
Binary Code Security
Fall 2024

R. Sekar

1 / 109

Inline Reference Monitoring

Foundations

Software Fault Isolation (SFI)

Control-flow Integrity (CFI)

Examples

Google Native Client (NaCl)

Web Assembly (Wasm)

eBPF

2 / 109

Inline Reference Monitors (IRMs)

Provide finer granularity

“Variable x is always greater than y”

“Never dereference an invalid pointer”

Provides much more expressive power

Efficient
Does not require a switching execution contexts
unlike the crossing of user/kernel or process boundaries

Key challenge:

Protecting IRM from hostile code

3 / 109

Inline Reference Monitors (IRMs)

Provide finer granularity

“Variable x is always greater than y”

“Never dereference an invalid pointer”

Provides much more expressive power

Efficient
Does not require a switching execution contexts
unlike the crossing of user/kernel or process boundaries

Key challenge:

Protecting IRM from hostile code

4 / 109

Inline Reference Monitors (IRMs)

Provide finer granularity

“Variable x is always greater than y”

“Never dereference an invalid pointer”

Provides much more expressive power

Efficient
Does not require a switching execution contexts
unlike the crossing of user/kernel or process boundaries

Key challenge:

Protecting IRM from hostile code

5 / 109

Securing RMs in the same address space

Protect RM data that is used in enforcing policy

Software-based fault isolation (SFI)

Protect RM checks from being bypassed

Control-flow integrity (CFI)

Note

For vulnerability defenses (e.g., Stackguard), we implement the checks using an IRM

But we don’t worry so much about these properties since we are dealing with benign (and

not malicious) code

6 / 109

Securing RMs in the same address space

Protect RM data that is used in enforcing policy

Software-based fault isolation (SFI)

Protect RM checks from being bypassed

Control-flow integrity (CFI)

Note

For vulnerability defenses (e.g., Stackguard), we implement the checks using an IRM

But we don’t worry so much about these properties since we are dealing with benign (and

not malicious) code

7 / 109

Securing RMs in the same address space

Protect RM data that is used in enforcing policy

Software-based fault isolation (SFI)

Protect RM checks from being bypassed

Control-flow integrity (CFI)

Note

For vulnerability defenses (e.g., Stackguard), we implement the checks using an IRM

But we don’t worry so much about these properties since we are dealing with benign (and

not malicious) code

8 / 109

Fault Isolation

Goal: Limit negative consequences when “something bad” happens.

Why is it needed?

Untrusted plug-ins make applications unreliable.

Third-party modules make the OS unreliable.

Hardware based Fault Isolation

Isolated address space

Traps instead of cross-domain control transfers

9 / 109

Fault Isolation

Goal: Limit negative consequences when “something bad” happens.

Why is it needed?

Untrusted plug-ins make applications unreliable.

Third-party modules make the OS unreliable.

Hardware based Fault Isolation

Isolated address space

Traps instead of cross-domain control transfers

10 / 109

Fault Isolation

Goal: Limit negative consequences when “something bad” happens.

Why is it needed?

Untrusted plug-ins make applications unreliable.

Third-party modules make the OS unreliable.

Hardware based Fault Isolation

Isolated address space

Traps instead of cross-domain control transfers

11 / 109

Software Fault Isolation (SFI) [Wahbe et al 1994]

Motivation: Hardware fault isolation can be expensive
Requires context switches that are very expensive on modern hardware
flushing of TLB and caches

SFI idea: Avoid context switches using inline address range checks

for data accesses
for indirect control-flow transfers (CFT)
Note: direct CFTs can be statically checked

SFI challenges

Efficiency: each memory access has the overhead of checking

Security: Preventing circumvention or subversion of checks

12 / 109

Software Fault Isolation (SFI) [Wahbe et al 1994]

Motivation: Hardware fault isolation can be expensive
Requires context switches that are very expensive on modern hardware
flushing of TLB and caches

SFI idea: Avoid context switches using inline address range checks

for data accesses
for indirect control-flow transfers (CFT)
Note: direct CFTs can be statically checked

SFI challenges

Efficiency: each memory access has the overhead of checking

Security: Preventing circumvention or subversion of checks

13 / 109

Software Fault Isolation (SFI) [Wahbe et al 1994]

Motivation: Hardware fault isolation can be expensive
Requires context switches that are very expensive on modern hardware
flushing of TLB and caches

SFI idea: Avoid context switches using inline address range checks

for data accesses
for indirect control-flow transfers (CFT)
Note: direct CFTs can be statically checked

SFI challenges

Efficiency: each memory access has the overhead of checking

Security: Preventing circumvention or subversion of checks

14 / 109

Software-based fault isolation

Even when running in the same virtual address space, limit some code components
to access only a part of the address space

This subspace is called a “fault domain”

15 / 109

Software Fault Isolation

Virtual address segments

Fault domain (guest) has two segments, one for code, the other for data.

