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Expression evaluation

Order of evaluation

For the abstract syntax tree

+

5+

+

42

+

3x

the equivalent expression is (x + 3) + (2 + 4) + 5
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Expression evaluation (Continued)

One possible semantics:

evaluate AST bo�om-up, le�-to-right.

This constrains optimization that uses mathematical properties of operators

(e.g. commutativity and associativity)

e.g.,it may be preferable to evaluate of e1+(e2+e3)instead of (e1+e2)+e3

(x+0)+(y+3)+(z+4)=>x+y+z+0+3+4=>x+y+z+7

the compiler can evaluate 0+3+4 at compile time, so that at runtime, we have two fewer

addition operations.
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Expression evaluation (Continued)

Some languages leave order of evaluation unspecified.

order of evaluation of procedure parameters are also unspecified.

Problem:

Semantics of expressions with side-e�ects, e.g., (x++) + x
If initial value of x is 5

le�-to-right evaluation yields 11 as answer, but
right-to-le� evaluation yields 10

So, languages with expressions with side-e�ects forced to specify evaluation order

Still, a bad programming practice to use expressions where di�erent orders of
evaluation can lead to di�erent results

Impacts readability (and maintainability) of programs
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Le�-to-right evaluation

Le�-to-right evaluation with short-circuit semantics is appropriate for boolean
expressions.

e1&&e2: e2 is evaluated only if e1 evaluates to true.
e1||e2: e2 is evaluated only if e1 evaluates to false.

This semantics is convenient in programming:

Consider the statement: if((i<n) && a[i]!=0)

With short-circuit evaluation, a[i] is never accessed if i>= n

Another example: if ((p!=NULL) && p->value>0)
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Le�-to-right evaluation (Continued)

Disadvantage:

In an expression like “if((a==b)||(c=d))”

The second expression has a statement. The value of c may or may not be the value of d,

depending on if a == b is true or not.

Bo�om-up:

No order specified among unrelated subexpressions.

Short-circuit evaluation of boolean expressions.

Delayed evaluation

Delay evaluation of an expressions until its value is absolutely needed.

Generalization of short-circuit evaluation.
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Control Statements

Structured Control Statements:

Case Statements:

Implementation using if-then-else

Understand semantics in terms of the semantics of simple constructs

actual implementation in a compiler

Loops

while, repeat, for
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If-Then-Else

If-then-else. It is in two forms:

if cond then s1 else s2

if cond then s1

evaluate condition: if and only if evaluates to true, then evaluate s1 otherwise
evaluate s2.
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Case (Switch) Statement

Case statement
switch(<expr>){

case <value> :

case <value> :

...

default :

}

Evaluate “<expr>” to get value v. Evaluate the case that corresponds to v.

Restriction:

“<value>” has to be a constant of an original type e.g., int, enum

Why?
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Implementation of case statement

Naive algorithm:

Sequential comparison of value v with case labels.

This is simple, but ine�icient. It involves O(N) comparisons

switch(e){

case 0:s0;

case 1:s1;

case 2:s2;

case 3:s3;

}

can be translated as:
v = e;

if (v==0) s0;

else if (v == 1) s1;

else if (v == 2) s2;

else if (v == 3) s3;
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Implementation of case statement (Continued)

Binary search:

O(log N) comparisons, a drastic improvement

over sequential search for large N.

Using this, the above case statement can be translated as
v = e;

if (v<=1)

if (v==0) s0;

else if (v==1) s1;

else if (v>=2)

if (v==2) s2;

else if (v==3) s3;
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Implementation of case statement (Continued)

Another technique is to use hash tables.

This maps the value v to the case label that corresponds to the value v.

