
UNIX Intro Processes File System Interprocess Communication

Operating System Security
Fall 2024

R. Sekar

1 / 42



UNIX Intro Processes File System Interprocess Communication History Overview Philosophy

References

The UNIX Time-Sharing System

Dennis Ritchie and Ken Thompson ACM Symposium on Operation Systems Principles,

1974.

4.2BSD and 4.3BSD as Examples of the UNIX System

Quarterman, Silberschatz and Peterson

ACM Computing Surveys, 1985

2 / 42

https://dsf.berkeley.edu/cs262/unix.pdf
https://codex.cs.yale.edu/avi/home-page/publication-dir/Journals/J-12-1985.pdf


UNIX Intro Processes File System Interprocess Communication History Overview Philosophy

History

Started with one person, Ken Thompson in 1969 in Bell Labs

Dennis Ritchie joined soon after

V6 introduced multiprogramming, with the OS rewritten in C

Built on the experience of Multics
Not just what to do, but also what not to do
UNIX ̸=Multics!

No big committees, no grand vision, or elaborate plans

Just a system for the personal convenience of the authors

“by programmers for programmers”

3 / 42



UNIX Intro Processes File System Interprocess Communication History Overview Philosophy

4 / 42



UNIX Intro Processes File System Interprocess Communication History Overview Philosophy

Hardware

Initial versions developed on PDP-7

V6 ran on PDP-11

BSD versions developed on VAX

it offered better hardware support to implement OS features

Sun Microsystems used Motorola 68000 and then SPARC processor

Intel became a viable candidate after 80286

More development started after 80386

Linus Torvalds released Linux in 1991 (Intel 80386/80486)

5 / 42



UNIX Intro Processes File System Interprocess Communication History Overview Philosophy

Key Features

User level is a set of processes, the kernel does not place requirements on which
processes should run etc.

Command shell is one such process, and there can be many such command shells

Programs can easily spawn other programs, orchestrate them to achieve higher
level goals (e.g., make)

Interconnect programs through pipes

enabled by restricting to one file type (sequence of bytes)

Everything is a file

in particular, every device is a file

file permissions provide a universal access control mechanism

6 / 42



UNIX Intro Processes File System Interprocess Communication History Overview Philosophy

System Architecture/Organization

7 / 42



UNIX Intro Processes File System Interprocess Communication History Overview Philosophy

File System Organization

8 / 42



UNIX Intro Processes File System Interprocess Communication History Overview Philosophy

Process Lifecycle

9 / 42



UNIX Intro Processes File System Interprocess Communication History Overview Philosophy

Initial startup

10 / 42



UNIX Intro Processes File System Interprocess Communication History Overview Philosophy

Quotes

“The kernel is the only UNIX code that cannot be substituted by a user to his
own liking. For this reason, the kernel should make as few real decisions as
possible. This does not mean to allow the user a million options to do the
same thing. Rather, it means to allow only one way to do one thing, but have
that way be the least-common divisor of all the options that might have been
provided.”

— Thompson [1978]

“Throughout, simplicity has been substituted for efficiency. Complex algo-
rithms are used only if their complexity can be localized.

— Thompson [1978]

11 / 42



UNIX Intro Processes File System Interprocess Communication History Overview Philosophy

UNIX Philosophy [McIlroy et al. 1978]

Make each program do one thing well. To do a new job, build afresh rather than complicate
old programs by adding new “features.”

Expect the output of every program to become the input of another, as yet unknown,
program. Do not clutter output with extraneous information. Avoid stringently columnar or
binary input formats. Do not insist on interactive input.

Design and build software, even operating systems, to be tried early, ideally within weeks.
Do not hesitate to throw away the clumsy parts and rebuild them.

Use tools in preference to unskilled help to lighten a programming task, even if you have to
detour to build the tools and expect to throw some of them out after you have finished with
them.

