Security Policies and
Enforcement Mechanisms




4

¢

4

4

Terminology and concepts

Principals, Subjects, Objects

Principle of least privilege

" Throughout execution, each subject should be given the
minimal access necessary to accomplish its task
YNeeds mechanisms for rights amplification and attenuation

Reference monitors
® Abstract machine that mediates all access

Security kernel

" Hardware, firmware and software elements that implement
the reference monitor

Trusted Computing Base
" Totality of protection mechanisms in the system
= Smaller TCB => Greater assurance that the system is secure




Access control

¢ Typically, three kinds of entities
= User (principal)
® Subject: typically, a process acting on behalf of user
= Object: files, network sockets, devices, ...

¢ Goal: Control access to operations performed
by subjects on objects

= Examples of operations
YRead
YWrite
YAppend
YEXxecute
YDelete
YChange permission
YChange ownership




Discretionary Access Control

* Discretionary, i.e., permissions settings at owner’s discretion
® permission on an object is set by its owner
= typical on most OSes (UNIX, Windows, ...)

¢ Can be modeled as a matrix

Ol 02 O3 04
Alice rwW W r -
Bob r,W,X rwW - rwW

" Implementations
YACL (associated with an object, represents a column)
—01.: Alice:rw, Bob:rwx, ...
—04: Alice:-, Bob:rw, ...
YCapabilities (associated with subject, represents a row)
—Alice: Ol:rw, O2:w, O3:r, O4:-, ...
—Bob: Ol:rwx, O2:r, O3:-, O4:rw, ...




Managing Permissions

* Improve manageability using indirection
" Groups
" Roles (RBAC)

¢ Inheritance

¢+ Negative permissions




Implementation of DAC on UNIX: Objects

¢ All resources are “files”
* Each file has a owner and group owner
* For performance reasons, original UNIX does not support ACL

" Instead, permissions are divided into three groups
Yowner, group, and everybody else

— owner and group owner are specified in the file itself
= 3 bits per part: read/write/execute

YFor directories:
— read means ability to list the directory
— write means ability to create files in the directory
— execute means the ability to access specific files if you know the name
* Permission setting of new files are determined by umask)
¢ Changing permission
¢ Changing ownership

¢+ Recent additions
®= Access control lists
= Sticky bit




Implementation of DAC on UNIX: Subjects

¢ Subjects inherit the userid and groups of parent
= Programs that perform user authentication need to set this info

= Exception: setuid programs (privilege delegation/amplification mechanism)
YSuid and sgid bits in objects

* File permission checks are performed using this userid and groups
* No permission checks on superuser (userid 0)

® Permission checks based on userid --- usernames used only for login
* Objects created by a subject inherit the subject’s userid and group

® Primary vs Supplementary groups
¥ Object’s group ownership determined by subject’s primary group
¥ Other groups (supplementary groups) are only used in
determining access permissions




Effective, Real and Saved UID/GID

¢ Effective: the uid used for determining access
privileges

* Real: the “real” user that is logged on, and on
whose behalf a process is running

¢ Saved: allows processes to temporarily
relinquish privileges but then restore original
privileges
" When executing a setuid executable, original euid is
saved (or it could be explicitly saved)

" Setting userid to saved userid is permitted




DAC on Windows Vs UNIX

¢ 0O0-design: permissions can differ, depending
onh type of object

" NTFS files offer additional rights: delete, modify ACL,
take ownership

YFiles inherit permission from directory

® Use of Registry for configuration data

YRicher set of access permissions for registry entries (e.g.,
enumerate, create subkey, notify, ...)

¢ Mandatory file system locks
* No setuid mechanism




Capabilities

* “Tickets” to gain access to a resource
" Combine objects and access rights into one package
" Must be unforgeable
" Transferable

¢+ Examples
B Passwords and cryptographic keys

= Certificates

YAnything cryptographically signed can be thought of as a
capability

" File descriptors
YHandles to information maintained within OS kernel

B Some cookies (e.g., session cookie) in web applications




Capabilities

¢ Capabilities in their purest form not widely used in OSes
= More difficult to implement than ACLs
YNeed forever unique object ids that don’t change
YNeed to use crypto or rely on OS primitives that may be hard to realize
= Difficult to manage
YHow do we determine the permissions held by a user?
YDo we want to allow them to pass around their capability? What about theft?
YHow long do we store them?
YHow can we revoke permissions?