This takes constant time (expected).
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Control Statements (contd.)
while:

let s1 = while C do S

then it can also be wri�en as

s1 = if C then {S; s1}

repeat:

let s2 = repeat S until C

then it can also be wri�en as

s2 = S; if (!C) then s2

loop

let s = loop S end

its semantics can be understood as S; s

S should contain a break statement, or else it won’t terminate.
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For-loop

Semantics of for (S2; C; S3) S can be specified in terms of while:

S2; while C do { S; S3 }

In some languages, additional restrictions imposed to enable more e�icient code

Value of index variable can’t change loop body, and is undefined outside the loop

Bounds may be evaluated only once
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Unstructured Control Flow

Unstructured control transfer statements (goto) can make programs hard to
understand:
40:if (x > y) then goto 10

if (x < y) then goto 20

goto 30

10:x = x - y

goto 40

20:y = y -x

goto 40

30:gcd = x
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Unstructured Control Flow (Continued)

Unstructured control transfer statements (goto) can make programs hard to
understand:
40:if (x > y) then goto 10

if (x < y) then goto 20

goto 30

10:x = x - y

goto 40

20:y = y -x

goto 40

30:gcd = x

Equivalent program with structured control statements is easier to understand:
while (x!=y) {

if (x > y) then x=x-y

else y=y-x

}
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Control Statements (contd.)

goto should be used in rare circumstances

e.g., error handling.

Java doesn’t have goto. It uses labeled break instead:
l1: for ( ... ) {

while (...) {

....

break l1

}

}

break l1 causes exit from loop labeled with l1

17 / 83

R

R

R

R

R

R

R



If-Then-Else Parameter Passing Mechanisms

Control Statements (contd.)

Restrictions in use of goto:

jumps across procedures

jumps from outer blocks to inner blocks or unrelated blocks

goto l1;

if (...) then {

int x;

x = 5;

l1: y = x*x;

}

Jumps from inner to outer blocks are permi�ed.

18 / 83

R

R

R

R

R

R

R

R

R

R

R

R

R



If-Then-Else Parameter Passing Mechanisms

Control Statements (Continued)

Procedure calls:

Communication between the calling and the called procedures takes place via parameters.

Semantics:

substitute formal parameters with actual parameters
rename local variables so that they are unique in the program

In an actual implementation, we will simply look up the local variables in a di�erent
environment (callee’s environment)
Renaming captures this semantics without having to model environments.

replace procedure call with the body of called procedure
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Parameter-passing semantics

Call-by-value

Call-by-reference

Call-by-value-result

Call-by-name

Call-by-need

Macros
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Call-by-value

Evaluate the actual parameters

Assign them to corresponding formal parameters

Execute the body of the procedure.
int p(int x) {

x =x +1 ;

return x ;

}

An expression y = p(5+3) is executed as follows:

evaluate 5+3 = 8, call p with 8, assign 8 to x, increment x, return x which is assigned to y.
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Call-by-value (Continued)

Preprocessing

create a block whose body is that of the procedure being called

introduce declarations for each formal parameter, and initialize them with the values of

the actual parameters

Inline procedure body

Substitute the block in the place of procedure invocation statement.
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Call-by-value (Continued)

Example:
int z;

void p(int x){

z = 2*x;

}

main(){

int y;

p(y);

}

Replacing the invocation p(y) as
described yields:
int z;

main(){

int y;

{

int x1=y;

z = 2*x1;

}

}
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“Name Capture”

Same names may denote di�erent entities in the called and calling procedures

To avoid name clashes, need to rename local variables of called procedure

Otherwise, local variables in called procedure may be confused with local variables of

calling procedure or global variables
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Call-by-value (Continued)

Example:
int z;

void p(int x){

int y = 2;

z = y*x;

}

main(){

int y;

p(y);

}

A�er replacement:
int z;

main(){

int y;

{

int x1=y;

int y1=2;

z = y1*x1;

}

}
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Call-by-reference

Evaluate actual parameters (must have l-values)

Assign these l-values to formal parameters

Execute the body.
int z = 8;

y=p(z);

A�er the call, y and z will both have value 9.

Call-by-reference supported in C++, but not in C

E�ect realized by explicitly passing l-values of parameters using “&” operator
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Call-by-reference (Continued)

Explicit simulation in C provides a clearer understanding of the semantics of
call-by-reference:
int p(int *x){

*x = *x + 1;

return *x;

}

...

int z;

y= p(&z);
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Call-By-Reference (Continued)

Example:
int z;

void p(int x){

int y = 2;

z = y*x;

}

main(){

int y;

p(y);

}

A�er replacement:
int z;

main(){

int y;

{

int& x1=y;

int y1=2;

z = y1*x1;