Each segment share a unique upper bits (segment identifier)

Components of the technique
Isolation
Segment matching to limit cross-domain data and code access
Optimization: simply override the segment bits

Data sharing

Domain crossing

16 / 109

Software Fault Isolation

Virtual address segments

Fault domain (guest) has two segments, one for code, the other for data.

Each segment share a unique upper bits (segment identifier)

Components of the technique
Isolation
Segment matching to limit cross-domain data and code access
Optimization: simply override the segment bits

Data sharing

Domain crossing

17 / 109

Segment Matching

Insert checking code before every unsafe instruction
To prevent subversion of checks, use dedicated registers
Need only worry about indirect accesses
Don’t forget that returns are indirect jumps too

Checking code verifies that the unsafe instruction has the correct segment identifier

18 / 109

Segment Matching

19 / 109

Optimization 1: Address Sandboxing

3 instructions instead of 5.

Correctness: Relies on the invariant that dedicated registers always contain valid
values before any control transfer instruction.

20 / 109

Optimization 1: Address Sandboxing

3 instructions instead of 5.

Correctness: Relies on the invariant that dedicated registers always contain valid
values before any control transfer instruction.

21 / 109

Optimization 2: Guarding pages

A single instruction accesses multiple
bytes of memory (4, 8, or may be more)

Need to check whether all bytes are
within the segment

Require at least two checks!

Optimization

Guard zones ensure that reg+offset will

also be in bounds

22 / 109

Optimization 2: Guarding pages

A single instruction accesses multiple
bytes of memory (4, 8, or may be more)

Need to check whether all bytes are
within the segment

Require at least two checks!

Optimization

Guard zones ensure that reg+offset will

also be in bounds

23 / 109

Data sharing

Read-only sharing can be achieved in several ways:

Option 1: Don’t restrict read accesses

Option 2: Allow reads to access some segments other than that of untrusted code

Option 3: Remap shared memory into the address space of both the untrusted and

trusted domains

Shared writable memory can use Option 2 or 3.

24 / 109

Data sharing

Read-only sharing can be achieved in several ways:

Option 1: Don’t restrict read accesses

Option 2: Allow reads to access some segments other than that of untrusted code

Option 3: Remap shared memory into the address space of both the untrusted and

trusted domains

Shared writable memory can use Option 2 or 3.

25 / 109

Domain Crossing

26 / 109

SFI details

Need compiler assistance

to dedicate registers, and to insert SFI checks

But we cannot trust the compiler used to produce an untrusted binary!

Need a verifier that operates on binary code.
Verification is quite simple
Target registers to be loaded strictly after address-sandboxing
All direct memory accesses and direct jumps should stay within untrusted domain.

Note that SFI checks all indirect accesses and control-transfers at runtime

Verifier is verifying the presence of bounds checks
It’s not guaranteeing that the program will never generate an invalid target address
Generally, an undecidable problem.

27 / 109

SFI details

Need compiler assistance

to dedicate registers, and to insert SFI checks

But we cannot trust the compiler used to produce an untrusted binary!

Need a verifier that operates on binary code.
Verification is quite simple
Target registers to be loaded strictly after address-sandboxing
All direct memory accesses and direct jumps should stay within untrusted domain.

Note that SFI checks all indirect accesses and control-transfers at runtime

Verifier is verifying the presence of bounds checks
It’s not guaranteeing that the program will never generate an invalid target address
Generally, an undecidable problem.

28 / 109

SFI details

Need compiler assistance

to dedicate registers, and to insert SFI checks

But we cannot trust the compiler used to produce an untrusted binary!