* Provide a better framework than ACLs when policy
enforcement is NOT centralized

m Kerberos uses capabilities for access across hosts
YUses capabilities with different time scales
YAccesses within a host typically based on ACL mechanism of host OS
" Web applications use cookies containing sessionids to indicate when a
user has successfully authenticated




Mandatory Access Control (MAC)

* DAC Limitations

" “Trojan Horse” problem: assumes that users are in full
control of the programs they execute
YWhat if a program changes permissions without user’s knowledge?

" Provides no protection if a resource owner did not bother
to set the ACL properly
* To overcome these problems, MAC moves the
responsibility to a central point, typically the
system administrator
® Organizations want to control access to their resources

= Don’t want to rely on individual employees to ensure that
organizational policies are enforced




MAC Example: MLS

* Motivation for MLS

® Access control policies do not provide any way to control
the manner in which information is used

Yonce an entity is given access to some information, it can use
this information in any way

— Can share it with any one

¢ MLS policies control information flow, and
hence control how information is used

* Developed originally in the context of
protecting secrets in the military




MLS: Confidentiality Policies

¢ An object is labeled with a level L
" | abels correspond to points in a lattice
" Typical levels used in military include:
Yunclassified, classified, secret, top secret
* A subject is associated with a clearance level C
" A subject can access an object is his clearance level is
equal to or above the object’s level
¢ Information is also compartmentalized

" “Need-to-know” principle is used to decide who gets to
access what information

Ye.g., top-secret information regarding nuclear fuel processing is
made available to those working on nuclear-related projects




MLS: Bell-LaPadula Model [1973]

* To ensure that sensitive information does not
leak, we need to ensure:

" No “read-up:”
YA subject S can read object O only if C[S] >= L[O]
" No “write-down:”

¥ A subject can write an object O only if C[S] <= L[O]

YPrevents indirect flows where a top-secret-clearance subject
reads a top-secret file and writes to a secret file, which may then
be read by someone with a lower (ie secret) clearance

" Based on the idea that any subject that reads
Information at a certain level has the potential to leak
iInformation at that level whenever it outputs anything.




MLS: Biba Model (Integrity)

* Designed to ensure integrity rather than confidentiality
= In non-military settings, integrity is more important
¢ Conditions

" No “read-down:”
YA subject S can read object O only if C[S] <= L[O]

YA subject’s integrity can be compromised by reading lower integrity
data, so this is disallowed

" No “write-up:”
¥ A subject can write an object O only if C[S] >= L[O]

YThe integrity of a subject’s output can’t be greater than that of the
subject itself.

¢ Variation: Low Water-Mark Policy (LOMAC)
= Allow read-downs, but downgrade subject to the level of object

¢ Both policies ensure system integrity




Problems with Information Flow

* In a nutshell: difficult to manage/use over time

" “l abel creep:” More and more objects become sensitive,
making it difficult for the system to be used by lower-
clearance subjects

" Exceptions need to be made, e.g., an encryption
programs
Y*Trusted” programs are allowed to be exempted from “*”-property

YBut exceptions are misused widely, since it is hard to configure
whole systems carefully so that “*"-property can be enforced
without breaking functionality

¢ Motivate alternate approaches, or hybrid
approaches




Alternative Approaches

¢+ Key goal: Mitigate damage that may result from
all-powerful root privileges

= Break down root privilege into a number of sub-
privileges
® Decouple user privileges from program privileges
¢ Examples

® Domain and type enforcement
YSELinux
" Linux capabilities

¥ Somewhat different from classical notion of capabilities
described earlier under DAC




Domain and Type Enforcement

Subjects belong to domains

" Users have default domains, but not all their processes belong to
the same domain

YSome processes transition to another domain, typically when executing
another program

Objects belong to types
Policies specify which domains have what access
rights on which types

" Enable application of least-privilege principle

= Example: a media player may need to write its configuration or data
files, but not libraries or config files of other applications

Domain transitions are an important feature
® Can occur on exec, as specified by policy




DTE and SELInux

¢ Security-enhanced Linux combines standard
UNIX DAC with DTE

" Note: SELinux also supports other MAC mechanisms (e.g.,
MLS) but these are typically not enabled/configured
* Intuitively, the idea is to make access rights a
function of (user, program, object)

* Roughly speaking, MLS requires us to trust a
program (and not enforce “*”-property), or fully
trust it (ie it may do whatever it wants with
Information that it read)

" |n contrast, DTE allows us to express limited trust, i.e.,

grant a program only those rights that it needs to carry out
its function




DTE/SELInux Vs Information Flow

¢ In practice DTE has turned out to be “one
policy per application”
= Scalability is clearly an issue
" |n addition, SELinux policies are quite complex