}

}
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Call-by-value-result

Works like call by value but in addition, formal parameters are assigned to actual
parameters at the end of procedure.
void p (int x, int y) {

x = x +1;

y = y+ 1;

}

...

int a = 3;

p(a, a) ;

A�er the call, a will have the value 4, whereas with call-by- reference, a will have
the value 5.
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Call-by-value-result (Continued)

The following is the equivalent of call-by-value-result call above:
x = a; y =a ;

x = x +1 ;

y =y +1 ;

a =x ; a =y ;

thus, at the end, a = 4.
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Call-By-Value-Result (Continued)

Example:
void p(int x, y){

x = x + 1;

y = y + 1;

}

main(){

int u = 3;

p(u,u);

}

A�er replacement:
main(){

int u = 3;

{

int x1 = u;

int y1 = u;

x1 = x1 + 1;

y1 = y1 + 1;

u = x1; u = y1;

}

}
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Call-by-Name

Instead of assigning l-values or r-values, CBN works by substituting actual
parameter expressions in place of formal parameters in the body of callee

Preprocessing:

Substitute formal parameters in procedure body by actual parameter expressions.

Rename as needed to avoid “name capture”

Inline:

Substitute the invocation expression with the modified procedure body.
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Call-By-Name (Continued)

Example:
void p(int x, y){

if (x==0)

then x=y;

else{

x=y+1;

}

}

main(){

int u=5; int v=0;

p(v,u/v);

}

A�er replacement:
main(){

int u=5; int v=0;

{

if (v==0)

then v=u/v;

else{

v=u/v+1;

}

}

}
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Call-By-Need

Similar to call-by-name, but the actual parameter is evaluated at most once
Has same semantics as call-by-name in functional languages

This is because the value of expressions does not change with time

Has di�erent semantics in imperative languages, as variables involved in the actual

parameter expression may have di�erent values each time the expression is evaluated in

C-B-Name
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Macros

Macros work like CBN, with one important di�erence:

No renaming of “local” variables

This means that possible name clashes between actual parameters and variables in
the body of the macro will lead to unexpected results.
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Macros (Continued)

given
#define sixtimes(y) {int z=0; z = 2*y; y = 3*z;}

main() {

int x=5, z=3;

sixtimes(z);

}

A�er macro substitution, we get the program:
main(){

int x=5,z=3;

{int z=0; z = 2*z; z = 3*z;}

}
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Macros (Continued)

It is di�erent from what we would have got with CBN parameter passing.

In particular, the name confusion between the local variable z and the actual
parameter z would have been avoided, leading to the following result:

main() {

int x = 5, z = 3;

{

int z1=0; // z renamed as z1

z1 = 2*z; // y replaced by z without

z = 3*z1; // confusion with original z

}

}
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Di�iculties in Using Parameter Passing Mechanisms

CBV: Easiest to understand, no di�iculties or unexpected results.

CBVR:

When the same parameter is passed in twice, the end result can di�er depending on the

order in which formals are assigned back to the actual parameters.

Otherwise, relatively easy to understand.
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Di�iculties With CBVR (Continued)

Example:
int f(int x, int y) {

x=4;

y=5;

}

void g() {

int z;

f(z, z);

}

If assignment of formal parameter values to actual parameters were performed le�
to right, then z would have a value of 5.

If they were performed right to le�, then z will be 4.
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Di�iculties in Using CBR

Aliasing can create problems.
int rev(int a[], int b[], int size) {

for (int i = 0; i < size; i++)

a[i] = b[size-i-1];

}

The above procedure will normally copy b into a, while reversing the order of
elements in b.

However, if a and b are the same, as in an invocation rev(c,c,4), the result is quite
di�erent.

If c is 1,2,3,4 at the point of call, then its value on exit from rev will be 4,3,3,4.
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Di�iculties in Using CBN

CBN is complicated, and can be confusing in the presence of side-e�ects.

actual parameter expression with side-e�ects:
void f(int x) {

int y = x;

int z = x;

}

main() {

int y = 0;

f(y++);

}

Note that a�er a call to f, y’s value will be 2 rather than 1.
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Di�iculties in Using CBN (Continued)

If the same variable is used in multiple parameters.
void swap(int x, int y) {

int tp = x;

x = y;

y = tp;

}

main() {

int a[] = {1, 1, 0};

int i = 2;

swap(i, a[i]);

}

When using CBN, by replacing the call to swap by the body of swap: i will be 0, and
a will be 2, 1, 0.
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Di�iculties in Using Macro

Macros share all of the problems associated with CBN.

