R. Sekar

1/26

Processor security Virtualization VM Security Key Principles

Processor Security: Key Principles

@ Processors operate at multiple privilege levels

o At least two levels needed: privileged and unprivileged
e Often, four or more levels supported.
@ Ring 0 is highest privilege

o Ring 3 is lowest privilege
@ OS kernel executes in privileged mode

@ User level code executes in unprivileged mode

o Applies to all processes, including those owned by root

2/26

Processor security Virtualization VM Security Key Principles

Processor Security: Key Principles

@ Privileged instructions can execute successfully only if the processor is operating in
privileged mode.
e Important processor state can be changed only through the execution of privileged

instructions
o Page tables
@ 1/O devices

@ As aresult, only the kernel code can change critical processor state.
o Enables the OS to control and manage system resources and share them safely across

user-level processes.
(3 . . 9 . . .
e Resources are often “virtualized:” for most resources, it is as if a user level process has an
exclusive, private copy of the resource.

e memory, display, keyboard, ...

3/26

Processor security Virtualization VM Security Key Principles

Processor Security: Key Principles

@ No control transfers across privilege levels
e Can’t secure privileged code if unprivileged code can call/jump to it
o Difficult to get things right even for control transfers in the opposite direction!

@ So, privileged crossings are usually effected via interrupts
e hardware interrupts: often used to respond to device requests

e software interrupts: system calls (user code calling kernel code)

@ Interrupts are like request messages.
o The sender does not have any ability to control whether the receiver examines or
processes requests
e Nor can they influence the environment in which they are processed

o the registers, stack, heap etc. are separate for the kernel

o kernel code can access user process memory, but it takes extreme care in doing so.
4/26

Processor security Virtualization VM Security Terminology, History Principles Approaches Performance issues

Virtualization in OSes

@ Creation of logical instances of physical resources.
o Logical instances have the same functions
o differ in size, performance, availability, cost etc.
e often used to create a dedicated instance of a resource from a shared physical resource

@ Resources to virtualize
e CPU
o Memory
e 1/O devices (mouse, display, network, ...)

@ Some resources are shared using high level interfaces rather than virtualization, e.g.,

file system.

@ OSes already virtualize most resources for user processes

e Can we extend this so that the whole system is virtualized
5/26

Processor security Virtualization VM Security Terminology, History Principles Approaches Performance issues

System Virtualization

e System virtualization creates several virtual systems within a single physical system
e System = complete computer system, including the processor and all the peripherals
contained within

o This virtual should still provide privileged instructions, so that OS kernels can run on top.

e VMM (or hypervisor)

e Virtual machine monitor is the software layer providing the virtualization.

e VM Virtual machine is the virtual system running on top of the VMM.

6/26

Processor security Virtualization VM Security Terminology, History Principles Approaches Performance issues

Brief History

@ 1960s, first introduced, for main frames
e Motivation: hardware cost etc.

e Dearth of knowledge on multi-user OS
@ 1970s, an active research area

@ 1980s, underestimated
o Multitask modern operating systems took its place, and delivered better combination of

price and performance
o late 1990s, resurgence: software techniques for x86 virtualization

e Many motivations: mixed-OS develop environment, security, fault tolerance etc.

@ since mid 2000s: hardware support from both Intel and AMD.

7/26

Processor security Virtualization VM Security Terminology, History Principles Approaches Performance issues

Types of Virtualization

@ Process virtualization (virtualize one process)
o The VM supports an application binary interface: user instructions plus “system calls”
o JVM, ..
@ OS or Namespace virtualization (multiple logical VMs that share the same OS
kernel)
e Isolates VMs by partitioning all objects (not just files) into namespaces

e Linux containers and vServer, Docker

@ System (or full) virtualization (whole system: OS+apps)
e The VM supports a complete ISA: user+system instructions

e Classic VMs, whole system emulators (and many others we discuss in next slides)

8/26

Processor security Virtualization VM Security Terminology, History Principles Approaches Performance issues

