret” clearance.

17 / 32



Intro DAC MAC Linux Capabilities Commercial Policies Management Motivation MLS DTE

MLS: Biba Model (Integrity)

Designed to ensure integrity rather than confidentiality

In non-military settings, integrity is more important

Conditions
No “read-down:”
A subject S can read object O only if C(S) ≤ L(O)

A subject’s integrity can be compromised by reading lower integrity data, so this is disallowed
No “write-up:”
A subject S can write an object O only if C(S) ≥ L(O)

The integrity of a subject’s output can’t be greater than that of the subject itself.

Variation: Low Water-Mark Policy (LOMAC)

Allow read-downs, but downgrade subject to the level of the object

Both policies ensure system integrity
18 / 32



Intro DAC MAC Linux Capabilities Commercial Policies Management Motivation MLS DTE

Problems with Information Flow

“Label creep:” More and more objects become sensitive, making it difficult for the
system to be used by lower-clearance subjects

No controlled mechanism for making exceptions

For instance, encryption programs need to read more sensitive info and write less

sensitive (but encrypted) info

To accommodate this, “trusted” programs are exempted from the “∗”-property
But the system provides no check on possible misuse of exceptions

Motivate alternate approaches, or hybrid approaches

19 / 32



Intro DAC MAC Linux Capabilities Commercial Policies Management Motivation MLS DTE

Alternative Approaches

Key goal: Mitigate damage that may result from all-powerful root privileges

Break down root privilege into a number of sub-privileges

Decouple user privileges from program privileges

Examples
Domain and type enforcement
SELinux
AppArmor (sort of)

Linux capabilities
Somewhat different from the classical notion of capabilities described earlier under DAC
These capabilities are associated with subjects, not users — Subjects are under the control of the
OS, so many of the problems of classical capabilities can be avoided (unforgeability, unlimited
lifetime, revocation, . . . )
Independent of objects

20 / 32



Intro DAC MAC Linux Capabilities Commercial Policies Management Motivation MLS DTE

Domain and Type Enforcement (DTE)

Subjects belong to domains
Users have default domains, but not all their processes belong to the same domain
Some processes transition to another domain, typically when executing another program

Objects belong to types

Policies specify which domains have what access rights on which types

Enable application of least-privilege principle

Example: a media player may need to write its configuration or data files, but not libraries

or config files of other applications

Domain transitions are an important feature

Can occur on exec, as specified by policy

21 / 32



Intro DAC MAC Linux Capabilities Commercial Policies Management Motivation MLS DTE

DTE and SELinux

Security-enhanced Linux combines standard UNIX DAC with DTE

Note: SELinux also supports other MAC mechanisms (e.g., MLS) but these are typically

not enabled/configured

Intuitively, the idea is to make access rights a function of (user, program, object)

Roughly speaking, MLS requires us to trust a program (and not enforce “∗”-property), or
fully trust it (i.e., it may do whatever it wants with information that it read)

In contrast, DTE allows us to express limited trust that is a function of the program, i.e.,

grant a program only those rights that it needs to carry out its function

22 / 32



Intro DAC MAC Linux Capabilities Commercial Policies Management Motivation MLS DTE

DTE/SELinux Vs Information Flow

In practice, DTE has turned out to be “one policy per application”

Scalability is clearly an issue

In addition, SELinux policies are quite complex
While DTE is able to gain additional power because it captures the fact that trust is not
transitive, this very feature makes DTE policies difficult to manage
What are the overall system-wide assurances can be obtained, given a set of DTE policies
developed independent of each other

Information flow policies are simpler and closely relate to high-level objectives

Confidentiality or Integrity

But neither approach is easy enough for widespread use

23 / 32



Intro DAC MAC Linux Capabilities Commercial Policies Management

Linux (POSIX) Capabilities

Goal: Decompose root privilege into a number of “capabilities”

