
Processor security Virtualization VM Security

Processor and Virtual Machine Security
Fall 2024

R. Sekar

1 / 26



Processor security Virtualization VM Security Key Principles

Processor Security: Key Principles

Processors operate at multiple privilege levels

At least two levels needed: privileged and unprivileged
Often, four or more levels supported.
Ring 0 is highest privilege
Ring 3 is lowest privilege

OS kernel executes in privileged mode

User level code executes in unprivileged mode

Applies to all processes, including those owned by root

2 / 26



Processor security Virtualization VM Security Key Principles

Processor Security: Key Principles

Privileged instructions can execute successfully only if the processor is operating in
privileged mode.
Important processor state can be changed only through the execution of privileged
instructions
Page tables
I/O devices

As a result, only the kernel code can change critical processor state.

Enables the OS to control and manage system resources and share them safely across

user-level processes.
Resources are often “virtualized:” for most resources, it is as if a user level process has an
exclusive, private copy of the resource.
memory, display, keyboard, ...

3 / 26



Processor security Virtualization VM Security Key Principles

Processor Security: Key Principles

No control transfers across privilege levels
Can’t secure privileged code if unprivileged code can call/jump to it
Difficult to get things right even for control transfers in the opposite direction!

So, privileged crossings are usually effected via interrupts

hardware interrupts: often used to respond to device requests

software interrupts: system calls (user code calling kernel code)

Interrupts are like request messages.

The sender does not have any ability to control whether the receiver examines or

processes requests
Nor can they influence the environment in which they are processed
the registers, stack, heap etc. are separate for the kernel
kernel code can access user process memory, but it takes extreme care in doing so.

4 / 26



Processor security Virtualization VM Security Terminology, History Principles Approaches Performance issues

Virtualization in OSes
Creation of logical instances of physical resources.
Logical instances have the same functions
differ in size, performance, availability, cost etc.
often used to create a dedicated instance of a resource from a shared physical resource

Resources to virtualize
CPU
Memory
I/O devices (mouse, display, network, ...)

Some resources are shared using high level interfaces rather than virtualization, e.g.,
file system.

OSes already virtualize most resources for user processes
Can we extend this so that the whole system is virtualized

5 / 26



Processor security Virtualization VM Security Terminology, History Principles Approaches Performance issues

System Virtualization

System virtualization creates several virtual systems within a single physical system

System = complete computer system, including the processor and all the peripherals

contained within

This virtual should still provide privileged instructions, so that OS kernels can run on top.

VMM (or hypervisor)

Virtual machine monitor is the software layer providing the virtualization.

VM Virtual machine is the virtual system running on top of the VMM.

6 / 26



Processor security Virtualization VM Security Terminology, History Principles Approaches Performance issues

Brief History

1960s, first introduced, for main frames

Motivation: hardware cost etc.

Dearth of knowledge on multi-user OS

1970s, an active research area

1980s, underestimated

Multitask modern operating systems took its place, and delivered better combination of

price and performance

late 1990s, resurgence: software techniques for x86 virtualization

Many motivations: mixed-OS develop environment, security, fault tolerance etc.

since mid 2000s: hardware support from both Intel and AMD.

7 / 26



Processor security Virtualization VM Security Terminology, History Principles Approaches Performance issues

Types of Virtualization

Process virtualization (virtualize one process)
The VM supports an application binary interface: user instructions plus “system calls”
JVM, ...

OS or Namespace virtualization (multiple logical VMs that share the same OS
kernel)

Isolates VMs by partitioning all objects (not just files) into namespaces

Linux containers and vServer, Docker

System (or full) virtualization (whole system: OS+apps)

The VM supports a complete ISA: user+system instructions

Classic VMs, whole system emulators (and many others we discuss in next slides)

8 / 26



Processor security Virtualization VM Security Terminology, History Principles Approaches Performance issues

VMM Architectures

Type I: The VMM runs on bare hardware (“bare-metal hypervisor”)

9 / 26



Processor security Virtualization VM Security Terminology, History Principles Approaches Performance issues

VMM Architectures

Type II: The VMM runs as an ordinary application inside host OS (hosted hypervisor)

10 / 26



Processor security Virtualization VM Security Terminology, History Principles Approaches Performance issues

Key Issues in CPU Virtualization

Protection levels

Ring 0 (most privileged)

Ring 3 (user mode)

Requirement for efficient/effective virtualization

Privileged instructions: Trap if executed in user mode

Sensitive instructions: affect important “system state”
If privileged==sensitive, can support efficient “trap and emulate” approach
Virtualized execution = native execution+exception handling code that emulates privileged
instructions

For x86, not all sensitive instructions are privileged

Some instructions simply exhibit different behaviors in user and privileged mode

11 / 26



Processor security Virtualization VM Security Terminology, History Principles Approaches Performance issues

Virtualization Approaches

Full virtualization using binary
translation:
Problem instructions translated into a
sequence of instructions that achieve
the intended function
Example: early VMware, QEMU

Need to disassemble the binary,
identify problem instructions and
patch them

Rely dynamic disassembly and
translation in order to make
disassembly tractable, and to
support dynamic changes to code. 12 / 26



Processor security Virtualization VM Security Terminology, History Principles Approaches Performance issues

