
Intro Disassembly Code transformation Dynamic rewriting Static rewriting

Binary Instrumentation
(and Reverse Engineering)

Fall 2024

R. Sekar

1 / 48



Intro Disassembly Code transformation Dynamic rewriting Static rewriting Motivation Challenges Optimized code Approaches Key steps

Limitations of NaCl/Wasm Approach

Need for compiler support

Does not work on arbitrary binaries — binaries should have been compiled using a

cooperative compiler

Otherwise, the binary will trivially fail the verification step

Question: Can we instrument arbitrary COTS binaries to insert inline security
checks?

2 / 48



Intro Disassembly Code transformation Dynamic rewriting Static rewriting Motivation Challenges Optimized code Approaches Key steps

Motivation for COTS Binary Instrumentation

No source code needed

Language-neutral (C, C++ or other)

Can be largely independent of OS

Ideally, would provide instruction-set independent abstractions

This ideal is far from today’s reality

Benefits
Application extension
Functionality
Security
Monitoring and debugging

3 / 48



Intro Disassembly Code transformation Dynamic rewriting Static rewriting Motivation Challenges Optimized code Approaches Key steps

Challenges: Disconnect between source and binary code

4 / 48



Intro Disassembly Code transformation Dynamic rewriting Static rewriting Motivation Challenges Optimized code Approaches Key steps

Example: A C-function and its compiled code

5 / 48



Intro Disassembly Code transformation Dynamic rewriting Static rewriting Motivation Challenges Optimized code Approaches Key steps

Challenges in Optimized Code I

6 / 48



Intro Disassembly Code transformation Dynamic rewriting Static rewriting Motivation Challenges Optimized code Approaches Key steps

Challenges in Optimized Code II

7 / 48



Intro Disassembly Code transformation Dynamic rewriting Static rewriting Motivation Challenges Optimized code Approaches Key steps

Binary Instrumentation Approaches

Static analysis/transformation
Strengths
No runtime performance impact
No need for runtime infrastructure

Weakness
Implementation challenges due to disassembly difficulty

Dynamic analysis/transformation

Benefit: Side-steps disassembly difficulties
Weakness
High runtime overhead
Runtime complexity (infrastructure)

8 / 48



Intro Disassembly Code transformation Dynamic rewriting Static rewriting Motivation Challenges Optimized code Approaches Key steps

Phases in Static Analysis of Binaries

Disassembly

Instruction decoding/understanding

Insertion of new code

9 / 48



Intro Disassembly Code transformation Dynamic rewriting Static rewriting Linear sweep Recursive traversal Obfuscation

Disassembly

Required first step for any binary analysis or instrumentation

Principal Approaches

Linear sweep

Recursive traversal

10 / 48



Intro Disassembly Code transformation Dynamic rewriting Static rewriting Linear sweep Recursive traversal Obfuscation

Linear Sweep Algorithm

Used by GNU objdump

Problem

There can be data embedded within code

There may also be padding, alignment bytes
or junk

Linear sweep will incorrectly disassemble such
data

11 / 48



Intro Disassembly Code transformation Dynamic rewriting Static rewriting Linear sweep Recursive traversal Obfuscation

Linear Sweep Algorithm

Incorrectly disassembles junk (or padding) bytes

Confusion typically cascades past the padding, causing subsequent instructions to
be missed or misinterpreted.

Strengths: Simple, does not miss code (especially for well-behaved compilers)
12 / 48



Intro Disassembly Code transformation Dynamic rewriting Static rewriting Linear sweep Recursive traversal Obfuscation

Self Repairing Disassembly

Property of a disassembler where it re-synchronizes with the actual instruction
stream

Makes detecting disassembly errors difficult

216 of 256 opcodes are valid

Observation: re-synchronization happens quickly, within 2-3 instructions beyond
point of error.

