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Background: Process memory layout, Stack access and

Calling conventions
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Process Memory Layout

Argv/Env: Command-line args
and environment

Stack: generally grows
downwards

Heap: generally grows upwards

BSS: uninitialized global data

Data: initialized global data

Text: read-only program code
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Memory Layout Example

in t a [ ] = { 1 , 2 , 3 , 4 , 5 } ; / / DS : i n i t i a l i z e d g l o b a l da t a

in t b ; / / BSS : u n i n i t i a l i z e d g l o b a l da t a

/ / t e x t s egment : c o n t a i n s program code

in t main ( in t argc , char ∗ ∗ argv ) / ∗ p t r t o a r g v ∗ / {
in t ∗c ; / / s t a c k : l o c a l v a r i a b l e s

c = ( in t ∗ ) malloc ( 5 ∗ s i zeo f ( in t ) ) ;
/ / heap : dynamic a l l o c a t i o n by new or ma l l o c

}
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Call Stack and Activation Records

An Activation Record (AR) — also called a stack frame — is created for each
invocation of a procedure

Structure of AR:

Direction of stack 
growth

Return address

Actual parameters

Saved BP (control link)

Temporary variables

Base
Pointer

Return value

Local variables

Base pointer is also called a frame pointer
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Call Stack: Illustration
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Accessing the Stack

Pushing an item onto the stack
Decrement Stack Pointer by word size

4 or 32-bit and 8 on 64-bit architectures

Copy wordsize bytes of data to stack.

Example: push 0x12

Popping data from the stack
Copy 4 bytes of data from stack.

Increment SP by 4.

Example: pop eax
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Stack Access
Most items on the stack are accessed relative to Base pointer
Parameters
Local variables
Typically accessed using constant offsets hard-coded into the binary

Register saves/restores typically use SP directly (push/pop)

SP continually moves with push/pops.

BP only moves on function call/return.

Intel CPUs use ebp register for BP.
32-bit registers are named eax, ebx, esp, etc.
64-bit registers are named rax, rbx, rsp, etc.

Optimized code can use SP for everything, freeing up BP for general-purpose use
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C/ABI Calling Convention

ABI: Application-binary interface

Push all params onto stack in reverse order.
Parameter #N
...

Parameter #2

Parameter #1

Execute call instruction

Pushes address of next instruction (the return address) onto stack.

Modifies IP (eip) to point to start of function.
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Stack just before the execution of callee
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Callee’s actions on the stack

Function pushes BP (ebp) onto stack.

Save BP for previous function.

push ebp

Copy SP to BP.

Allows function to access params as fixed indices from base pointer.

mov ebp, esp

Reserves stack space for local vars.

subl esp, 0x12
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Stack just before the execution of callee’s body
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Callee’s actions on the stack at its return

Store return value in eax.

movl eax, 0x0

Reset stack to pre-call state.

Destroys current stack frame, and restores caller’s frame.

mov esp, ebp; pop ebp

Return control back to the caller
ret
pops top word from stack and sets eip to that value.
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Stack Smashing: Exploits, Defenses and Evasion

Techniques
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Stack Smashing Attack
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Defense #1: Non-executable Data (aka DEP , NX orW⊕X )

Prevent execution of data
Programs very rarely need to do this
For programs that need to, create a more controlled interface, e.g., require another call to the OS
(mprotect) on Linux

Introduced in early 2000’s

as soon as Intel added hardware support for this

Counters direct code injection
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Evasion #1.1: Use code already in victim process memory

Often called “return-to-libc”

Because exploitable functions are there in libc, the low-level system library that is part

of every program

Examples

system: creates a shell to execute the argument (a string)

call execve syscall to run any program present on the victim

Attacker needs to control the arguments to this victim function

Easy: attacker controls the stack contents, and the victim is getting its argument from the

stack

Typically, attacker will execute a shell, e.g., /bin/bash,

Attacker has full remote access on the victim now.
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Evasion #1.2: Return-Oriented Programming (ROP)

Why limit ourselves to just one or two functions?

What if the victim makes them hard to exploit?

What happens if the argument is a pointer?

Attacker may not know the exact address where his/her data resides

What if attacker needs a low-level primitive for which there is not an exploitable
function?