In addition, macro substitution does not perform renaming of local variables,
leading to additional problems.
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Components of Runtime Environment (RTE)

Static area: allocated at load/startup time.

Examples: global/static variables and load-time constants.

Stack area: for execution-time data that obeys a last-in first-out lifetime rule.

Examples: nested declarations and temporaries.

Heap: a dynamically allocated area for “fully dynamic” data, i.e. data that does not
obey a LIFO rule.

Examples: objects in Java, lists in OCaml.
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Languages and Environments

Languages di�er on where activation records must go in the environment:
(Old) Fortran is static: all data, including activation records, are statically allocated.

Each function has only one activation record — no recursion!

Functional languages (Scheme, ML) and some OO languages (Smalltalk) are
heap-oriented:

almost all data, including AR, allocated dynamically.

Most languages are in between: data can go anywhere

ARs go on the stack.
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Procedures and the environment

An Activation Record (AR) is created for each invocation of a procedure

Structure of AR:

Direction of stack 
growth

Return address

Actual parameters

Saved BP (control link)

Temporary variables

Base
Pointer

Return value

Local variables
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Access to Local Variables

Local variables are allocated at a fixed o�set on the stack
Accessed using this constant o�set from BP

Example: to load a local variable at o�set 8 into the EBX register (x86 architecture)
mov 0x8(%ebp),%ebx

Example:

{int x; int y;

{ int z; }

{ int w; }

}
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Steps involved in a procedure call

Caller

Save registers
Evaluate actual parameters, push on the stack

Push l-values for CBR, r-values in the case of CBV

Allocate space for return value on stack (unless return is through a register)

Call: Save return address, jump to the beginning of called function

Callee

Save BP (control link field in AR)

Move SP to BP

Allocate storage for locals and temporaries (Decrement SP)

Local variables accessed as [BP-k], parameters using [BP+l]
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Steps in return

Callee

Copy return value into its location on AR

Increment SP to deallocate locals/temporaries

Restore BP from Control link

Jump to return address on stack

Caller

Copy return values and parameters

Pop parameters from stack

Restore saved registers
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Example (C):

int x;

void p(int y){

int i = x;

char c; ...

}

void q (int a){

int x;

p(1);

}

main(){

q(2);

return 0;

}
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Non-local variable access

Requires that the environment be able to identify frames representing enclosing
scopes.

Using the control link results in dynamic scope (and also kills the fixed-o�set
property).

If procedures can’t be nested (C), the enclosing scope is always locatable:

it is global/static (accessed directly)

If procedures can be nested (Ada, Pascal), to maintain lexical scope a new link must
be added to each frame:

access link, pointing to the activation of the defining environment of each procedure.
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Access Link vs Control Link
Control Link is a reference to the AR of the caller

Access link is a reference to the AR of the surrounding scope

Dynamic Scoping: When an identifier is not found in the current AR, use control link to

access caller’s AR and look up the name there

If not found, keep walking up the control links until name is found

Static Scoping: When an identifier is not found in the AR of the current function, use

access link to get to AR for the surrounding scope and look up the name there

If not found, keep walking up the access links until the name is found.

Note: Except for top-level functions, access links correspond to function scopes, so they

cannot be determined statically

They need to be “passed in” like a parameter.
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Access Link vs Control Link
Control Link is a reference to the AR of the caller

Access link is a reference to the AR of the surrounding scope

Dynamic Scoping: When an identifier is not found in the current AR, use control link to

access caller’s AR and look up the name there

If not found, keep walking up the control links until name is found

Static Scoping: When an identifier is not found in the AR of the current function, use

access link to get to AR for the surrounding scope and look up the name there

If not found, keep walking up the access links until the name is found.

Note: Except for top-level functions, access links correspond to function scopes, so they

cannot be determined statically

They need to be “passed in” like a parameter.