VMM Architectures

Type I: The VMM runs on bare hardware (“bare-metal hypervisor”)

guest guest guest
application application application

guest operating system

virtual-machine monitor (VMM)

host hardware

9/26

Processor security Virtualization VM Security

VMM Architectures

Terminology, History Principles Approaches Performance issues

Type Il: The VMM runs as an ordinary application inside host OS (hosted hypervisor)

guest

guest

guest

application application application

guest operating system

virtual-machine monitor (VMM)

host operating system

host hardware

10/26

Processor security Virtualization VM Security Terminology, History Principles Approaches Performance issues

Key Issues in CPU Virtualization

@ Protection levels
e Ring 0 (most privileged)
e Ring 3 (user mode)
@ Requirement for efficient/effective virtualization
o Privileged instructions: Trap if executed in user mode

2

o Sensitive instructions: affect important “system state
o If privileged==sensitive, can support efficient “trap and emulate” approach

o Virtualized execution = native execution+exception handling code that emulates privileged

instructions

e For x86, not all sensitive instructions are privileged

e Some instructions simply exhibit different behaviors in user and privileged mode

11/26

Processor security Virtualization VM Security

Virtualization Approaches

e Full virtualization using binary
translation:

e Problem instructions translated into a
sequence of instructions that achieve
the intended function

o Example: early VMware, QEMU

o Need to disassemble the binary,
identify problem instructions and
patch them

@ Rely dynamic disassembly and
translation in order to make
disassembly tractable, and to
support dynamic changes to code.

I User Apps

Terminology, History Principles Approaches Performance issues

Ring 2
Ring 1

Ring 0

Host Computer
System Hardware

_ .
]

Direct
Execution
of User
Requests

Binary
Translation
of OS

Requests

12/26

Processor security Virtualization VM Security Terminology, History Principles Approaches Performance issues

Virtualization Approaches

SO User Apps

Direct
Execution
of User
Requests

Ring 2

Ring 1
@ Paravirtualization: OS modified to g
run on VMM Paravirtualized

Rina 0 ‘Hypercalls’ to the
o Example: Xen ing Guest OS

Virtualization
Layer replace
Non-virtualizable
OS Instructions

ji0g

Virtualization Layer

Host Computer
System Hardware

13/26

Processor security Virtualization VM Security Terminology, History Principles Approaches Performance issues

Paravirtualization

@ No longer 100% interface compatible, but better performance
o Guest OSes must be modified to use VMM'’s interface

o Note that ABI is unchanged
@ Applications need not to be modified

@ Guest OSes are aware of virtualization
e privileged instructions are replaced by hypervisor calls

o therefore, no need for trapping or binary translation

14/26

@ Hardware-assisted
virtualization

e Most VMMs today

User Apps Direct
Execution
of User

Non-root Ring 2 Requests

Mode
Privilege Rina 1
Levels ing

Ring 0 OS Requests
Trap to VMM
Root Mode without Binary
Privilege VMM Translation or
Levels Paravirtualizatic

Host Computer
System Hardware

15/26

Processor security Virtualization VM Security Terminology, History Principles Approaches Performance issues

Hardware-assisted virtualization

@ Separates CPU execution into two modes
e hypervisor executes in host mode

o all VMs execute in guest mode
@ Both hypervisor and VMs can execute in any of the four rings

@ Hypervisor can
o explicitly switch from host mode to guest mode

e specify which events (e.g. interrupts) cause exist from guest mode

16/26

Processor security Virtualization VM Security Terminology, History Principles Approaches Performance issues

Memory Virtualization

@ Access to MMU needs to be virtualized
o Otherwise guest OS may directly access physical memory and/or otherwise subvert VMM

@ Physical Memory is divided among multiple VMs

e Two levels of translation
@ Guest OS: guest virtual addr — guest physical addr
® VMM: guest physical addr — machine addr

17/26

@ Shadow page table needed to avoid 2-step translation
e When guest attempts to update, VMM intercepts and emulate the effects on the

corresponding shadow page table
VM 1 VM 2

Process 1 Process 2 Process 1 Process 2

 OITITTITI

18/26

Processor security Virtualization VM Security Terminology, History Principles Approaches Performance issues

I/O Virtualization

@ The VMM intercepts guest’s I/O-performing instructions

@ Performs necessary actions to emulate their effect.

o Processor hardware cannot help that much here: support is provided using software
within the VMM

o This software “emulations” leads to low performance for most 1/0 operations.