13 / 48



Intro Disassembly Code transformation Dynamic rewriting Static rewriting Linear sweep Recursive traversal Obfuscation

Self Repairing Disassembly (example)

14 / 48



Intro Disassembly Code transformation Dynamic rewriting Static rewriting Linear sweep Recursive traversal Obfuscation

Recursive Traversal

Approach: Takes into account the
control flow behavior of the program

Strength: Not confused by embedded
data

Weakness: For indirect control transfers,
the target cannot be determined statically.

Code reached only indirectly will remain

unrecognized

15 / 48



Intro Disassembly Code transformation Dynamic rewriting Static rewriting Linear sweep Recursive traversal Obfuscation

Obfuscation against Static Disassembly

Conditional jumps where the condition is always true (or false)

Use an opaque predicate to hide this

Instructions that fault

Execution continues in signal handler

Embedding data in the midst of code

With indirect jumps that make it impossible to distinguish between code and data

16 / 48



Intro Disassembly Code transformation Dynamic rewriting Static rewriting Challenges

Code Transformation Challenges

Code transformations change its size

Consider, for example, the addition of CFI or SFI checks

This means code locations are changed

Control-flow targets will all be wrong, and need to be “fixed up”

As usual, direct transfers are easier to handle
Their locations can be determined at transformation time
It is nontrivial effort in a binary instrumentation tool to fix them up, but doable

17 / 48



Intro Disassembly Code transformation Dynamic rewriting Static rewriting Challenges

Code Transformation: Main Challenge

Key Problem: Indirect control transfers
Code pointers look like (integer) data values!
For instance, “fptr = &f” will look like “mov eax, 0x080010b8”

Finding the new location corresponding to 0x080010b8 isn’t hard

No different from the handling of direct control transfer targets

But what do we with the constant itself?

If 0x080010b8 is a reference to code address, then it should be replaced with the new

location of the code residing at this address

If it is data, it should be left alone
How do we decide?
If we make a mistake, the program won’t work correctly!

18 / 48



Intro Disassembly Code transformation Dynamic rewriting Static rewriting Challenges

Code Transformation: Main Challenge

And what if it is both?
Used as code address in some contexts, data in other contexts
static data embedded within a function may be accessed using an offset from the location of the
function
self-examining code

19 / 48



Intro Disassembly Code transformation Dynamic rewriting Static rewriting Disassembly Address translation DynamoRIO Pin

Dynamic Binary Translation

20 / 48



Intro Disassembly Code transformation Dynamic rewriting Static rewriting Disassembly Address translation DynamoRIO Pin

Just-in-time Disassembly

Key question: If disassembly is hard because we don’t know what is code, why not
wait until runtime?

Key point: Code knows itself!

Valid code will only jump to valid locations

So, delay disassembly of a code snippets until program jumps to them!

Code is transformed one basic block at a time

Note: It is trivial to reliably disassemble a single basic block, which is straight-line code

Even obfuscated code can be handled

No way to “hide” code: it will be found before execution!

21 / 48



Intro Disassembly Code transformation Dynamic rewriting Static rewriting Disassembly Address translation DynamoRIO Pin

Just-in-time Pointer Fixups

Just as we rely on code to reveal itself, can we wait for code pointers to reveal
themselves??

Yes! If a register is used as a jump target, then its content must be a code pointer

Fixup code pointers just before they are used

Called (runtime or dynamic) address translation

This means that we don’t change any of the constants in the original code or data.

Guaranteed not to break code.

22 / 48



Intro Disassembly Code transformation Dynamic rewriting Static rewriting Disassembly Address translation DynamoRIO Pin

Dynamic Translation: Can it Work?

May seem like a road to nowhere

Likely to be incredibly slow?

Not necessarily:

Just as SFI can be competitive with hardware memory protection, DynamoRIO showed

that runtime disassembly and instrumentation can be practical!