Need a verifier that operates on binary code.
Verification is quite simple
Target registers to be loaded strictly after address-sandboxing
All direct memory accesses and direct jumps should stay within untrusted domain.

Note that SFI checks all indirect accesses and control-transfers at runtime

Verifier is verifying the presence of bounds checks
It’s not guaranteeing that the program will never generate an invalid target address
Generally, an undecidable problem.

29 / 109

SFI details (continued)

Precursor to proof-carrying code [Necula et al]
Code producer provides the proof, consumer needs to check it.
Proof-checking is much easier than proof generation
Especially in an automated verification setting:
producer needs to navigate a humongous search space to construct a proof tree
consumer needs to just verify that the particular tree provided is valid

30 / 109

Difficulties of bringing SFI to CISC

Problem 1: Variable-length instructions

What happens if code jumps to the middle of an instruction?

Problem 2: Insufficient registers
SFI requires several dedicated registers, but x86 has very few.
eax, ebx, ecx, edx, esi, edi

PittsSFIeld: uses ebx as a dedicated register AND treats esp and ebp as sandboxed

registers (adds needed checks)

31 / 109

Difficulties of bringing SFI to CISC

Problem 1: Variable-length instructions

What happens if code jumps to the middle of an instruction?

Problem 2: Insufficient registers
SFI requires several dedicated registers, but x86 has very few.
eax, ebx, ecx, edx, esi, edi

PittsSFIeld: uses ebx as a dedicated register AND treats esp and ebp as sandboxed

registers (adds needed checks)

32 / 109

Difficulties of bringing SFI to CISC

Problem 1: Variable-length instructions

What happens if code jumps to the middle of an instruction?

Problem 2: Insufficient registers
SFI requires several dedicated registers, but x86 has very few.
eax, ebx, ecx, edx, esi, edi

PittsSFIeld: uses ebx as a dedicated register AND treats esp and ebp as sandboxed

registers (adds needed checks)

33 / 109

Solution to Problem 1

34 / 109

Solution to Problem 2

Hardcode valid segments

Avoids need for segment registers etc.

Make code and data segments adjacent, with addresses differing in just a single bit
Data access restriction needs just a single instruction!
and 0x20ffffff, %ebx
Read or store using ebx

For indirect jumps, use:
and 0x10fffff0, %ebx
Jump using ebx

Alternative approach
Use x86 segment (CS, DS, ES) registers
Very efficient but not available on x86_64

35 / 109

Solution to Problem 2

Hardcode valid segments

Avoids need for segment registers etc.

Make code and data segments adjacent, with addresses differing in just a single bit
Data access restriction needs just a single instruction!
and 0x20ffffff, %ebx
Read or store using ebx

For indirect jumps, use:
and 0x10fffff0, %ebx
Jump using ebx

Alternative approach
Use x86 segment (CS, DS, ES) registers
Very efficient but not available on x86_64

36 / 109

Solution to Problem 2

Hardcode valid segments

Avoids need for segment registers etc.

Make code and data segments adjacent, with addresses differing in just a single bit
Data access restriction needs just a single instruction!
and 0x20ffffff, %ebx
Read or store using ebx

For indirect jumps, use:
and 0x10fffff0, %ebx
Jump using ebx

Alternative approach
Use x86 segment (CS, DS, ES) registers
Very efficient but not available on x86_64

37 / 109

Solution to Problem 2

Hardcode valid segments

Avoids need for segment registers etc.

Make code and data segments adjacent, with addresses differing in just a single bit
Data access restriction needs just a single instruction!
and 0x20ffffff, %ebx
Read or store using ebx

For indirect jumps, use:
and 0x10fffff0, %ebx
Jump using ebx

Alternative approach
Use x86 segment (CS, DS, ES) registers
Very efficient but not available on x86_64

38 / 109

Control-flow Integrity (CFI) [Abadi et al]

Motivation: Unrestricted control-flow transfers (CFTs) can subvert the IRM

Simply jump past checks, or

Jump into IRM code that updates critical IRM data

Step 1: Compile time: Compute possible indirect branch targets using static analysis

Option A: Coarse-grained analysis, e.g., list all valid function starts and return targets
Option B: Fine-grained static analysis (for a tighter policy)
for each function pointer, compute a safe superset of all possible values
restrict returns to valid direct and indirect call sites of a function.