Example: mprotect to make stack executable

Often, the end goal of attackers (so they can execute arbitrary code)
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ROP: Realizing a Stack-based VM w/ Existing Instructions

SP is the attacker’s PC (program counter)

Points to “abstract instructions” on the stack

Stack contains the attacker’s “program”

Victim’s code serves like the attacker’s data

Attacker picks the bytes in the victim code to use in the ROP payload

These bytes are called “gadgets”

ROP payload execution = execution of a series of gadgets on x86

Variable-length x86 instruction plays a key role

Enables Turing-complete computation for most programs
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ROP Illustration
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ROP Illustration
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ROP Illustration
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Defense #2: Stack Canary

Store a “canary” value on the stack
Callee generates and stores a canary value on function entry

This value is checked at return

If the canary is “dead” then abort the program

Indicates a stack overwrite

Turns control-flow hijack into DoS
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Canary defense: Issues

Fixed value vs random vs XOR
If the value is fixed and known in advance, the attacker can overwrite canary without
being detected
Exception: Zero values and overflows due to strcpy
Can’t preserve canary and overwrite RA

A random canary value seems harder for attacker
Information leakage: rely on a vulnerability that reveals canary value to the attacker

XOR canary avoids the need for an additional location
But breaks compatibility stack tracing and debuggers

What is protected? RA?

What about Saved BP? Local variables?
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ProPolice: Contemporary canary-based defense

Random canary value generated at process start time

Protect BP by locating canary below saved BP

Reorder local variables so that “simple” variables
occur after variables subject to overflow.

Any overflow will go into canary, not the simple vars

New on 64-bit

Make one byte of 64-bit canary into zero

Combines benefits of random and null canaries
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Indirect (aka double-pointer) overwrite vulnerability

void parse_cmd ( char ∗ cmd ) {
char ∗arg = malloc ( 1 0 2 4 ) ;
char cmdnm [ 1 2 8 ] ;
in t i =0 ;
while ( ! isspace ( ∗ cmd ) ) / / Command name shou l d end w i th

cmdnm [i++] = ∗cmd++ ; / / s p a c e ; copy i t i n t o cmdnm

cmd++ ; / / S k i p t h e s pa c e

strcpy (arg , cmd ) ; / / Copy r e s t o f cmd i n t o a r g

. . .

. . .
return

} 31 / 61
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The exploit ...
char ∗arg = malloc ( 1 0 2 4 ) ;

char cmdnm [ 1 2 8 ] ;

in t i =0 ;

while ( ! isspace ( ∗ cmd ) )

cmdnm [i++] = ∗cmd++ ;

cmd++ ;

strcpy (arg , cmd ) ;

Overflow past cmd[127] to overwrite arg ...
... so that it points to RA!

Next, strcpy copies the rest of cmd into arg
Since arg points to RA, this operation overwrites RA!

Canary is untouched!
But an XOR canary can still catch the attack 32 / 61
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Brute-force attacks and Partial overwrites

Brute-force attacks: try every possible value for canary until you succeed
With 32-bit canaries, this is feasible although it may take a while.
Requires victim process to restart and use the same canary

Use of same canary is not uncommon — forking-based servers
An attacker may also target millions of victims at once
Increases the probability that the canary is right for some victim

Partial overwrite: guess the canary 1-byte at a time

Overwrite the first byte of canary

Repeat the attack for each possible value of byte
If victim did not crash, you got the right byte!
Now proceed to guess the next byte
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Information Leaks

Exploit a memory error that allows reading arbitrary memory location

Common example: format string attacks

When the victim contains printf(s) with s provided by attacker

printf blindly interprets stack contents as arguments

attacker may control the stack

Partial overwrite is also an information leak ...

... through a side-channel

An example of a side-channel attack
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Other defenses for Return address

Shadow Stack: Store a second copy of RA
Far more resilient than canaries
Bullet-proof if the second stack is unwritable

Causes compatibility issues if not implemented in every piece of code
Intel has built this capability into its processors
OSes and compiler tool chains need add to support (in progress)

Safe Stack: no arrays of any kind on the stack

Already implemented into some compilers (LLVM) ...

... if certain compiler flags are used
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Beyond Stack-smashing: Heap overflows, Format string

vulnerabilities, Integer overflows and Use-after-free
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Overflows in Heap-allocated buffers

For a buffer allocated on the heap, there is no return address nearby

So attacking a heap based vulnerability requires the attacker to overwrite other code
pointers

We look at two examples:

Overwriting heap metadata
Overwriting a function pointer
Easiest target is a function pointer stored in the same heap block
C++ objects contain a built-in target: pointer to virtual function table

Note: There may be other reasons for attackers to target code pointers̸=RA

e.g., if RA protection is very difficult to get around
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How does heap metadata overwrite work?
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Heap metadata overwrite

Provides a primitive to write an attacker-chosen value to an attacker chosen
location

The ultimate capability sought by an attacker in a low-level exploit!