23 / 48



Intro Disassembly Code transformation Dynamic rewriting Static rewriting Disassembly Address translation DynamoRIO Pin

DynamoRIO

All code is discovered at runtime, analyzed at runtime, and then rewritten
(“translated”) at runtime

Code is transformed one basic block at a time

Only the first execution of a basic block requires analysis and rewriting.

Subsequent executions can use the same rewritten block.

Control transfers occur in the last instruction of a basic block.
These instructions need to instrumented
perform address translation
if the target code is not already instrumented, disassemble and instrument it

Non-control-transfer instructions can be executed natively

24 / 48



Intro Disassembly Code transformation Dynamic rewriting Static rewriting Disassembly Address translation DynamoRIO Pin

RIO System Infrastructure

25 / 48



Intro Disassembly Code transformation Dynamic rewriting Static rewriting Disassembly Address translation DynamoRIO Pin

DynamoRIO Operation

Instrumented programs run in two contexts
DynamoRio context (above the redline, representing DynamoRIO runtime). Responsible
for detecting the execution of new basic blocks (BBs)
These BBs are disassembled, analyzed and then transformed: just-in-time
disassembly/rewriting, just before first execution
DynamoRIO provides an API for instrumentation: one can use this API to implement custom
instrumentation, e.g., count number of BBs executed, number of memory accesses, etc.

Application context (below the red line, application code executes natively)
Non-control-transfer instructions need no special treatment
Control-transfers need to be checked
If they are direct transfers, then we check if the target has already been instrumented (and
hence is in the code cache). If so, directly jump there. If not, switch into DynamoRIO context to
perform instrumentation.
Indirect transfers need to go through a translation table

26 / 48



Intro Disassembly Code transformation Dynamic rewriting Static rewriting Disassembly Address translation DynamoRIO Pin

Address Translation

Implemented using a translation table

A hash table jmptab maps the original address of a BB to its new address in the code

cache (corresponding to the location of the instrumented version of code)

A hash table jmptab maps the original address of a BB to its new address in the code

cache (corresponding to the location of the instrumented version of code)

At runtime, every indirect CFT to a location l is translated into jmptab[l]

Each indirect jump requires a hash table lookup, and has a performance cost

Fortunately, common cases (e.g., returns and repeated calls to same target) can be

optimized

If the target is not in jmptab, then control transferred to DynamoRIO runtime.

27 / 48



Intro Disassembly Code transformation Dynamic rewriting Static rewriting Disassembly Address translation DynamoRIO Pin

Transparency Issues

Transparency: application cannot tell that it is running inside DynamoRIO

Why does DynamoRIO need transparency?

Ensures that application behaves exactly the same way as before: it can’t even tell the

difference.

So, it can’t evade DynamoRIO, nor can it behave differently.

Transparency Issues

Library transparency: DynamoRIO’s use of libraries shouldn’t be visible to the application

Thread transparency: DynamoRIO does not create its own threads

Stack transparency: DynamoRIO does not touch the application stack

Context Translation: On exceptions, faulting address shouldn’t be the translated address.

Address space transparency: DynamoRIO should not leak its location

28 / 48



Intro Disassembly Code transformation Dynamic rewriting Static rewriting Disassembly Address translation DynamoRIO Pin

Program Shepherding: An IRM based on DynamoRIO

Introduces in-line checks to defend against common exploits

Buffer overflow attacks

Format string attacks

Injection of malicious code

Re-use of existing code (existing code attacks)

Sandboxing

29 / 48



Intro Disassembly Code transformation Dynamic rewriting Static rewriting Disassembly Address translation DynamoRIO Pin

Program Shepherding Performance under Linux

gcc is slow since it consists of many short runs with little code re-use
30 / 48



Intro Disassembly Code transformation Dynamic rewriting Static rewriting Disassembly Address translation DynamoRIO Pin

Program Shepherding Performance under Windows

Windows is much less efficient at changing privileges on memory pages than Linux31 / 48



Intro Disassembly Code transformation Dynamic rewriting Static rewriting Disassembly Address translation DynamoRIO Pin

Caveat about performance

DBT performance measurements usually based very long-running CPU-intensive
benchmarks

These applications represent the “best case scenario” for DBT systems

Rewrite once, execute for a long time

Real-world performance can be bad

10x to 40x slowdown in the worst case

Example DBT systems

DynamoRIO, Pin, Valgrind, . . .