Step 2: Runtime: check actual targets against the permissible ones

Note: No need to check direct calls, just indirect calls and (all) returns

39 / 109

Control-flow Integrity (CFI) [Abadi et al]

Motivation: Unrestricted control-flow transfers (CFTs) can subvert the IRM

Simply jump past checks, or

Jump into IRM code that updates critical IRM data

Step 1: Compile time: Compute possible indirect branch targets using static analysis

Option A: Coarse-grained analysis, e.g., list all valid function starts and return targets
Option B: Fine-grained static analysis (for a tighter policy)
for each function pointer, compute a safe superset of all possible values
restrict returns to valid direct and indirect call sites of a function.

Step 2: Runtime: check actual targets against the permissible ones

Note: No need to check direct calls, just indirect calls and (all) returns

40 / 109

Control-flow Integrity (CFI) [Abadi et al]

Motivation: Unrestricted control-flow transfers (CFTs) can subvert the IRM

Simply jump past checks, or

Jump into IRM code that updates critical IRM data

Step 1: Compile time: Compute possible indirect branch targets using static analysis

Option A: Coarse-grained analysis, e.g., list all valid function starts and return targets
Option B: Fine-grained static analysis (for a tighter policy)
for each function pointer, compute a safe superset of all possible values
restrict returns to valid direct and indirect call sites of a function.

Step 2: Runtime: check actual targets against the permissible ones

Note: No need to check direct calls, just indirect calls and (all) returns

41 / 109

CFI: Forward Edge Vs Backward Edge

Forward edge: Enforce policies on targets of indirect calls

Backward edge: Enforce policies on returns

Coarse-grained is insufficient to mitigate control-flow hijack

ROP restricted to gadgets beginning at valid return targets (“call-site gadgets”) is still too

powerful
Shadow stack can enforce the ultimate fine-grained backward edge policy
But there may be some corner cases in terms of compatibility
Recent intel processors include HW support for shadow stacks

For protecting the IRM, coarse-grained CFI is enough

For control-flow mitigation, even fine-grained CFI is relatively weak

42 / 109

Coarse-Grained CFI

Takes into account the type of control transfer, but not much additional info
available at the control transfer source (“context insensitive”)

Here is a typical policy

All calls should go to beginning of functions

All returns should go to instructions following calls

No control flow transfers can target instructions belonging to IRM

43 / 109

Coarse-Grained CFI

Main benefits
Simple
no need for any nontrivial static analysis
efficient implementation using compact read-only tables

Does not pose compatibility problems

Sufficient for protecting IRMs

44 / 109

Fine-Grained CFI

Context sensitive: Uses one or more of the following types of info from the control
transfer site

Location of the source instruction

Types of arguments to indirect function calls

Possible data flows into the variable holding the code pointer or the arguments

Benefits

Increased security by reducing the # of possible targets

45 / 109

Fine-Grained CFI

Drawbacks

Increased complexity (static analysis and enforcement)

Poses compatibility challenges with separate compilation and dynamic loading

Status

Type-based fine-grained CFI available in LLVM/GCC (but not default)

Particularly important for C++ because of widespread use of function pointers (virtual

functions)

46 / 109

CFI for Securing the IRM

Coarse-grained version is sufficient to protect IRM
Like SFI, CFI is self-protecting
CFI checks the targets of jump, so it can prevent unsafe CFTs that attempt to jump just beyond
CFI checks
In PittSFIeld, this was achieved by ensuring that the check and access operations were within
the same bundle
Jumps can only go to the beginning of a bundle, so you can’t jump between check and use

Because of this, SFI and CFI provide a foundation for securing untrusted code using inline

checks.