@ But CPU and memory operations perform near that of native code.

19/26

VMs: Security Applications and Concerns

20/26

Processor security Virtualization VM Security Security applications Security challenges Docker

Security Applications

@ Honeypot systems and Malware analysis
e VM technology provides strong isolation that is necessary to run malware without undue

risks
@ Strong resource isolation: CPU, memory, storage
@ Snapshot/restore features to speed up testing and recovery

e High-assurance VMs
e On a single workstation, can run high assurance VMs that support some security

functions, but may not provide general-purpose functions
o single-purpose VM scheme facilitates stricter security policies
@ In contrast, security policies that are compatible with the range of desktop applications being

used today will likely be too permissive.

21/26

Processor security Virtualization VM Security Security applications Security challenges Docker

More security applications

@ Protection from compromised OSes

e Modern OSes are too complex to secure
e Malware-infested OS may subvert security software (virus and malware scanners)

o Instead, rely on VMM

e run malware and rootkit detection techniques in VMM

e enforce security properties from within the VMM

22/26

Processor security Virtualization VM Security Security applications Security challenges Docker

Security Challenges in Virtualized Environments

Virtualization leads to co-tenancy
@ VMs belonging to distinct principals use the same hardware
e Strong isolation is necessary or else attacks become too easy

e Containers don’t offer enough security if some principals can be downright malicious

e Even with strong isolation, provides increased opportunities for side-channel attacks

@ Denial of service is difficult to prevent

e But often, it is not a problem in practice as bad behavior is expensive, and/or is detected

and the culprit punished

23/26

Processor security Virtualization VM Security Security applications Security challenges Docker

Docker Security

@ Isolation of containers

e namespaces: each container cannot see entities (files, processes, pids, network interfaces,

...) in other containers
e Linux cgroups: enable resource accounting and limiting — including CPU, memory, disk

1/0, etc.
e one bad container cannot use up all resources
@ Container infrastructure and services (docker daemon)
e containers can share files/directories with the host OS, but this can be dangerous, e.g.,
allow root user in a container to change critical host OS files
e administrative services (e.g., creation of containers) can be abused, so interface to docker
daemon should be restricted

24/26

Processor security Virtualization VM Security Security applications Security challenges Docker

Docker Security: Attack Vectors

o Shared kernel
e Same OS kernel across different containers
@ May also be the same kernel as the host OS
o Any kernel vulnerabilities may be exploited
@ Bugs in namespace isolation

@ Bugs in syscall implementations
@ Docker infrastructure needs root privileges
e Malicious processes (on host) may abuse this privilege
o Applications running within Docker may extend their reach to the host

o By using shared folders
e Root processes inside container can possibly execute syscalls as root on host

25/26

Processor security Virtualization VM Security Security applications Security challenges Docker

Docker security practices

@ Avoid root privilege

o Use user namespaces to map docker root to non-zero uid

@ Limit further using Linux capabilities
e programs running within containers typically don’t need root privilege

e we can use Linux capabilities to take away almost all of the power of the root

@ Limit further using seccomp-bpf to limit system calls that can be made by processes

within the container

@ And the most important of them all:

e Avoid using software that you can’t reasonably trust to be non-malicious

26/26

	Processor security
	Key Principles

	Virtualization
	Terminology, History
	Principles
	Approaches
	Performance issues

	VM Security
	Security applications
	Security challenges
	Docker