53 / 83



If-Then-Else Parameter Passing Mechanisms

Access Link vs Control Link
Control Link is a reference to the AR of the caller

Access link is a reference to the AR of the surrounding scope

Dynamic Scoping: When an identifier is not found in the current AR, use control link to

access caller’s AR and look up the name there

If not found, keep walking up the control links until name is found

Static Scoping: When an identifier is not found in the AR of the current function, use

access link to get to AR for the surrounding scope and look up the name there

If not found, keep walking up the access links until the name is found.

Note: Except for top-level functions, access links correspond to function scopes, so they

cannot be determined statically

They need to be “passed in” like a parameter.
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Access Link vs Control Link
Control Link is a reference to the AR of the caller

Access link is a reference to the AR of the surrounding scope

Dynamic Scoping: When an identifier is not found in the current AR, use control link to

access caller’s AR and look up the name there

If not found, keep walking up the control links until name is found

Static Scoping: When an identifier is not found in the AR of the current function, use

access link to get to AR for the surrounding scope and look up the name there

If not found, keep walking up the access links until the name is found.

Note: Except for top-level functions, access links correspond to function scopes, so they

cannot be determined statically

They need to be “passed in” like a parameter.
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Access Link Vs Control Link: Example

int q(int x) {

int p(int y) {

if (y==0)

return x+y;

else {

int x = 2*p(y-1);

return x;

}

}

return p(3);

}

If p used its caller’s BP to access x, then it ends up accessing

the variable x defined within p

This would be dynamic scoping.

To get static scoping, access should use q’s BP

Access link: q explicitly passes a link to its BP

Calls to self: pass access link without change.

Calls to immediately nested functions: pass your BP

Calls to outer functions: Follow your access link to find the

right access link to pass

Other calls: these will be invalid (like goto to an inner block)
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Supporting Closures

Closures are needed for

Call-by-name and lazy evaluation

Returning dynamically constructed functions containing references to variables in

surrounding scope

Variables inside closures may be accessed long a�er the functions defining them
have returned

Need to “copy” variable values into the closure, or
Not free the AR of functions when they return,

i.e., allocate ARs on heap and garbage collect them
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Exception Handling

Example:

int fac(int n) {

if (n <= 0) throw (-1) ; else if (n > 15) throw ("n too large");

else return n*fac(n-1); }

void g (int n) {

int k;

try { k = fac (n) ;}

catch (int i) { cout << "negative value invalid" ; }

catch (char *s) { cout << s; }

catch (...) { cout << "unknown exception" ;}

g(-1) will print “negative value invalid”, g(16) will print “n too large”

If an unexpected error were to arise in evaluation of fac or g, such as running out of

memory, then “unknown exception” will be printed.
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Exception Vs Return Codes

Exceptions are o�en used to communucate error values from a callee to its caller.
Return values provide alternate means of communicating errors.
Example use of exception handler:
float g (int a, int b, int c) {

float x = fac(a) + fac(b) + fac(c) ; return x ; }

main() {

try { g(-1, 3, 25); }

catch (char *s) { cout << "Exception ‘" << s << "’raised, exiting\n"; }

catch (...) { cout << "Unknown exception, eixting\n";

}

We do not need to concern ourselves with every point in the program where an
error may arise.
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Exception Vs Return Codes (Continued)

float g(int a, int b, int c) {

int x1 = fac(a);

if (x1 > 0) {

int x2 = fac(b);

if (x2 > 0) {

int x3 = fac(c);

if (x3 > 0)

return x1 + x2 + x3;

else return x3;

}

else return x2;

}

else return x1;

}

main() {

int x = g(-1, 2, 25);

if (x < 0) { /* identify where error occurred, print */ }

}

Assume that fac returns 0 or a
negative number to indicated errors

If return codes were used to indicate
errors, then we are forced to check
return codes (and take appropriate
action) at every point in code.
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Use of Exceptions in C++ Vs Java

In C++, exception handling was an a�er-thought.

Earlier versions of C++ did not support exception handling.

Exception handling not used in standard libraries

Net result: continued use of return codes for error-checking

In Java, exceptions were included from the beginning.

All standard libraries communicate errors via exceptions.

Net result: all Java programs use exception handling model for error-checking, as opposed

to using return codes.
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Implementation of Exception Handling

Exception handling can be implemented by adding “markers” to ARs to indicate the points

in program where exception handlers are available.