" While DTE is able to gain additional power because it
captures the fact that trust is not transitive, this very
feature makes DTE policies difficult to manage

YWhat overall system-wide assurances can be obtained, given a
set of DTE policies developed independent of each other

¢ Information flow policies are simpler, and
closely relate to high level objectives
= Confidentiality or Integrity
® But neither approach is easy enough for widespread use




Linux (POSIX) Capabilities

¢+ Goal: Decompose root privilege into a number of “capabilities”
YCAP_CHOWN
YCAP_DAC_OVERRIDE
YCAP_NET_BIND_SERVICE
YCAP_SETUID
YCAP_SYS_MODULE

YCAP_SYS_PTRACE
v

+ Differs from classical capabilities
® Captures access rights, but not associated with any object

= Unforgeable only because the capabilities are never present in the subject

YThey are maintained by the OS kernel for every process, similar to how subject
ownership is maintained in the kernel




Linux (POSIX) Capabilities

+ Effective, Permitted and Inheritable capabilities

= Somewhat related to (and guided by) effective, real and saved
userids

= Effective: accesses will be checked against this set
= Permitted: superset of effective, cannot be increased
YEffective set can be set to include any subset of permitted
" Inheritable: capabilities retained after execve
Yat execve, permitted and effective sets are masked with inheritable
¢ Attaching capabilities to executables
= Allowed: capabilities not in this set are taken away on execve

" Forced: “setuid” like feature --- given to executable even if
parent does not have the capability

= Effective: Indicates which of the permitted bits are to be
transferred to effective




Policies and Mechanisms for Untrusted Code

¢ |solation

= Two-way isolation
YChroot jails
YUserid-based isolation, e.g., Android apps
YVirtual machines

= One-way isolation
YRead access permitted, but write access denied
¢+ System-call sandboxing
® Linux seccomp, seccomp-bpf and eBPF
" Delegation

¢ Information flow




chroot jails

* Makes the specified directory to be the root
® Process (and its children) can no longer access files
outside this directory
¢+ Requires root privilege to chroot
" For security, relinquish root privilege after chroot
= All programs, libraries, configuration and data files used
by this process should be within this chroot’ed dir
¢ Isolation limited to file system
Ye.qg., it does not block interprocess interactions

® For this reason, chroot jail is useful mainly to limit
privilege escalation; but the mechanisms is insecure
against malicious code.




¢

¢

¢

¢

Userid based i1solation

Create a new userid for running untrusted code

® Real user’s userid is not used, so the “Trojan horse” problem of altering
permissions on user’s files is avoided

Android uses one userid for each app

= Default permissions are set so that each app can read and write only the
files it owns (except a few system directories)

Protects against malicious interprocess interactions

= kill, ptrace, ...

Better than chroot, but still insufficient against malicious
code
B Can subvert benign processes by creating malicious files that may be

accidentally consumed by them
YMany sandbox escape techniques work this way

® Too much information available via /proc, as well as system directories
that are public: Can use this info to exploit benign processes via IPC




L 2

*

*

L 2

One-way isolation

Full isolation impacts usability
® untrusted applications are unable to access user’s files
" makes it difficult to use nonmalicious untrusted applications

One-way isolation

" Untrusted application can read any data, but writes are limited
Ycannot overwrite user files

YMore importantly, benign applications don’t ever see untrusted files
-Eliminates the possibility of accidental compromise

Key issues:

" Ensuring consistent view
YApplication creates a file and then reads it, or lists the directory
YInconsistencies typically lead to application failures

® Failures due to denied write permission
YCan overcome by creating a private copy of the file
Both issues overcome using copy-on-write file system

Note
" does not protect against loss of confidential data (without additional policies)
® securing user interactions is still a challenge




System-call sandboxing: seccomp

Seccomp is a Linux mechanism for limiting system calls that can
be made by a process

" Processes in the seccomp sandbox can be make very few system calls (exit,
sigreturn, read, write).