CAP_CHOWN

CAP_DAC_OVERRIDE

CAP_NET_BIND_SERVICE

CAP_SETUID

CAP_SYS_MODULE

CAP_SYS_PTRACE

Differs from classical capabilities

Captures access rights, but not associated with any object
Unforgeable only because the capabilities are never present in the subject
They are maintained by the OS kernel for every process, similar to how subject ownership is
maintained in the kernel

24 / 32



Intro DAC MAC Linux Capabilities Commercial Policies Management

Linux (POSIX) Capabilities

Effective, Permitted and Inheritable capabilities

Somewhat related to (and guided by) effective, real and saved userids

Effective: accesses will be checked against this set
Permitted: superset of effective, cannot be increased
Effective set can be set to include any subset of permitted

Inheritable: capabilities retained after execve
At execve, permitted and effective sets are masked with inheritable

Attaching capabilities to executables

Allowed: capabilities not in this set are taken away on execve

Forced: “setuid”-like feature — given to executable even if parent does not have the

capability

Effective: Indicates which of the permitted bits are to be transferred to effective
25 / 32



Intro DAC MAC Linux Capabilities Commercial Policies Management

Commercial Policies

High-level policies in commercial environments differ from those in military
environments.

Examples:

Chinese Wall (conflict of interest)

Clark-Wilson

Common principles:

Separation of duty: critical functions need to be performed by multiple users.

Auditing: ensure actions can be traced and attributed, and if necessary, reverted

(recoverability).

26 / 32



Intro DAC MAC Linux Capabilities Commercial Policies Management

Clark-Wilson Policy

Focuses on data integrity rather than confidentiality.

Based on the observation that in the “real-world,” errors and fraud are associated with

loss of data integrity.

Based on the concept of well-formed transactions (WFTs):

Data is processed by a series of WFTs.
Each WFT takes the system from one consistent state to another:
Operations within a WFT may temporarily make system state inconsistent.

27 / 32



Intro DAC MAC Linux Capabilities Commercial Policies Management

Clark-Wilson Policy

What about the integrity of WFTs?
WFTs ensure that the system state is consistent, but don’t guarantee that the
transactions themselves were correct.
Was that a fraudulent money transfer?
Was that travel voucher properly inspected?

Relies primarily on separation of duty.

Auditing to verify integrity of transactions

Recovery: Maintain adequate logs so that WFTs in error can be undone.

28 / 32



Intro DAC MAC Linux Capabilities Commercial Policies Management

Chinese Wall Policy

Addresses “conflict of interest.”

Common in the context of the financial industry.

Regulatory compliance, auditing, advising, consulting, etc.

Defined in terms of:

CD: objects related to a single company.

COI classes: sets of companies that are competitors.
Policy: no person can have access to two CDs in the same COI class.
Implies past, present, or future access.

29 / 32



Intro DAC MAC Linux Capabilities Commercial Policies Management

Policy Management

Goal: simplify the setup and administration of security policies.

Topics:

Role-based access control (RBAC).
Administrative policies:
Who can change what policies.

Delegation and trust management.

30 / 32



Intro DAC MAC Linux Capabilities Commercial Policies Management

RBAC

Roles vs groups: Essentially the same mechanism but different interpretations.

Role: a set of permissions.

Group: a set of users.

An extra level of indirection to simplify policy management.
Based on the functions performed by a user, he/she is given one or more roles.
When the user’s responsibilities change, the user’s roles are updated.
When the permissions needed to perform a function are changed, the corresponding role’s
permissions are updated. — Does not require any updating of user information.

31 / 32



Intro DAC MAC Linux Capabilities Commercial Policies Management

Delegation

Ability to transfer certain rights to another entity so that it may act on behalf of the
first entity.

Essential for scalability and in the context of distributed systems.

Implementation:

The issue is one of trust and granularity.
Multiple levels of delegation rely on a chain of trust.
Can be implemented using certificates.

Trust management:

Systems designed to manage delegation and enforce security policies in the presence of

delegation rules and certificates.

32 / 32


	Intro
	DAC
	ACL Vs Capabilities
	UNIX implementation
	Windows
	Capabilities

	MAC
	Motivation
	MLS
	DTE

	Linux Capabilities
	Commercial Policies
	Management