In C++, entering a try-block at runtime would cause such a marker to be put on the stack

When exception arises, the RTE gets control and searches down from stack top for a marker.

Exception then "handed" to the catch statement of this try-block that matches the exception

If no matching catch statement is present, search for a marker is continued further down

the stack, and the whole process is repeated.
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Memory Allocation

A variable is stored in memory at a location corresponding to the variable.

Constants do not need to be stored in memory.

Environment stores the binding between variable names and the corresponding
locations in memory.

The process of se�ing up this binding is known as storage allocation.
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Static Allocation

Allocation performed at compile time.

Compiler translates all names to corresponding location in the code generated by it.

Examples:

all variables in original FORTRAN

all global and static variables in C/C++/Java
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Stack Allocation

Needed in any language that supports the notion of local variables for procedures.

Also called “automatic allocation”, but this is somewhat of a misnomer now.

Examples: all local variables in C/C++/Java procedures and blocks.

Implementation:

Compiler translates all names to relative o�sets from a location called the “base pointer”

or “frame pointer”.

The value of this pointer varies will, in general, be di�erent for di�erent procedure

invocations
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Stack Allocation (Continued)

The pointer refers to the base of the “activation record” (AR) for an invocation of a
procedure.

The AR holds such information as parameter values, local variables, return address,
etc.
int fact(int n){

if n=0 then 1

else{

int rv = n*fact(n-1);

return rv;

}

}

main(){

fact(5);

}
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Stack Allocation (Continued)

An activation record is created on the stack for each a call to function.

The start of activation record is pointed to by a register called BP.

On the first call to fact, BP is decremented to point to new activation record, n is
initialized to 5, rv is pushed but not initialized.

New activation record is created for the next recursive call and so on.

When n becomes 0, stack is unrolled where successive rv’s are assigned the value of
n at that stage and the rv of previous stage.

71 / 83



If-Then-Else Parameter Passing Mechanisms

Heap Management

Issues

No LIFO property, so management is di�icult

Fragmentation

Locality

Models
explicit allocation, free

e.g., malloc/free in C, new/delete in C++
explicit allocation, automatic free

e.g., Java
automatic allocation, automatic free

e.g., Lisp, OCAML, Python, JavaScript
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Fragmentation

Internal fragmentation: When asked for x bytes, allocator returns y > x bytes

y − x represents internal fragmentation

External fragmentation: When (small) free blocks of memory occur in between (i.e.,
external to) allocated blocks

the memory manager may have a total of M � N bytes of free memory
available, but no contiguous block larger enough to satisfy a request of size N .

73 / 87

R

R

R

R

R

R

R

R



If-Then-Else Parameter Passing Mechanisms

Fragmentation

74 / 87

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R



If-Then-Else Parameter Passing Mechanisms

Approaches for Reducing Fragmentation

Use blocks of single size (early LISP)

Limits data-structures to use less e�icient implementations.

Use bins of fixed sizes, e.g., 2n for n = 0, 1, 2, ...

When you run out of blocks of a certain size, break up a block of next available size

Eliminates external fragmentation, but increases internal fragmentation

Maintain bins as LIFO lists to increase locality

malloc implementations (Doug Lea)

For small blocks, use bins of size 8k bytes, 0 < k < 64

For larger blocks, use bins of sizes 2n for n > 9
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Coalescing

What if a program allocates many 8 byte chunks, frees them all and then requests
lots of 16 byte chunks?

Need to coalesce 8-byte chunks into 16-byte chunks
Requires additional information to be maintained

for allocated blocks: where does the current block end, and whether the next block is free
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Coalescing
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Explicit Vs Automatic Management

Explicit memory management can be more e�icient, but takes a lot of programmer
e�ort

Programmers o�en ignore memory management early in coding, and try to add it
later on

But this is very hard, if not impossible

Result:
Majority of bugs in production code is due to memory management errors

Memory leaks
Null pointer or uninitalized pointer access
Access through dangling pointers
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Managing Manual Deallocation

How to avoid errors due to manual deallocation of memory

Never free memory‼!
Use a convention of object ownership (owner responsible for freeing objects)

Tends to reduce errors, but still requires a careful design from the beginning. (Cannot ignore
memory deallocation concerns initially and add it later.)