Any doubly linked list implementation has this vulnerability!

Unless the program performs some kind of sanity checking.

This kind of sanity checking is implemented in malloc and other critical doubly linked

lists.

But it is not always clear what to check

Some systematic solutions

Heap canaries: protect heap metadata with canaries

separate metadata from data
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Format-string vulnerabilities

Exploits code of the form

... read data from attacker into s...

printf(s);

Printf usually reads memory, so how can it be used for arbitrary write?

“%n” primitive allows for a memory write

Writes the number of characters printed so far (character count)

Primitive: write # of chars printed to an attacker-chosen location

Attacker typically controls the stack, so can choose the location written.
Only limited control over the value written, but most implementations allow just a single
byte to be written
This is enough to easily control the value
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Integer Overflows

Can take multiple forms

Assignment between variables of different widths

Assignment between variables of different signs

Arithmetic overflows

Can subvert bounds and size checks

Allocate a buffer smaller than needed

“Escape” bounds checks, e.g.,

if (sz < n) memcpy(buf, src, sz);

A very large sz may become a negative integer!

More info: http://phrack.org/issues/60/10.html
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Use-after-free vulnerabilities

Most past attacks were based on out-of-bounds writes

But recently, attention has shifted to use-after-free

Access using dangling pointers

Typical use in attacks

Victim uses a dangling pointer to access critical data

But the block is already freed and reallocated for processing (attacker’s) input

Can impact languages w/o pointers (PHP, Javascript)

if the bug is in memory managers of these languages
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Overwrites are not the only serious problem
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The Heartbleed Exploit!
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Systematic Study of Memory Errors, Exploits and

Defenses
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Memory Errors

A memory error occurs when an object accessed using a pointer
expression is different from the one intended by the programmer.

Spatial error

Out-of-bounds access due to pointer arithmetic errors

Access using a corrupted pointer

Uninitialized pointer access

Temporal error: access to objects that have been freed (and possibly reallocated)

dangling pointer errors

applicable to stack and heap allocated data
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Use of Memory Errors in Attacks

Most attacks used to be based on spatial errors, but in the last few years, temporal
errors have become very important

“double free,” “use-after-free”

Typical attacks involve an out-of-bounds write (or a temporal error) to corrupt a
pointer
This means that most attacks rely on multiple memory errors
Stack-smashing relies on out-of-bounds write, plus the use of a corrupted pointer as return
address
Heap overflow relies on out-of-bounds write, use of corrupted pointer as target of write, and
then the use of a corrupted pointer as branch target.

48 / 61



Background Stack Smashing Beyond stack-smashing Systematic study of defenses Memory errors Prevent corruption Disrupt exploit Randomization defense

Overview of Memory Error Defenses

Prevent memory corruption

Detect and stop memory corruption before it happens
The most secure approach
but can have significant costs (performance and compatibility)

Techniques often focus on a subset of errors
But comprehensive techniques do exist

Disrupt exploits

Unlike previous group of techniques, corruption is not stopped
“Guarding” solutions
detection may be delayed by a long period after corruption
not all instances of corruption may be detected
but can still seriously impair attacker’s capabilities

Other disruption techniques impair control-flow hijack or payload execution
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Preventing Memory Corruption
Subclass of spatial errors: detect access past the end of valid objects
Introduce inter-object gaps, detect access to them (Red zones)
Purify, Light-weight bounds check [Hasabnis et al], Address Sanitizer [Serebryany et al]

All spatial errors: detect by recognizing pointer arithmetic that crosses object
boundaries
Backwards-compatible bounds checker [Jones and Kelly 97]
Further compatibility improvements achieved by CRED [Ruwase et al]
Speed improvements: Baggy [Akritidis et al], Paricheck [Younan et al]

Spatial and temporal errors
Temporal errors: pool-based allocation [Dhurjati et al], Cling [Akritidis et al]
Spatial + temporal errors: CMemSafe [Xu et al], SoftBounds [Nagarakatte et al]
Targeted approaches: Code pointer integrity [Kuznetsov et al], protects subset of pointers
needed to guarantee the integrity of all code pointers.
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Disrupt exploits

1. Disrupt mechanism used for corruption

Protect attractive targets against common ways to corrupt them (“guarding” solutions)

2. Disrupt mechanism used for take-over

Disrupt ways in which the victim program uses corrupted data

Randomization-based defenses

3. Disrupt payload execution

Data execution prevention, Control-flow integrity (CFI), ...