47 / 109

CFI for Securing the IRM

CFI can also be applied to protect against control-flow hijack attacks

Jump to injected code (easy)

Return to libc (most obvious cases are easy)

Return-oriented programming (requires considerable effort to devise ROP attacks that

defeat CFI)

But not a foolproof defense

In addition:

IRM code shouldn’t assume that untrusted code will follow ABI conventions on register

use
IRM code should use a separate stack
To prevent return-to-libc style attacks within IRM code

48 / 109

CFI Implementation Strategies

Approach 1 (proposed in the original CFI paper)

Associate a constant index with each CFT target
Verify this index before each CFT
Ideal for fine-grained approach, where static analysis has computed all potential targets of each
indirect CFT instruction

49 / 109

CFI Implementation Strategies

Issues

If locations L1 and L2 can be targets of an indirect CFT, then both locations should be

given the same index

If another CFT can go to either L2 or L3, then all three must have same index

A particular problem when you consider returns

Accuracy can be improved by using a stack, but then you run into the same compatibility

issues as stack smashing defenses that store a second copy of return address

50 / 109

CFI Instrumentation

Method (a): unsafe, since ID is embedded in callsite (could be used by attacker)

Method (b): safe, but pollute the data cache

51 / 109

Approach 1: Assumptions

UNQ: Unique IDs.

choose longer ID to prevent ensure the uniqueness

Otherwise: jump in the middle of a instruction or arbitrary place (in data or code)

NWC: Non-Writable Code.

Code could not be modified. Otherwise, verifier is meaningless, thus all the work is

meaningless . . .

NXD: Non-Executable Data

Otherwise, attacker can execute data that begins with a correct ID.

All the assumptions should hold. Otherwise, this CFI implementation can be
defeated.

52 / 109

Approach 1: Implementation

Although the enforcement technique can support some fine-grained policies, the
implementation only attempts coarse-grained enforcement

Indirect calls can only target functions whose addresses are taken in the program

Returns can only target instructions following calls

53 / 109

CFI Implementation: Simplified Approach Using Tables

Use an array V indexed by address, and holding the following values

Function_begin, Valid_return, Invalid

A call to target X is permitted if V[X] == Function_begin

A return to target X is permitted if V[X] == Valid_return

Otherwise, CFT is not permitted

Note that CFI implementations need only check indirect CFTs

Store V in read-only memory to protect it

54 / 109

Case Study I: Google Native Client (NaCl) (Motivation)

Browsers already allow Javascript code from arbitrary sites, but its performance is
inadequate for some applications

Games

Fluid dynamics (physics simulation)

Permitting native code from arbitrary sites is too dangerous

NaCl is an environment + toolchain that uses SFI/CFI to enables safe native code
execution

55 / 109

System Architecture

56 / 109

Native Client Approach

Dual sandbox for safe native code execution
SFI for inner sandbox that runs downloaded native code
Basically, PittSFIeld with two important differences
32-byte bundles rather than 16 byte bundles
x86_32 segmentation feature for limiting data access (instead of inserting checking instructions)
Native code must be generated by NaCl compiler toolchain
safety properties verified at client site at load-time

Code in the inner sandbox can call permitted functions in the (trusted) service runtime,
e.g., display/rendering functions
Service runtime is not subject to SFI

57 / 109

Native Client Approach

For added security

Both these run within a separate process disjoint from the browser

This process is sandboxed using seccomp (“outer sandbox”)

58 / 109

Safety Properties Checked At Load-time

All instructions are reachable by fall-through disassembly from starting address

All direct transfers to valid instruction boundaries

All indirect control transfer use nacljmp (pseudo) instruction

No instructions overlap 32-byte boundary

No self modifying code

code is not writable (and cannot be made writable at runtime)

Statically linked with a fix start address of text segment

to simplify and speedup sandboxing checks

The binary is padded up to the nearest page with hlt
59 / 109

Case Study II: WebAssembly (Wasm)(Motivation and Status)

Same use case as NaCl

Support safe downloaded native code in browsers

Work seamlessly with the same origin policy

“Virtualizes” untrusted code within a single process, enabling safe execution
alongside trusted code

In all major browsers

Cloud deployments, e.g., within Cloudflare CDN

Allows (more or less) arbitrary C/C++ code to be downloaded and run safely

Relies on LLVM compiler that translates to Wasm
If you are curious, you should check this out
Install and try out the emscripten package

60 / 109

Wasm Approach

Unlike NaCl’s use of intel instructions, WebAssembly uses an abstract instruction
set (wasm)

Wasm designed with safety in mind
CFI
Structured control flow (i.e., no need to check direct transfers)
Indirect calls use type-based forward edge checks
Use only four basic types for arguments
Returns use safe stack protected from memory errors

SFI is based on a simple version of memory safety
Variables whose addresses are not taken are referenced by indices and stored in safe index
spaces
Variables whose addresses are taken are stored in a linear memory section. Accesses are
bounds-checked to prevent overflow to other regions

61 / 109

Wasm Approach

Wasm translated into native code before run

Wasm compiler (but not C/C++ compiler) is responsible for secure translation

62 / 109

Limitations of NaCl/Wasm Approach

Need for compiler support

Does not work on arbitrary binaries — binaries should have been compiled using a

cooperative compiler

Otherwise, the binary will trivially fail the verification step

Question: Can we instrument arbitrary COTS binaries to insert inline security
checks?