Smart data structures, e.g., reference counting objects
Region-based allocation

When a collection of objects having equal life time are allocated
Example: Apache web server’s handling of memory allocations while serving a HTTP request
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Garbage Collection

Garbage collection aims to avoid problems associated with manual deallocation

Identify and collect garbage automatically

What is garbage?

Unreachable memory

Automatic garbage collection techniques have been developed over a long time

Since the days of LISP (1960s)
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Garbage Collection Techniques

Reference Counting

Works if there are no cyclic structures

Mark-and-sweep

Generational collectors

Issues

Overhead (memory and space)

Pause-time

Locality
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Reference Counting

Each heap block maintains a count of the number of pointers referencing it.

Each pointer assignment increments/decrements this count

Deallocation of a pointer variable decrements this count

When reference count becomes zero, the block can be freed
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Reference Counting (Continued)

Disadvantages:

Does not work with cyclic structures
May impact locality
Increases cost of each pointer update operation

Advantages:

Overhead is predictable, fixed
Garbage is collected immediately, so more e�icient use of space
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Reference Counting
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Mark-and-Sweep

Mark every allocated heap block as “unreachable”

Start from registers, local and global variables

Do a depth-first search, following the pointers

Mark each heap block visited as “reachable”

At the end of the sweep phase, reclaim all heap blocks still marked as unreachable
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Mark-and-Sweep
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Garbage Collection Issues

Memory fragmentation

Memory pages may become sparsely populated

Performance will be hit due to excessive virtual memory usage and page faults
Can be a problem with explicit memory management as well

But if a programmer is willing to put in the e�ort, the problem can be managed by freeing
memory as soon as possible

Solution:
Compacting GC

Copy live structures so that they are contiguous

Copying GC
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Copying Garbage Collection

Instead of doing a sweep, simply copy over all reachable heap blocks into a new area

A�er the copying phase, all original blocks can be freed

Now, memory is compacted, so paging performance will be much be�er

Needs up to twice the memory of compacting collector, but can be much faster

Reachable memory is o�en a small fraction of total memory
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Copying Garbage Collection
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Generational Garbage Collection

Take advantage of the fact that most objects are short-lived

Exploit this fact to perform GC faster

Idea:

Divide heap into generations

If all references go from younger to older generation (as most do), can collect youngest

generation without scanning regions occupied by other generations

Need to track references from older to younger generation to make this work in all cases
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Garbage collection in Java

Generational GC for young objects

“Tenured” objects stored in a second region

Use mark-and-sweep with compacting

Makes use of multiple processors if available

References
http://java.sun.com/javase/technologies/hotspot/gc/gc_tuning_6.html

http://www.ibm.com/developerworks/java/library/j-jtp11253/
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GC for C/C++: Conservative Garbage Collection

Cannot distinguish between pointers and nonpointers

Need “conservative garbage collection”

The idea: if something “looks” like a pointer, assume that it may be one!
Problem: works for finding reachable objects, but cannot modify a value without being
sure

Copying and compaction are ruled out!

Reasonable GC implementations are available, but they do have some drawbacks

Unpredictable performance

Can break some programs that modify pointer values before storing them in memory
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Implementation Aspects of OO-Languages

 Allocation of space for data members: The space for data 
members is laid out the same way it is done for structures 
in C or other languages. Specifically:
• The data members are allocated next to each other.

• Some padding may be required in between fields, if the underlying 
machine architecture requires primitive types to be aligned at 
certain addresses.

• At runtime, there is no need to look up the name of a field and 
identify the corresponding offset into a structure; instead, we can 
statically translate field names into relative addresses, with 
respect to the beginning of the object.