32 / 48



Intro Disassembly Code transformation Dynamic rewriting Static rewriting Disassembly Address translation DynamoRIO Pin

Caveat about performance (Continued)

But its exceptional level of compatibility with arbitrary binary code can still be
compelling for

CPU-intensive applications with tight loops

Coarse-granularity instrumentation (i.e., very small fraction of instructions instrumented)

Debugging applications

33 / 48



Intro Disassembly Code transformation Dynamic rewriting Static rewriting Disassembly Address translation DynamoRIO Pin

Other Dynamic Transformation Tools

Pin

better supported now than DynamoRIO

better engineered for Linux

Strata

Valgrind

Most popular open-source tool for finding memory errors and many other applications

Qemu

Can support whole system emulation

34 / 48



Intro Disassembly Code transformation Dynamic rewriting Static rewriting Disassembly Address translation DynamoRIO Pin

DynamoRIO vs Pin

Architecture dependency

Pin tools: written in c/c++

DynamoRIO: written in x86 assembly

DynamoRIO’s tools allow users to operate at a lower level

Have more control over efficiency, but programming can be hard, and architecture

dependent.

35 / 48



Intro Disassembly Code transformation Dynamic rewriting Static rewriting Disassembly Address translation DynamoRIO Pin

BBCount Pin Tool

For more information, including tutorials and examples, see
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-
tool

36 / 48



Intro Disassembly Code transformation Dynamic rewriting Static rewriting Disassembly Address translation DynamoRIO Pin

BBCount DynamoRIO Tool

37 / 48



Intro Disassembly Code transformation Dynamic rewriting Static rewriting Motivation Challenges Disassembly Code transformation Improvements Final note

Static Binary Rewriting

38 / 48



Intro Disassembly Code transformation Dynamic rewriting Static rewriting Motivation Challenges Disassembly Code transformation Improvements Final note

Drawbacks of Dynamic Binary Rewriting

High overhead

The need for a large and complex runtime system

Often, leaves code cache to be writable to reduce overhead

Even otherwise, a large runtime footprint means a large attack surface.

39 / 48



Intro Disassembly Code transformation Dynamic rewriting Static rewriting Motivation Challenges Disassembly Code transformation Improvements Final note

Static Binary Instrumentation: Challenges

Robust static disassembly

Including low-level libraries and hand-written assembly

Static instrumentation without breaking complex code

Fixing up indirect control transfers

Fixing up direct transfers

Tolerating disassembly errors

Secure instrumentation

Ensure instrumentation of all code

Ensure that added security checks cannot be bypassed

40 / 48



Intro Disassembly Code transformation Dynamic rewriting Static rewriting Motivation Challenges Disassembly Code transformation Improvements Final note

Static Disassembly: BinCFI approach

Take advantage of the fact that the presence of data in code is rare

Use linear disassembly, followed by error detection and correction

Error detection is based on control flow consistency

Tolerate disassembly errors:

Ensure that if data is disassembled as code, that does not cause misbehavior of

instrumented code

41 / 48



Intro Disassembly Code transformation Dynamic rewriting Static rewriting Motivation Challenges Disassembly Code transformation Improvements Final note

Pointer Fixup

Direct control transfers: Instrument assembly code

“Reassemblable disassembly:” Disassembled code can be reassembled into binary with

full preservation of behavior

Use labels so that the assembler can figure out actual instruction offsets etc.