63 / 109

Motivation for COTS Binary Instrumentation

No source code needed

Language-neutral (C, C++ or other)

Can be largely independent of OS

Ideally, would provide instruction-set independent abstractions

This ideal is far from today’s reality

Benefits
Application extension
Functionality
Security
Monitoring and debugging

64 / 109

Challenges: Disconnect between source and binary code

65 / 109

Compiled Code Example

66 / 109

Optimized Code Example

67 / 109

Optimized Code Example

68 / 109

Binary Instrumentation Approaches

Static analysis/transformation

Binaries files are analyzed/transformed
Binaries files are analyzed/transformed
No runtime performance impact
No need for runtime infrastructure

Weakness

Error-prone, problem with signed code (can work around)

Dynamic analysis/transformation

Code analyzed/transformed at runtime

Benefit: more robust/accurate
Weakness
High runtime overhead
Runtime complexity (infrastructure) 69 / 109

Phases in Static Analysis of Binaries

Disassembly

Instruction decoding/understanding

Insertion of new code

70 / 109

Disassembly

Required first step for any binary analysis or instrumentation

Principal Approaches

Linear Sweep

Recursive Traversal

71 / 109

Linear Sweep Algorithm

Used by GNU objdump

Problem

There can be data embedded within code

There may also be padding, alignment bytes
or junk

Linear sweep will incorrectly disassemble such
data

72 / 109

Linear Sweep Algorithm

Incorrectly disassembles junk (or padding) bytes

Confusion typically cascades past the padding, causing subsequent instructions to
be missed or misinterpreted.

73 / 109

Self Repairing Disassembly

Property of a disassembler where it re-synchronizes with the actual instruction
stream

Makes detecting disassembly errors difficult

216 of 256 opcodes are valid

Observation: re-synchronization happens quickly, within 2-3 instructions beyond
point of error.

74 / 109

Self Repairing Disassembly (example)

75 / 109

Recursive Traversal

Approach: Takes into account the control
flow behavior of the program

Weakness: For indirect jumps, jump target
cannot be determined statically, so no re-
cursive traversal of the target can be initi-
ated

Some error cases not handled, e.g., jump to
the middle of an instruction

76 / 109

Obfuscation against Static Disassembly

Conditional jumps where the condition is always true (or false)

Use an opaque predicate to hide this

Use an opaque predicate to hide this

Execution continues in exception handler

Embedding data in the midst of code

With indirect jumps that make it impossible to distinguish between code and data

77 / 109

Code Transformation Challenges

Code transformations change its size

Consider, for example, the addition of CFI or SFI checks

This means code locations are changed

Control-flow targets will all be wrong, and need to be “fixed up”

As usual, direct transfers are easier to handle
Their locations can be determined at transformation time
It is nontrivial effort in a binary instrumentation tool to fix them up, but doable

78 / 109

Code Transformation: Main Challenge

Key Problem: Indirect control transfers
Code pointers look like (integer) data values
For instance, “fptr = &f” will look like “mov eax, 0x080010b8”

Finding the new location corresponding to 0x080010b8 isn’t hard

No different from the handling of direct control transfer targets

But what do we with the constant itself?

If 0x080010b8 is a reference to code address, then it should be replaced with the new

location of the code residing at this address

If it is data, it should be left alone
How do we decide?
If we make a mistake, the program won’t work correctly

79 / 109

Code Transformation: Main Challenge

And what if it is both?
Used as code address in some contexts, data in other contexts
Examples:
code that examines itself
hash table of code pointers

Note: Some of these code addresses may be stored in read-only data

const void (fptr)(int) = &f;

80 / 109

Dynamic Binary Translation

81 / 109

Just-in-time Disassembly

Key question: If disassembly is hard because we don’t know what is code, why not
wait until runtime?