(1) is highly incomplete, (3) is somewhat incomplete, so let us focus on (2).
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Disrupt Take-over (Control-flow hijack)

Key issue for an attacker:

using attacker-controlled inputs, induce errors with predictable effects

Approach: exploit software bugs (to overwrite critical data), and the behavior of
existing code that uses this data
Relative address attacks (RA)
Example: copying data from input into a program buffer without proper range checks

Absolute address attacks (AA)
Example: store input into an array element whose location is calculated from input.
Even if the program performs an upper bound check, this may not have the intended effect due
to integer overflows

RA+AA attacks
use RA attack to corrupt a pointer p, wait for program to perform an operation using *p
Example: Stack-smashing, heap overflows, ...
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Disrupting exploits: Diversity Based Defenses

Software bugs are difficult to detect or fix

Question: Can we make them harder to exploit?

Solution: Benign Diversity
Preserve functional behavior
On benign inputs, diversified program behaves exactly like the original program

Randomize attack behavior
On inputs that exercise a bug, diversified program behaves differently from the original
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Automated Introduction of Diversity
Use transformations that preserve program semantics
How to capture intended program semantics? Relying on manual specs isn’t practical

Approach: Focus on PL semantics, not the semantics of a specific program.
Randomize implementation aspects that aren’t specified in the programming language
Eliminates need for programmer involvement

Examples
Address Space Randomization (ASR)
Randomize memory locations of code or data objects
Invalid and out-of-bounds pointer dereferences access unpredictable objects

Data Space Randomization (DSR)
Randomize low-level representation of data objects
Invalid copy or overwrite operations result in unpredictable data values

Instruction Set Randomization (ISR)
Randomize interpretation of low-level code
W ⊕ X has essentially the same effect, so ISR is not that useful any more
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How randomization disrupts take-over

Without randomization, memory errors corrupt memory in a predictable way
Attacker knows the exact data item that is corrupted, e.g., RA.
Relative address randomization (RAR) takes away this predictability

Attacker knows the correct value to use for corruption, e.g., the location of injected code
Absolute address randomization (AAR) takes away this predictability for pointer-valued data
DSR takes away this predictability for all data
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Space of Possible Memory Error Exploits
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First Generation: Absolute Address Randomization (ASLR)

Randomizes base address of:
data: stack, heap, static memory
code: libraries and executable regions

Implemented on all mainstream OS distributions
On 32-bit systems, UNIX systems provide 20+ bits of randomness, 16 bits for Windows
64-bit systems add about 16 additional bits of randomness.

Limitations
Incomplete implementations (e.g., executables or some libraries left unrandomized)
but this is becoming rare these days.

Brute-force as well as smarter guessing attacks (e.g., partial overwrites)
Brute-force in space domain: NOP padding, Heap spray
Information leakage attacks
Relative address data-only attacks
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Second Generation: Relative Address Randomization

Randomize distance between static objects
Compile time
Often, linking time

Load time: Requires additional information in binaries

Randomize distance between stack objects

Entropy is limited if the number of variables is small

Better option: safe stack for simple variables, move rest to heap

Heap allocations can be randomized without help from compiler.
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Fine-grained code randomization (RAR for code)

Motivation: make ROP infeasible

Permute order of functions

Randomly rearrange instructions within a function

Attacker response

Just-in-time ROP

Blind ROP
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Benefits of RAR

Defeats the overwrite step, as well the step that uses the overwritten pointer value

Can mitigate format-string and integer overflow attacks as well

Provides higher entropy

Unlike AAR, a single information leak insufficient to derandomize everything.

Knowing the location of one object does not tell you much about the locations of other

objects
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Data Space Randomization

Basic idea: Randomize data representation

Xor each data object with a distinct random mask
Effect of data corruption becomes non-deterministic
Out-of-bounds access on array a to corrupt variable x with value v
Actual value written is mask(a)⊕ v

Value read when x is accessed: mask(x)⊕ (mask(a)⊕ v) — random gibberish

Unlike AAR, protects all data, not just pointers

Effective against relative address as well as absolute address attacks

Large entropy

Key challenge: Requires alias analysis

Objects that may be pointed by the same pointer must use same mask
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