Authentication

Fall 2024

R. Sekar

History of Password Authentication

Identity and Authentication

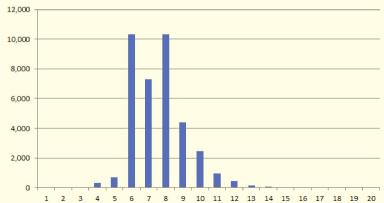
- Access rights are granted on the basis of identity (principal)
- Authentication is to ensure that the principal is who it claims to be. It covers:
 - User Authentication
 - Main focus in this lecture
 - Primary problem within a single administrative domain where "the system" is trusted, but users are not
 - Authentication between systems
 - Primarily in the context of networked system, i.e., multiple domains with limited trust between them

Evolution of Password Schemes

- Early systems (1960-) stored plaintext passwords
 - Frustrated by hackers that were able to get to this file
- UNIX (1970s): store only one-way hashes of passwords
 - UNIX originally used DES, then shifted to MD5
- Use of salt to thwart offline attacks
 - a different random value used as input for hashing for each user
 - salt stored together with hashed password

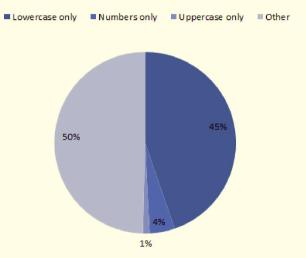
Confidentiality of stored passwords

- Difficult to protect stored passwords
 - Accidental disclosures (temporary copies left behind, accidental misconfiguration of file permissions)
 - Motivated attacks on a high-value target
 - Illicit copies made by system staff
 - Stealing from backup tapes
- Solution
 - Don't store plaintext passwords
 - Original proposal: store $DES_{Password}^{25}(0)$
 - Subsequently, use hashes (MD5crypt, SHA-512crypt)
 - For authentication, apply same process to user-supplied password, compare with stored value (in /etc/shadow)

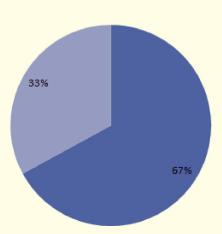

Password weaknesses [Morris, Thompson 79]

• In a collection of 3,289 passwords:

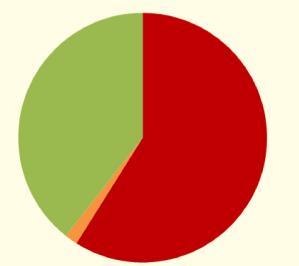
- 15 were a single ASCII character
- 72 were strings of two ASCII characters
- 464 were strings of three ASCII characters
- 477 were strings of four alphanumerics
- 706 were five letters, all upper-case or all lower-case
- 605 were six letters, all lower-case
- 492 in various common dictionaries
- 86% of the 3,289 passwords were thus easy to crack
 - Cracked in seconds in some cases, and 100 hours in the best case on computers of the 70s.


Use of weak passwords is largely unchanged

• There are almost no passwords of length < 4


Length

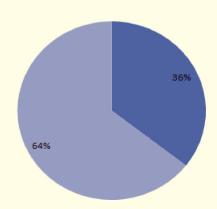
Character type exclusivity



Password reuse across Sony and Gawker

Identical password Unique password

Sony passwords reused at Yahoo! Voices

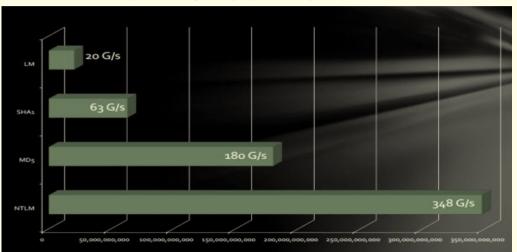


Reused (case sensitive)
 Reused (different case)
 Unique

Prevalence of password in dictionaries

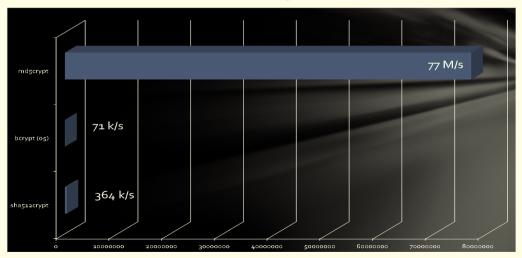
In password dictionary
Not in password dictionary

- Easy-to-remember passwords rely on patterns or algorithms
 - that can be used to generate a candidate list
 - Dictionary can also be built from passwords stolen from other sites


Attacks on Passwords

Categories of Attacks on Passwords

- Offline attacks: attacker has access to hashed passwords
 - Can make an unbounded number of attempts at guessing the password
 - guess, hash, compare with the hashed password
 - Brute-force attack
 - Guess password, hash, compare
 - Dictionary attack
 - Use an intelligent algorithm to enumerate passwords
 - In early days, this meant English dictionary or phone books
- Online attacks: no access to hashed passwords, so each attack attempt requires entering the password at the password dialog
 - Systems limit number of attempts, so online attacks need to succeed within a few attempts.