Key point: Code knows itself

Valid code will only jump to valid locations
So, delay disassembly of a code snippets until program jumps to them
Code is transformed one basic block at a time
Note: It is trivial to reliably disassemble a single basic block, which is straight-line code with no
control-transfers in the middle

Even obfuscated code can be handled
No way to “hide” code: it will be found before execution

82 / 109

Just-in-time Pointer Fixups

Just as we rely on code to reveal itself, can we wait for code pointers to reveal
themselves??

Yes
If a register is used as a jump target, then the content of the register is a code pointer
Fixup code pointers just before they are used
Called (runtime or dynamic) address translation

Otherwise it is a data pointer or integer
Left alone — this means that we don’t change any of the constants in the original code or data

83 / 109

Dynamic Translation: Can it Work?

May seem like a road to nowhere

Likely to be incredibly slow?

Not necessarily:

Just as SFI can be competitive with hardware memory protection, DynamoRIO showed

that runtime disassembly and instrumentation can be practical

84 / 109

DynamoRIO

All code is discovered at runtime, analyzed at runtime, and then rewritten
(“translated”) at runtime

Code is transformed one basic block at a time

Only the first execution of a basic block requires analysis and rewriting.

Subsequent executions can use the same rewritten block.

Control transfers occur in the last instruction of a basic block.
These instructions need to instrumented
perform address translation
if the target code is not already instrumented, disassemble and instrument it

Non-control-transfer instructions are executed natively

85 / 109

RIO System Infrastructure

86 / 109

DynamoRIO Operation

Instrumented programs run in two contexts
DynamoRio context (above the redline, representing DynamoRIO runtime). Responsible
for detecting the execution of new basic blocks (BBs)
These BBs are disassembled, analyzed and then transformed: just-in-time
disassembly/rewriting, just before first execution
DynamoRIO provides an API for instrumentation: one can use this API to implement custom
instrumentation, e.g., count number of BBs executed, number of memory accesses, etc.

Application context (below the red line, application code executes natively)
Non-control-transfer instructions need no special treatment
Control-transfers need to be checked
If they are direct transfers, then we check if the target has already been instrumented (and
hence is in the code cache). If so, directly jump there. If not, switch into DynamoRIO context to
perform instrumentation.
Indirect transfers need to go through a translation table

87 / 109

Address Translation

Implemented using a translation table

A hash table jmptab maps the original address of a BB to its new address in the code

cache (corresponding to the location of the instrumented version of code)

A hash table jmptab maps the original address of a BB to its new address in the code

cache (corresponding to the location of the instrumented version of code)

At runtime, every indirect CFT to a location l is translated into jmptab[l]

Each indirect jump requires a hash table lookup, and has a performance cost

Fortunately, common cases (e.g., returns and repeated calls to same target) can be

optimized

If the target is not in jmptab, then control transferred to DynamoRIO runtime.

88 / 109

DynamoRIO Context Switch

Preserve the following conditions

All GPRs (8 in x86-32)

Eflags
Some system state. Eg: error code
DynamoRIO uses one slot in TLS (thread local storage) to store error code (errno) of the
application.
DynamoRIO will use some library routines that may modifiy the state as error code, so it is
necessary to preserve application’s errno.

89 / 109

DynamoRIO Context Switch

Assumes that the BBs at 0x40106f and the
immediately following BBs are not in the
code cache. In this case, control has to be
transferred to DynamoRIO runtime when
execution reaches the end of this BB. Before
context switch, all of the application state
(in particular, registers) need to be saved.

90 / 109

Transparency and OS Issues

Transparency: application cannot tell that it is running inside DynamoRIO

Why does DynamoRIO need transparency?

Ensures that application behaves exactly the same way as before: it can’t even tell the

difference.

So, it can’t evade DynamoRIO, nor can it behave differently.

Transparency Issues

Library transparency

Thread transparency

Stack transparency

Address space transparency

Context Translation

Performance transparency (not preserved) 91 / 109

Library Transparency

Issues when both DynamoRIO and application enters the same non-re-entrant
library routine

System state might be broken (errno)

Library routine may fail to work (malloc)

Solution:

Use system call on both windows and Linux

Use stateless library routines

Implement own memory (de)allocation routines.