Indirect control transfers:
Static analysis to discover all possible code pointers
Conservative approach: may include non-code pointers, but cannot leave out legitimate ones

Runtime address translation to translate any of these
Provides most transparency benefits of dynamic translation techniques

42 / 48



Intro Disassembly Code transformation Dynamic rewriting Static rewriting Motivation Challenges Disassembly Code transformation Improvements Final note

Safe and Secure Instrumentation

Make a second copy of code and instrument it

It is OK if you disassemble and instrument data, as the original data is left in place

Control-flow integrity ensures that only disassembled code is instrumented

If some code is somehow missed, it leads to failure rather than security violation

CFI also protects all the added instrumentation

CFI disallows “jumping past instrumentation”

43 / 48



Intro Disassembly Code transformation Dynamic rewriting Static rewriting Motivation Challenges Disassembly Code transformation Improvements Final note

BinCFI Results

Supports large and low-level COTS (“stripped”) binaries
glibc, Firefox, Adobe Reader, gimp, etc.
Over 300MB of (intel 32-bit) binaries in total.

Eliminates 99% of control-flow targets and 93% of possible gadgets

Remaining gadgets provide very limited capability

Good performance while providing full transparency

About 10% overhead on CPU-intensive C-benchmarks, somewhat higher for C++

programs

44 / 48



Intro Disassembly Code transformation Dynamic rewriting Static rewriting Motivation Challenges Disassembly Code transformation Improvements Final note

Static Instrumentation: Further Performance Improvements...

Most of BinCFI’s overhead comes from runtime code pointer translation

Question: Can we avoid this runtime translation?

Requires code pointers to be translated at instrumentation time

Yes: For 64-bit position-independent binaries

Almost all code on modern Linux distributions falls in this category
Pointers are all explicitly identified in these binaries
but there is no information on which of these point to code

Approach: Develop static analysis to distinguish code and data pointers

Relies on detailed instruction semantics

45 / 48



Intro Disassembly Code transformation Dynamic rewriting Static rewriting Motivation Challenges Disassembly Code transformation Improvements Final note

Static Instrumentation: Further Performance Improvements...

Most of BinCFI’s overhead comes from runtime code pointer translation

Question: Can we avoid this runtime translation?

Requires code pointers to be translated at instrumentation time

Yes: For 64-bit position-independent binaries

Almost all code on modern Linux distributions falls in this category
Pointers are all explicitly identified in these binaries
but there is no information on which of these point to code

Approach: Develop static analysis to distinguish code and data pointers

Relies on detailed instruction semantics

46 / 48



Intro Disassembly Code transformation Dynamic rewriting Static rewriting Motivation Challenges Disassembly Code transformation Improvements Final note

Static Instrumentation: Further Performance Improvements...

Most of BinCFI’s overhead comes from runtime code pointer translation

Question: Can we avoid this runtime translation?

Requires code pointers to be translated at instrumentation time

Yes: For 64-bit position-independent binaries

Almost all code on modern Linux distributions falls in this category
Pointers are all explicitly identified in these binaries
but there is no information on which of these point to code

Approach: Develop static analysis to distinguish code and data pointers

Relies on detailed instruction semantics

47 / 48



Intro Disassembly Code transformation Dynamic rewriting Static rewriting Motivation Challenges Disassembly Code transformation Improvements Final note

Applicability of Static Vs Dynamic Techniques

Some techniques require static instrumentation
Any technique that uses static analysis to compute a property and then enforces it at
runtime
CFI, some aspects of bounds-checking, some types of randomizations, . . .

Others can use dynamic instrumentation

Stackguard, SFI (but may be limited if CFI can’t be assured)

And yet others that cannot use static instrumentation

Obfuscated code, mainly malware

48 / 48


	Intro
	Motivation
	Challenges
	Optimized code
	Approaches
	Key steps

	Disassembly
	Linear sweep
	Recursive traversal
	Obfuscation

	Code transformation
	Challenges

	Dynamic rewriting
	Disassembly
	Address translation
	DynamoRIO
	Pin

	Static rewriting
	Motivation
	Challenges
	Disassembly
	Code transformation
	Improvements
	Final note