Password weaknesses [Gosney 12]

• Brute-force, dictionary attacks greatly speeded by GPUs

Password weaknesses [Gosney 12]

• Even GPUs are not too fast for some hash algorithms

Defending against Offline attacks

Slow down offline attacks

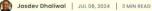
- Make hash algorithm slower
- Make attacker repeat work for every user ("salt")
 - Each user assigned a random salt value (which is stored in the password file)
 - Original proposal: DES²⁵ Password_{||}salt⁽⁰⁾
 - Eliminates attacks that hash once, compare against passwords of all users

• Protect password file

- /etc/passwd is world-readable, so easy to steal
- Modern UNIX versions separate password hashes (and salt) into an /etc/shadow that is readable only by root

Online Attacks

- Guessing is typically unsuccessful except for the most easily guessed passwords.
 - Delays: remove login prompt after 3 failed attempts.
 - Increase delay (e.g., double) after additional failures.


Lock outs: prevent user from logging in after *N* failures. CAPTCHAs: make user solve CAPTCHA after *N* failures.

- Password stealing is the most viable approach for succeeding in online attacks.
 - Phishing (fake password dialogs)
 - "Password dumps" passwords stolen through cyber attacks and revealed afterwards
 - Network sniffers.
 - Keyloggers and other malware.
 - Password reset.

Types Offline attacks Online attacks Phishing Non-solutions Summary

RockYou2024: Unpacking the Largest Password Leak in History

This Fourth of July brought fireworks in the form of a digital security breach, one that has been recorded as the most significant password leak in history. Dubbed RockYou2024, this colossal data dump was unveiled by a user named "ObamaCare" on a prominent hacking forum, revealing a staggering 9.9 billion unique passwords in plain text.

Meta fined \$102 million for storing passwords in plain text

The Irish Data Protection Commission found that the company violated several GDPR rules.

Mariella Moon **Contributing Reporter** Fri. Sep 27, 2024, 7:00 AM EDT 2 min read

panida wijitpanya yia Cotty Imagos

Password Theft and Trusted Path

- How to make sure that your password is not stolen when it is used
 - Key challenge today due to spyware, spoofing, phishing, etc.
- Trusted path: a secure way for a user to communicate with the subsystem performing user authentication
 - Ctrl-Alt-Del on Windows
 - Provided that the OS is not infected ...
 - And the BIOS is not infected ...
 - And the hardware is not malicious ...

Phishing and Trusted Path

- Phishing attacks typically involve tricking a user into revealing their passwords
 - Attacker sets up a web site that looks like attack target, e.g., a bank web site
 - Attacker steals the password when the user tries to log into the fake web site

Phishing Defenses

- Two-stage login with personalized prompts
 - Security skins, site-keys (personalized images)
 - Requires user vigilance
 - Phisher may say "system failure, so we can't retrieve your image at this time"
 - Small "key space" for possible images
 - Security questions
 - Pain to use
 - Small key space
 - Answers easily guessed, especially by family/friends

Phishing Defenses

- SSL provides strong defense (completes trusted path)
 - Password managers are not fooled by typo squatters!
 - What can still go wrong?
 - Self-signed certificates But today's browsers provide stronger warning (or silently suppress) sites that change a CA-provided certificate into a self-signed one.
 - Social engineering ("our SSL servers are down today")
 - Compromise of Certification Authorities
- Two-factor authentication

Password weaknesses: Non-solutions

CAPTCHAs to defeat online attacks

- Increasingly, becoming too hard for humans!
- Security questions
 - Often, answers are available on social media
- Password rules
 - A nightmare for users
 - Questionable increase in password strength
- Alternative password schemes
 - Face or picture recognition

Types Offline attacks Online attacks Phishing Non-solutions Summary

YOUR PASSWORD HAS EXPIRED ----

NIST proposes barring some of the most nonsensical password rules

Proposed guidelines aim to inject badly needed common sense into password hygiene.