92 / 109

Thread Transparency

DynamoRIO does not create its own thread

Why?

violate transparency when application that monitors all reads in a process

Performance issue when threads double

What about one DynamoRIO thread?

Still violate transparency

Performance degrades when multiple threads switch into DynamoRIO mode

Therefore, use app thread with new context

93 / 109

Stack Transparency

DynamoRIO does not ‘touch” application stack.

Some applications may access data beyond the top of stack. Eg: Microsoft office
Usual stack conventions may not be followed by hand-crafted assembly
use of esp as a GPR

Ability to read return address off stack and use in computing code location (or modify it)
Used in PIC (position-independent code)

Solution:

Use a private stack for each thread in DynamoRIO mode

Do not modify content of original stack

94 / 109

Address Space Transparency

DynamoRIO should not “leak” information about itself.
On Windows, intercept
NtQueryVirtualMemory() that traverse memory regions
GetModuleFileName() (library call) to check if library is present

On Linux, intercept
mmap(). etc.

More measures (security)

Mark DynamoRIO code as NX, when in code cache

95 / 109

Context Translation

When exception occurs, the faulting place should be the original code address.

Intercept user signal handler

Check the address map, find the original address

Modify the signal stack and go to user signal handler

96 / 109

Transparency and OS Issues

Operating System Issues

Kernel Mediated Control Flow

System Call Handling

Thread synchronization

97 / 109

Kernel Mediated Control Flow

Signal Handling

DynamoRIO routine will get control first
Signals will be queued and delayed, except urgent signals
Eg: SIGSEGV

When signal arrives, if the thread is at
Code cache:
Unlink the current basic block, go back to DynamoRIO
If bb contains syscall, jump to exit stub before syscall.
Why? Bound timing of signal handler, since syscall is expensive.

DynamoRIO code:
Delay signal until reaching a safe place
Emulate kernel behavior

98 / 109

System Call Handling

OIf syscall number is not statically known or on DynamoRIOs list

Insert pre-syscall & post-syscall routines around the instruction

Uninterested syscall: left unchanged. However:

For signal handling, app must LEAVE code cache QUICKLY (for timing issue)

99 / 109

Program Shepherding: An IRM based on DynamoRIO

Introduces in-line checks to defend against common exploits

Buffer overflow attacks

Format string attacks

Injection of malicious code

Re-use of existing code (existing code attacks)

Sandboxing

100 / 109

Program Shepherding Performance under Linux

gcc is slow since it consists of many short runs with little code re-use 101 / 109

Program Shepherding Performance under Windows

Windows is much less efficient at changing privileges on memory pages than Linux102 / 109

Caveat about performance

DBT performance measurements usually based very long-running CPU-intensive
benchmarks

These applications represent the “best case scenario” for DBT systems

Rewrite once, execute for a long time

Real-world performance can be bad

10x to 40x slowdown in the worst case

Example DBT systems

DynamoRIO, Pin, Valgrind, . . .

103 / 109

Caveat about performance (Continued)

But its exceptional level of compatibility with arbitrary binary code can still be
compelling for

CPU-intensive applications with tight loops

Coarse-granularity instrumentation (i.e., very small fraction of instructions instrumented)

Debugging applications

104 / 109

Other Dynamic Transformation Tools

Pin

better supported now than DynamoRIO

better engineered for Linux

Strata

Valgrind

Most popular open-source tool for finding memory errors and many other applications

Qemu

Can support whole system emulation

105 / 109

DynamoRIO vs Pin

Architecture dependency

Pin tools: written in c/c++

DynamoRIO: written in x86 assembly

DynamoRIO’s tools allow users to operate at a lower level

Have more control over efficiency, but programming can be hard, and architecture

dependent.

106 / 109

BBCount Pin Tool

For more information, including tutorials and examples, see
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-
tool

107 / 109

BBCount DynamoRIO Tool

108 / 109

Applicability of Static Vs Dynamic Techniques

Some techniques require static instrumentation
Any technique that uses static analysis to compute a property and then enforces it at
runtime
CFI, some aspects of bounds-checking, some types of randomizations, . . .

Others can use dynamic instrumentation

Stackguard, SFI (but may be limited if CFI can’t be assured)

And yet others that cannot use static instrumentation

Obfuscated code, mainly malware

109 / 109