UNIX provided the setting for numerous tools that have been critical in software:

make, awk, sed, lex, yacc, find, SCCS, ...
12 / 42



UNIX Intro Processes File System Interprocess Communication Virtual memory Fork and execve Wait and exit Scheduling Ownership and setuid

Processes

13 / 42



UNIX Intro Processes File System Interprocess Communication Virtual memory Fork and execve Wait and exit Scheduling Ownership and setuid

Processes

Process is a program in execution

Each process has a pid, owner, group and other attributes

Address space
Processes have separate virtual address spaces
But do share address space with kernel
Typically, upper half of address space used by the kernel

Memory isolation provides the basis of security

A process cannot access the memory of other processes

Access to kernel memory controlled by page permissions

Read/write/execute permissions set at the granularity of a page

14 / 42



UNIX Intro Processes File System Interprocess Communication Virtual memory Fork and execve Wait and exit Scheduling Ownership and setuid

Virtual memory

Each process has a logically separate address space
Virtual address translated to physical address on each memory access
Hardware needs to provide support for fast translation

Swap space: disk space for backing up pages that don’t fit into physical memory

Memory organized into pages (typically, 4KB each)
Reduces fragmentation and improves efficiency

Page fault: Processor exception when a page in not in physical memory
OS handles the exception transparently to bring this page into memory

Page replacement algorithms
Mostly, approximations of LRU (least recently used)

Page fault servicing overhead and thrashing
15 / 42



UNIX Intro Processes File System Interprocess Communication Virtual memory Fork and execve Wait and exit Scheduling Ownership and setuid

Virtual Memory Allocation

May be OS initiated ...

e.g., when a process is loaded, or when its stack grows

... or be requested by a process

older mechanism: brk and sbrk syscalls
more powerful: mmap syscall
Allows control over size, placement, page permissions, etc.

mprotect syscall allows permission changes on existing memory.

Don’t confuse between syscalls and user-level programs

Shell commands are user-level processes that make their own set of syscalls

16 / 42



UNIX Intro Processes File System Interprocess Communication Virtual memory Fork and execve Wait and exit Scheduling Ownership and setuid

Process Control Block (PCB)

Contains all process state that the OS needs to manage

Most of the information is the user structure
register values
Process suspension and resumption uses this info

uid, gid, current directory, ...
open file table
file descriptors are indices into this table

17 / 42



UNIX Intro Processes File System Interprocess Communication Virtual memory Fork and execve Wait and exit Scheduling Ownership and setuid

fork System Call
Copies user structure
So, child inherits uid/gid, open file descriptors, memory, ...
So, child is an exact copy of parent, except for return value of syscall (zero for child, pid of
child for parent)

Copying memory is expensive
vfork avoids needless copying of memory if the next action is execve
Code memory is shared, does not need copy
Modern systems use copy-on-write for data pages
So, only page tables need to be copied, not page.
vfork avoids this as well

Linux uses clone, a generalization that allows fine control
whether to create a thread or a process
whether to copy page tables, stack, data, ...

18 / 42



UNIX Intro Processes File System Interprocess Communication Virtual memory Fork and execve Wait and exit Scheduling Ownership and setuid

execve System Call

Used to replace calling process with a new program

All of the memory is overwritten

New executable is loaded

data pages are reinitialized as specified in the executable

command-line argument and environment variables passed in through the new process

stack

But file descriptors are still inherited

Unless explicitly closed before or after execve

Some fd’s have a close-on-exec flag

19 / 42



UNIX Intro Processes File System Interprocess Communication Virtual memory Fork and execve Wait and exit Scheduling Ownership and setuid

exit and wait System calls

Processes return a status code when they exit

Provided as an argument to the exit syscall

Parent receives this status when it waits on a child

Child cannot fully exit until parent collects this code

It is called a “zombie” in this state.

Parent should ensure that it collects the status, or else there is a resource leak

init process waits for orphaned children

processes whose parent already terminated

20 / 42



UNIX Intro Processes File System Interprocess Communication Virtual memory Fork and execve Wait and exit Scheduling Ownership and setuid

Process Scheduling

Processor time is split across running processes

Scheduler is responsible for stopping one process and giving a turn to the next process

But most of the time, a running process gets blocked on I/O, avoiding preemption

Variants of round-robin scheduling

Favors I/O bound computation (likely interactive)

Different variants of the algorithm based on process behavior

Process priority allows external control of these choices

UNIX lower numeric values for higher priority

Only root processes can have negative priority

21 / 42



UNIX Intro Processes File System Interprocess Communication Virtual memory Fork and execve Wait and exit Scheduling Ownership and setuid

Process ownership and setuid/setgid syscalls

Each process has a owner, a group owner

Represented by uid and gid

A root process can change its uid and gid

Processes can also have supplementary groups

Roughly speaking, access to a resource is granted if the uid or one of the gids are

permitted

Setuid permission bit allows uid change on execve

Process assumes the uid of the executable file’s owner

Perhaps the only feature of original UNIX that was patented

Allows normal users to access features that require privilege e.g., sudo

22 / 42



UNIX Intro Processes File System Interprocess Communication Virtual memory Fork and execve Wait and exit Scheduling Ownership and setuid

Effective, real and saved userids

Effective: all access checks use this id

Real: The “real” user, i.e., the user that logged in

After executing a setuid executable, real user remains the same, but effective user

becomes root.