DAN GOODIN - 9/25/2024, 6:39 PM

Summary of Password attacks

• Offline

- Brute-force and dictionary attacks greatly speeded up by GPUs
- Dictionary attacks speed up the search, especially if they are based on passwords revealed in data breaches

• Online and offline:

- Use of weak passwords
- Keyloggers (and formerly, network sniffers)
- Social engineering (phishing)
- Password reset mechanisms

Authentication Over Networks

Approach 1: Server-side authentication of plaintext passwords

- Don't trust client computer; server performs this task
- Used by rsh/rlogin/rexec, telnet, ftp, etc.
- Bad option unless you (a) physically secure the network, and (b) trust all clients on the network
 - Otherwise, easy password compromise by network sniffers

Approach 2: Host-based authentication

- Trust client host to perform user authentication
- Used in NFS, also rsh/rlogin/rexec with /etc/hosts.equiv
- Not a great option today, as users often have admin privileges on client machines
 - With so much user control (and high risk of mismanagement), it is bad practice to trust these machines

Approach 3: Transmit only encrypted passwords

- Encrypt user password using a client host specific secret
 - Server uses client secret to decrypt and verify user password
 - Unfortunately, encrypted password is as good as an unencrypted one!
 - A rogue client can sniff and reuse this encrypted password to log into the server, without ever needing to decrypt it
- Need solutions against such replay attacks
 - Challenge-response protocols
 - One-time passwords (theft no longer a problem)

One-time passwords (Early solution to network sniffing)

- Start with a password P to generate a sequence of one-time passwords O_1, \ldots, O_N
 - Requirements: O_k should not provide any info about $O_{k+1}, O_{k+2}, \ldots, O_N$
- Solution: $O_k = H^{N-k}(P)$, where *H* is a secure one-way hash function
- Protocol:
 - System \rightarrow User: *i*
 - User \rightarrow System: $H^{N-i}(P)$
 - Even if user doesn't respond, use i + 1 as next challenge
- Note: system need not store *P*, just the previous OTP
 - check that *H*(current OTP) = prev OTP

Other OTPs: SecureID

- A hand-held device sold by RSA
 - Widely deployed in enterprises
 - Well-publicized hack on this system in early 2011 led to attacks on high-profile businesses
- Uses a device-specific secret to generate authentication token every minute or so
 - E.g., *AES_{Ks}*(Time)
 - Tamper-resistant device, so one cannot steal K_S
 - Server must know device-specific secret
- Combined with a PIN or password
 - Perhaps the first widely-deployed two-factor authentication

Challenge-response protocols: SSH

- Password based authentication
 - $S \rightarrow C : KU_S$
 - $C \rightarrow S : E_{KU_S}(K_{SES} = random()), E_{K_{SES}}(password)$
 - All subsequent communication encrypted using K_{SES}
 - Weakness: integrity of *KU_S* not assured. SSH asks user to confirm the key the first time a server is accessed, and saves the key for use in future accesses to same server
- Public key based authentication: replace password sending step with the following challenge-response protocol:
 - $C \rightarrow S$: KU_{USER}
 - $S \rightarrow C$: Verify presence in .ssh/authorized_keys in user's home directory, send challenge = $E_{KU_{USER}}(random)$
 - $C \rightarrow S$: decrypt and send the result

Challenge-response protocol: Websites

- Web sites use password authentication over https
 - $S \rightarrow C$: Public key certificate $E_{KR_{CA}}(KU_S)$
 - $C \rightarrow S : E_{KU_S}(K_{SES} = random())$
 - All subsequent communication encrypted using K_{SES}
- Similar to SSH password authentication
- Most protocols (e.g., ftp) can be made secure by simply carrying their traffic over https or ssh tunnels.

Password weaknesses: Solutions

- Master password
 - Generate random passwords, encrypt them using master password
 - A password manager helps, but even the low-tech approach of noting them down in an encrypted file is a great improvement.
- Public keys, e.g., SSH or PGP
 - Need tools to help, e.g., USB security keys, laptops (ssh), ...
- Two-factor authentication
 - Tokens, cards, biometrics, ...
 - Pass keys
- One-time passwords or PINs
 - Useful if a channel trusted communication channel is available, e.g., SMS or email.

Password Management Challenges

- Easy-to-remember passwords may be easy to guess
 - Dictionary attacks
- Password management
 - Dealing with multiple passwords
 - Writing passwords down (should I?)
 - Password selection rules
 - Password expiry rules

Using Master Passwords

- A master password is used to encrypt all other passwords
 - Focus on creating/remembering one strong password
 - low tech approach: all other passwords written down in a file that is manually encrypted with the master password
 - more usable approaches rely on "password managers"
 - built into common applications like ssh and browsers

Benefits of Password managers

- Allows strong passwords unique to each website
 - Generate a random password for each site
- Reduces theft due to practices such as writing them down
- Computers are not easily phished
 - Avoids password being revealed to sites that
 - look similar
 - have URLs that are misspelled or have typos
 - use http instead of https