Virtualization Approaches

Paravirtualization: OS modified to
run on VMM
Example: Xen

13 / 26



Processor security Virtualization VM Security Terminology, History Principles Approaches Performance issues

Paravirtualization

No longer 100% interface compatible, but better performance

Guest OSes must be modified to use VMM’s interface
Note that ABI is unchanged
Applications need not to be modified

Guest OSes are aware of virtualization

privileged instructions are replaced by hypervisor calls

therefore, no need for trapping or binary translation

14 / 26



Processor security Virtualization VM Security Terminology, History Principles Approaches Performance issues

Virtualization Approaches

Hardware-assisted
virtualization
Most VMMs today

15 / 26



Processor security Virtualization VM Security Terminology, History Principles Approaches Performance issues

Hardware-assisted virtualization

Separates CPU execution into two modes

hypervisor executes in host mode

all VMs execute in guest mode

Both hypervisor and VMs can execute in any of the four rings

Hypervisor can

explicitly switch from host mode to guest mode

specify which events (e.g. interrupts) cause exist from guest mode

16 / 26



Processor security Virtualization VM Security Terminology, History Principles Approaches Performance issues

Memory Virtualization

Access to MMU needs to be virtualized

Otherwise guest OS may directly access physical memory and/or otherwise subvert VMM

Physical Memory is divided among multiple VMs
Two levels of translation
Guest OS: guest virtual addr −→ guest physical addr
VMM: guest physical addr −→ machine addr

17 / 26



Processor security Virtualization VM Security Terminology, History Principles Approaches Performance issues

Memory Virtualization

Shadow page table needed to avoid 2-step translation

When guest attempts to update, VMM intercepts and emulate the effects on the

corresponding shadow page table

18 / 26



Processor security Virtualization VM Security Terminology, History Principles Approaches Performance issues

I/O Virtualization

The VMM intercepts guest’s I/O-performing instructions

Performs necessary actions to emulate their effect.

Processor hardware cannot help that much here: support is provided using software

within the VMM

This software “emulations” leads to low performance for most I/O operations.

But CPU and memory operations perform near that of native code.

19 / 26



Processor security Virtualization VM Security Security applications Security challenges Docker

VMs: Security Applications and Concerns

20 / 26



Processor security Virtualization VM Security Security applications Security challenges Docker

Security Applications

Honeypot systems and Malware analysis
VM technology provides strong isolation that is necessary to run malware without undue
risks
Strong resource isolation: CPU, memory, storage
Snapshot/restore features to speed up testing and recovery

High-assurance VMs
On a single workstation, can run high assurance VMs that support some security
functions, but may not provide general-purpose functions
single-purpose VM scheme facilitates stricter security policies
In contrast, security policies that are compatible with the range of desktop applications being
used today will likely be too permissive.

21 / 26



Processor security Virtualization VM Security Security applications Security challenges Docker

More security applications

Protection from compromised OSes

Modern OSes are too complex to secure

Malware-infested OS may subvert security software (virus and malware scanners)
Instead, rely on VMM
run malware and rootkit detection techniques in VMM
enforce security properties from within the VMM

22 / 26



Processor security Virtualization VM Security Security applications Security challenges Docker

Security Challenges in Virtualized Environments

Virtualization leads to co-tenancy
VMs belonging to distinct principals use the same hardware

Strong isolation is necessary or else attacks become too easy

Containers don’t offer enough security if some principals can be downright malicious

Even with strong isolation, provides increased opportunities for side-channel attacks

Denial of service is difficult to prevent

But often, it is not a problem in practice as bad behavior is expensive, and/or is detected

and the culprit punished

23 / 26



Processor security Virtualization VM Security Security applications Security challenges Docker

Docker Security

Isolation of containers

namespaces: each container cannot see entities (files, processes, pids, network interfaces,

...) in other containers
Linux cgroups: enable resource accounting and limiting — including CPU, memory, disk
I/O, etc.
one bad container cannot use up all resources

Container infrastructure and services (docker daemon)

containers can share files/directories with the host OS, but this can be dangerous, e.g.,

allow root user in a container to change critical host OS files

administrative services (e.g., creation of containers) can be abused, so interface to docker

daemon should be restricted

24 / 26



Processor security Virtualization VM Security Security applications Security challenges Docker

Docker Security: Attack Vectors

Shared kernel
Same OS kernel across different containers
May also be the same kernel as the host OS

Any kernel vulnerabilities may be exploited
Bugs in namespace isolation
Bugs in syscall implementations

Docker infrastructure needs root privileges

Malicious processes (on host) may abuse this privilege

Applications running within Docker may extend their reach to the host

By using shared folders

Root processes inside container can possibly execute syscalls as root on host

25 / 26



Processor security Virtualization VM Security Security applications Security challenges Docker

Docker security practices

Avoid root privilege

Use user namespaces to map docker root to non-zero uid

Limit further using Linux capabilities

programs running within containers typically don’t need root privilege

we can use Linux capabilities to take away almost all of the power of the root

Limit further using seccomp-bpf to limit system calls that can be made by processes
within the container

And the most important of them all:

Avoid using software that you can’t reasonably trust to be non-malicious

26 / 26


	Processor security
	Key Principles

	Virtualization
	Terminology, History
	Principles
	Approaches
	Performance issues

	VM Security
	Security applications
	Security challenges
	Docker