Saved: under certain conditions, effective uid is saved in “saved uid”

A process is allowed to switch between its real, saved and effective userids.

Root processes need to be careful in relinquishing privileges: unless all three uids are set

to nonzero, the process can reacquire root privilege.

For fine grained control over different ids, use seteuid, setreuid and
setresuid instead of setuid.

23 / 42



UNIX Intro Processes File System Interprocess Communication Virtual memory Fork and execve Wait and exit Scheduling Ownership and setuid

Userid Vs Usernames

The file /etc/passwd maps userids to usernames

Kernel does not know or care about usernames

Kernel does not interpret userid’s either

With the sole exception of uid 0 (root, superuser)

Similarly, group names are specified in /etc/group: kernel only cares about gids.

Note: gid 0 has no special meaning

Note: /etc/passwd is a “public database,” readable by by any user on the system.

Encrypted passwords are in /etc/shadow that can be read only by the root.

24 / 42



UNIX Intro Processes File System Interprocess Communication Files and Inodes Links

File System

25 / 42



UNIX Intro Processes File System Interprocess Communication Files and Inodes Links

File

A file is simply a sequence of bytes.

The OS does not impose any structure

A departure from previous OSes that supported many file types, e.g., text, binary, records,

etc.

Directory: a special file that contains information about the location of files.

Path: a sequence of directory names followed by a file name

Tells the OS how to find the file.

Relative path: interpreted relative to current directory of process

Absolute path: interpreted relative to the root directory of the system

26 / 42



UNIX Intro Processes File System Interprocess Communication Files and Inodes Links

File implementation: Inodes

27 / 42



UNIX Intro Processes File System Interprocess Communication Files and Inodes Links

Process-related file system data

28 / 42



UNIX Intro Processes File System Interprocess Communication Files and Inodes Links

Key system calls

open: returns a file descriptor for reading/writing the file

read, write

mmap

lseek

chmod

chown

29 / 42



UNIX Intro Processes File System Interprocess Communication Files and Inodes Links

Link vs File

(Hard) Link is like a file name: it points to the actual file
There can be multiple (hard) links
No such thing as “the” name of a file

Symlink: a special file; content interpreted as name of another file/dir

Hard links cannot span file systems, but symlinks can

Lookups and caching

Path-to-file translation involves dereferencing many links

Caching links is essential for performance

Cycle prevention during lookup

Hard links to directories are not permitted

Symlinks to directories are permitted, so OS limits number of symlinks traversed:

prevents infinite loops 30 / 42



UNIX Intro Processes File System Interprocess Communication Files and Inodes Links

Link-related syscalls

rename

link, unlink

mkdir and rmdir

31 / 42



UNIX Intro Processes File System Interprocess Communication Pipes and socketpairs I/O Redirection Sockets Server design Signals

Interprocess Communication

32 / 42



UNIX Intro Processes File System Interprocess Communication Pipes and socketpairs I/O Redirection Sockets Server design Signals

Pipes and Socket pairs

Pipe is a unidirectional communication channel

pipe syscall returns a pair of fd’s: what is written into fd[1] can be read from fd[0]

socketpair is similar, but allows bidirectional communication

What is written into fd[0] can be read from fd[1] and vice-versa

33 / 42



UNIX Intro Processes File System Interprocess Communication Pipes and socketpairs I/O Redirection Sockets Server design Signals

How does I/O redirection work

Key point: application transparency

Application needs no special code to support redirection

Approach: by default, all applications read from fd 0, write to fd 1, and display
errors on fd 2.