More secure than previous mechanisms, but greatly limits actions
that can be performed by a sandboxed process

= Useful if setup properly, e.g., in Chrome, Docker, NativeClient

Seccomp-bpf is a more recent version that permits configurable
policies

= Allowable syscalls specified in the Berkeley packet filter language

® Policies can reference syscall name and arguments in registers
Unfortunately, most interesting policies are out-of-scope, as they
reference data in process memory, e.g., file names

® For this reason, seccomp-bpf is not much more useful than seccomp

eBPF: more flexible, but designed for observing, not limiting
access




System-call delegation

¢ Used in conjunction with strict syscall sandboxing
= Key idea: Delegate dangerous system calls to a helper process

" Helper process is trusted
¥it cannot be manipulated by untrusted process
Ycan implement arbitrary, application-specific access control logic
Yavoids race conditions

¢ Works only if

= System call semantics permits delegation
Ye.g., not applicable for fork or execve
—fork is usually harmless, can use fexecve instead of execve
® Results can be transferred back transparently to untrusted
process

Ye.q., file descriptors can be sent over UNIX domain sockets using
sendmsg




Securing untrusted code using information flow

¢ Untrusted code = low integrity, benign code = high
Integrity
* Enforce the usual information flow policy that
" Deny low integrity subject’s writes to high integrity objects
YPrevents “active subversion”
® Deny high integrity subject’s read of low integrity objects

YPrevents “passive subversion”

—fooling a user (or a benign application) to perform an action, e.g., click an
icon on desktop

—exploit a benign process, e.g, benign image viewer compromised by reading
a malicious image file

¢ Can provide strong guarantee of integrity
® Not subject to “sandbox escapes”

¢ Usability issues still need to be addressed




Commercial Policies

* High-level policies in commercial
environments are somewhat different from
those suitable for military environments

¢+ Examples
= Chinese Wall (conflict of interest)
= Clark-Wilson

¢ Common principles

= Separation of duty: critical functions need to be
performed by multiple users

= Auditing: ensure actions can be traced and attributed,
and If necessary, reverted (recoverability)




Clark-Wilson Policy

Focuses on data integrity rather than confidentiality

® Based on the observation that in the “real-world,” errors and fraud
are associated with loss of data integrity

Based on the concept of well-formed transactions
" Data is processed by a series of WFTs

" Each WFT takes the system from one consistent state to another

YOperations within a WFT may temporarily make system state
inconsistent

= While the use of WFTs guarantee consistency of system state, we
need other mechanisms to ensure integrity of WFTs themselves

YWas that a fraudulent money transfer? Was that travel voucher properly
Inspected?
—Relies primarily on separation of duty
= Auditing to verify integrity of transactions

" Maintain adequate logs so that WFTs in error can be undone




Chinese Wall Policy

¢ Addresses “conflict of interest”
= Common in the context of financial industry
" Regulatory compliance, auditing, advising, consulting,..

¢ Defined in terms of
" CD: objects related to a single company
B COI classes: sets of companies that are competitors

® Policy: no person can have access to two CDs in the
same COl class
Yimplies past, present or future access




Policy Management

¢+ Goal: simplify the set up and administration of security
policies
* Topics
" Role-based access control (RBAC)
= Administrative policies
YWho can change what policies
® Delegation and trust management




RBAC

* Roles vs groups: Essentially the same mechanism but
different interpretations

" Role: a set of permissions
" Group: a set of users
* Roles and groups provide a level of indirection that
simplifies policy management
® Based on the functions performed by a user, he/she is given
one or more roles

YWhen the user’s responsibilities change, the user’s roles
are updated

YWhen the permissions needed to perform a function are
changed, the corresponding role’s permissions are
updated

—Does not require any updating of user information




Delegation

Ability to transfer certain rights to another entity so
that it may act on behalf of the first entity

Delegation is necessary for managing authorizations
In a distributed system

= Decentralized/distributed control

How to implement delegation
" The issue is one of trust and granularity
= Multiple levels of delegation rely on a chain of trust
YCan be implemented using certificates
Trust management

= Systems designed to manage delegation, and enforce security
policies in the presence of delegation rules and certificates




	Slide 1
	Slide 2
	Access control
	Discretionary Access Control
	Slide 6
	Implementation of DAC on UNIX
	Slide 9
	Effective, Real and Saved UID/GID
	DAC on Windows Vs UNIX
	Capabilities
	Slide 13
	Mandatory Access Control (MAC)‏
	MAC Example: MLS
	MLS: Confidentiality Policies
	MLS: Bell-LaPadula Model [1973]
	MLS: Biba Model (Integrity)‏
	Problems with Information Flow
	Alternative Approaches
	Domain and Type Enforcement
	DTE and SELinux
	DTE/SELinux Vs Information Flow
	Linux (POSIX) Capabilities
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Commercial Policies
	Clark-Wilson Policy
	Chinese Wall Policy
	Delegation
	Slide 37
	Slide 38