Issues with password managers

- Bad idea on shared devices
- Stolen (or temporarily lost) devices with passwords
- False sense of security if master password can be stolen

Summary of User Authentication Approaches

- Something you know
 - A secret: text, visual, or other types of passwords
 - Issues: difficulty of guessing, ease of remembering
- Something you have
 - key, magnetic card, RFID chip, smart card, cell phone, ...
 - Issue: possibility of losing
 - Combine with a secret to minimize damage due to loss
- Something you are
 - Fingerprint, photo, voice, handwriting, ...
 - Issues: accuracy of recognition, possibility of stealing
 - Works best in a supervised setting

Biometrics

- Authenticate by recognizing some aspect of human physiology, anatomy, skill or trait
 - Physiological (fingerprint, iris, retina, face, hand geometry, DNA)
 - Behavioral (keystroke, voice/speech, ...)
- Benefits:
 - convenience
 - protection against poor choice of passwords
 - more difficult to steal, particularly in controlled (supervised) setting
- Drawbacks
 - Need for special equipment
 - Not 100% reliable (false positives and negatives)
 - User acceptance

Biometrics: Terminology, Issues

- False match or acceptance rate (FMR/FAR)
 - "fraud rate"
- False non-match/rejection rate (FNMR/FRR)
 - "insult rate"
- trade-off between the two: equal error rate
- verification (pair-wise comparison) Vs
- identification (one-to-many comparison)
 - even very small error rates get magnified for the latter, and hence become unacceptable.

Biometrics: Terminology, Issues

Issues

- User acceptance
- Privacy and discrimination
- Can't be canceled/changed if stolen
- Danger of physical harm to owner

Handwritten signatures

- Routinely used in transactions and contracts for centuries
- Recognition may be manual, machine-assisted or completely mechanical
- Different approaches may be warranted based on application
 - legal Vs check-out counter Vs check-clearing for small checks
- Signature tablets
 - record signature dynamics as well as the resulting image

Fingerprints

- most commonly used biometric
- Issues:
 - even low error rates can compound when doing a one-to-many match
 - manipulation: lift prints artificially and deposit where there are needed.
 - ++ mature
 - ++ as always, deterrent effect can be higher than actual effect

Iris recognition

- Benefits
 - unique for each person
 - does not wear out or is exposed to external environment
 - easy to make out from a picture.
 - many times the number of degrees of freedom as fingerprint
 - minimally influenced by genetics
 - stable through lifetime
- Gabor filters a signal processing technique to transform an image of the iris into a 256-byte code. Two codes computed from same iris will match in 90% of the bits
 - Compare with fingerprints, where detection, classification and orientation of minutiae is hard.

Iris recognition

- Can achieve very high accuracy in controlled settings, but real-world performance not as good
- Other issues:
 - Requires camera-to-eye distance of approx. 2ft or less (intrusive)
 - Can potentially be copied

Voice Recognition

- text-dependent recognition (challenge-response)
- noise can be a problem (may need microphone held close to mouth)
- one-to-many comparisons are not very accurate
- affected by stress, cold, alcohol or other drugs, ...

Other

- Keystroke dynamics
- Hand geometry
- Retina
- DNA

Problems with Biometrics

- age of reference data (e.g., fingerprint)
- age of data (when was that fingerprint left? yesterday when the bank robbery took place, or last week when there was a legitimate visit to the bank?)
- recordings
- collusions (voluntarily provide bad writing samples or photos)
- birthday problem
- combining biometrics does not necessarily help: it may reduce false accepts, but at the cost of increased false rejects (or vice-versa)
- may not work for all users ("goats")
- objections based on social and religious concerns

Visual Passwords

- Leverage highly evolved visual perception
 - Pictures seem so much easier to remember than the details in an arbitrary text password

Several schemes

- Passpoints: select points on an image
- Select images from an array
 - Passfaces: leverage human capacity to recall faces
 - Random art

Issues with Graphical Passwords

- Many of the basic attack techniques continue to work
 - Dictionary attacks, guessing, social engineering, ...
 - Easy-to-remember passwords may also be easily guessable
- And there are several new ones
 - Shoulder-surfing
 - Deceptively low entropy
 - Studies show that users tend to have favorites, e.g., pretty faces from one's own race (for passfaces)
 - Memorability has not been conclusively demonstrated

Summary of User Authentication

- Purpose: bind physical-world entities with cyber-world entities
- Means: Present "credentials"
 - Secret
 - passwords
 - Possession
 - Key-card
 - Biometrics
- Attacks: theft, guessing attacks, ...
- Defenses
 - Multi-factor authentication
 - Password managers