• Data members for a derived class immediately follow the data 
members of the base class

• Multiple inheritance requires more complicated handling, we  will 
not discuss it here
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Implementation Aspects of OO-Languages

class B {

      int i; double d; 

      char c; float f; }

                      0                                     // Integer requires 4 bytes

                      4                                     // pad,

                      8                                     // Double requires 8 bytes  

                                       

                    16                                     // char needs 1 byte, 3 are padded

                    20                                     // float to be aligned on 4-byte

                                                                   // require 4-bytes of space

float f 

char c|XXXXX

double d 

XXXXXXXXXXX 

int i 
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Implementation Aspects of OO-Languages

class C {                                        0

   int k, l; B b;                                  

}                                                     4

        

                                                      8

                                                    12

                                                    16

                                                    24 

                                                    28
 float f

 char c|XXXXX

double d 

 XXXXXXXXXXX

int i 

 int l 

int k 
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Implementation Aspects of OO-Languages

class D: public C {                         0

   double x;    

}                                                     4

                                                      8

                                                    12

                                                    16

                                                     

                                                    24

                                                    28

                                                    32  double x 

 float f

 char c|XXXXX

 double d 

 XXXXXXXXXXX 

 int i

 int l

 int k 
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Implementation of Virtual Functions

Approach 1: 

• Lookup type info at runtime, and then call the 
function defined by that type.

• Problem: very expensive, require type info to 
be maintained at runtime.
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Implementation of Virtual 
Functions(Contd.)

 Approach 2: 
• Treat function members like data members: 

• Allocate storage for  them within the object. 

• Put a pointer to the function in this location, and translate calls 
to the function to make an indirection through this field.

• Benefit: 
• No need to maintain type info at runtime. 

• Implementation of virtual methods is fast.

• Problem: 
• Potentially lot of space is wasted for each object.

• Even though all objects of the same class have identical 
values for the table.

   

R

R



 7

Implementation of Virtual 
Functions(Contd.)

Approach 3: 

• Introduce additional indirection into approach 
2.

• Store a pointer  to a table in the object, and this 
table holds the actual pointers to virtual 
functions. 

• Now we use only one word of storage in each 
object.
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Implementation of Virtual 
Functions(Contd.)

class B {

   int i ;

   char c ;

   virtual void g();

   virtual void h();

  }

B b1, b2;

i

c

VMT ptr

i

c

VMT ptr

Ptr to B’s g

Ptr to B’s h
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Impact of subtype principle on 

Implementation 
 The subtype principle requires that any piece of code 

that operates on an object of type B can work "as is" 
when given an object belonging to a subclass of B. 

 This implies that runtime representation used for 
objects of a subtype A must be compatible with those 
for objects of the base type B. 

 Note that the way the fields of an object are accessed 
at runtime is using an offset from the start address for 
the object. 
• For instance, b1.i will be accessed using an expression 

of the form *(&b1+0), where 0 is the offset 
corresponding to the field i. 

• Similarly, the field b1.c will be accessed using the 
expression *(&b1+1)
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Impact of subtype principle on 
Implementation (Contd.)

 an invocation of the virtual member function  
b1.h() will be implemented at runtime using 
an instruction of the form:

   call *(*(&b1+2)+1)
• &b1+2 gives the location where the VMT ptr is 

located

• *(&b1+2) gives the value of the VMT ptr, which 
corresponds  to the location of the VMT table

•  *(&b1+2) + 1 yields the location within the VMT 
table where the  pointer to virtual function h is 
stored. 
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Impact of subtype principle on 
Implementation (Contd.)

 The subtype principle imposes the following 
constraint:
• Any field of an object of type B must be stored at 

the same offset from the base of any object that 
belongs to a subtype of B.

• The VMT ptr must be present at the same offset 
from the base of any object of type B or one of 
its subclasses.

• The location of virtual function pointers within the 
VMT should remain  the same for all virtual 
functions of B across all subclasses of B.
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Impact of subtype principle on 
Implementation (Contd.)

 We must use the following layout for an object of type A 
defined as follows:

  class A: public B {
      float f;

      void h(); // reuses implementation of G from B;

      virtual void k();}

   A a;

 Float f

 VMT ptr

     c

     i

a’s layout

Ptr to A’s k

Ptr to A’s h

Ptr to B’s g

Virtual Method Table 
(VMT)for class A 
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Impact of subtype principle on 
Implementation (Contd.)

 In order to satisfy the constraint that VMT ptr 
appear at the same position in objects of type A 
and B, it is necessary for the data field f in A to 
appear after the VMT field.

 A couple of other points:
• a) non-virtual functions are statically dispatched, so 

they do not  appear in the VMT table

• b) when a virtual function f is NOT redefined in a 
subclass, the VMT table  for that class is initialized with 
an entry to the function f defined its superclass.
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