To redirect input from a file, simply “rename” the fd to 0!

uses dup2(orig_fd, new_fd) syscall

To create a pipeline cat | wc

create a pipe with endpoints fd[0], fd[1]

fork: note that the child inherits these fds

parent: close(fd[0]); dup2(fd[1], 1); execve("/bin/cat", ...)

child: close(fd[1]); dup2(fd[0], 0); execve("/bin/wc", ...)
34 / 42



UNIX Intro Processes File System Interprocess Communication Pipes and socketpairs I/O Redirection Sockets Server design Signals

Socket Communication

Sockets may be used by servers or clients

Server’s steps:

create −→ bind −→ listen −→ accept −→ read/write

create, bind and listen operate on the same socket

accept returns a new socket

Client’s steps:

create −→ connect −→ read/write

no new fds are created

Datagram sockets use sendto and recvfrom

Connected sockets can use read/write or send/recv.
35 / 42



UNIX Intro Processes File System Interprocess Communication Pipes and socketpairs I/O Redirection Sockets Server design Signals

Server Design

Forking servers

Parent sets up server socket

accepts each connection

forks a child to handle the request

Single-threaded I/O multiplexing servers

Simultaneously wait for input from any of the clients using select or epoll

Process that client

Must ensure that no processing step takes too long

Multi-threaded servers

But concurrency is tricky, and programs can be buggy

36 / 42



UNIX Intro Processes File System Interprocess Communication Pipes and socketpairs I/O Redirection Sockets Server design Signals

Signals

37 / 42



UNIX Intro Processes File System Interprocess Communication Pipes and socketpairs I/O Redirection Sockets Server design Signals

Signals Vs Exceptions

Signal is a exception-related control-flow mechanism

Modelled after hardware interrupts

1. Suspend current processing

2. Serice interrupt in a signal handler

3. Return to original code, resume execution

Contrast with exception handling in programming languages

1. Abandon execution of code that caused the error

2. Unwind call stack until you reach a handler for the exception

3. Execute the (recovery) code in this handler, continue execution

Resumption approach is a good match for many signals (e.g., SIGALRM, SIGPIPE),
but not all (e.g., SIGSEGV).

38 / 42



UNIX Intro Processes File System Interprocess Communication Pipes and socketpairs I/O Redirection Sockets Server design Signals

Key Signals

SIGKILL, SIGTERM, SIGINT, SIGQUIT, SIGSTOP, SIGSTP, SIGCONT: Process
control (stop, interrupt, resume or kill process)

SIGSEGV, SIGBUS: illegal memory access

SIGFPE, SIGILL, SIGABRT: other low-level errors

SIGCHLD: child exited

SIGALRM: timer interrupt

SIGPIPE, SIGHUP, SIGTTIN, SIGTTOU, SIGIO, SIGPOLL, SIGURG: input/output
related condition

SIGSYS: bad (or denied) system call

SIGUSR1, SIGUSR2: user-defined; unused by OS. 39 / 42



UNIX Intro Processes File System Interprocess Communication Pipes and socketpairs I/O Redirection Sockets Server design Signals

Signal generation, delivery and handling

Synchronous signals: signal caused by program execution

Asynchronous signals: generated due to external events
Any process can send signal to another process (or itself) using kill syscall.
Sender should have permission (belong to same process group)

Some signals are generated from the keyboard

Handlers: SIG_IGN (ignore), SIG_DFL (default handler) and user-defined handlers

Handlers installed using signal or sigaction syscalls

Signal handlers use a stack that is logically distinct from the program stack

Normally, this stack is at the top of program stack; change using sigaltstack

Signals can be blocked (i.e., delayed)

But there is no queue: at most one instance of signal can be pending
40 / 42



UNIX Intro Processes File System Interprocess Communication Pipes and socketpairs I/O Redirection Sockets Server design Signals

Signal Handler Issues

Need care because handlers execute concurrently with the program

Not safe to call arbitrary library functions

Call only async-signal-safe functions

Nested handler invocations are possible

Handlers can block signals to reduce (but not eliminate) the critical section problem

Solution

Keep it simple: set some global flag, let the program handle the problem when it is ready.

Follow best practices

41 / 42



UNIX Intro Processes File System Interprocess Communication Pipes and socketpairs I/O Redirection Sockets Server design Signals

Recovering from serious errors

If you take exceptional care, programs can recover from serious errors through
signal-handling.

Prepare for recovery by setting up a recovery context using setjmp.

You cannot use C++ exceptions inside signal handlers

Set up a signal handler for SEGV, SYS, etc.

Use longjmp to jump to the recovery context

Make sure you don’t leak resources

42 / 42


	UNIX Intro
	History
	Overview
	Philosophy

	Processes
	Virtual memory
	Fork and execve
	Wait and exit
	Scheduling
	Ownership and setuid

	File System
	Files and Inodes
	Links

	Interprocess Communication
	Pipes and socketpairs
	I/O Redirection
	Sockets
	Server design
	Signals


