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CSE 504

Course Summary
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Organization of a Compiler
 Lexical analysis
 Parsing (syntax analysis) 
 Abstract Syntax Tree (AST)
 Semantic Analysis (type checking etc.)
 Syntax-directed definitions (attribute grammars)
 Intermediate code generation
 Code optimization
 Final code generation
 Runtime Environment
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Lexical Analysis: Foundations
 Token, Lexeme, Pattern, String
 Regular expressions

• Syntax, semantics

• Finite-state automata

• NFA vs DFA

• Recognition using NFA

• NFA to DFA translation

• Optimization of DFAs

• Properties of regular languages

• Closed under complementation, union, intersection

• RE to FSA translation

• RE  NFA  DFA  optimal DFA

• Direct construction of DFA
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Lexical Analysis
 Goal: convert character stream to token stream

• Recognize “words” in language
• Keywords, identifiers, constants (literals), ..

• Ignore “irrelevant” input
• White spaces, comments, …

• Maintain association between lexer output and input
• Line numbers, column numbers, …

 Flex: A lexical analyzer generator
• Use of Flex in compilers

• Use of regular expressions as well as start states
• Ability to freely intermix automata-based and RE based 

specifications of lexical analysis

• Very powerful capability, makes Flex a very versatile tool for 
any application requiring efficient recognition of REs
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Syntax Analysis: CFGs
 Types of grammars

• Regular, context-free, context-sensitive, unrestricted

 CFGs
• Terminals, Nonterminals, Productions, Start symbol

• Sentence, Sentential form, String

• Notational conventions

• L(G)

• Equivalence of grammars

• Two sides of grammars: generation and acceptance
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CFGs

 Derivations
• Single-step, multistep

• Left-most, right-most, canonical
 Parse trees
 Ambiguity
 Disambiguation rules

• Operator precedence

• dangling-else and shift/reduce conflict
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CFGs (continued)

 Equivalence of grammars (and how to establish this)
 Recognizing grammars

• Push-down automata (PDA)

• NPDA Vs DPDA
 Properties

• Closed under union, but not complementation or intersection

• Note: CFGs recognizable using DPDAs are closed under all 
these operations.
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Top-Down Parsing
 Derive sentence from start symbol

• Next step in derivation is guided by input

 Predictive Parsing
• Left-recursion elimination and left-factoring

• Parsing with back-tracking

• Recursive descent parsing

 Non-recursive parsing
• Table-driven

• FIRST and FOLLOW

 LL(1) grammars
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Bottom-Up Parsing

 Reduce sentence to start symbol
• Next reduction is guided by PDA stack and input

 Handles
 Shift-Reduce parsing

• Structure and operation of an SR parser

 Identification of handles
 Viable prefixes
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LR Parsing

 Structure and operation of an LR parser
 Action and Goto tables
 LR Vs LL parsing
 Construction of SLR(1) parsing tables

• Items and Item sets

• Viable prefixes

• DFA for recognizing viable prefixes

• Generation of LR parsing tables from DFA

 LR(1) and LALR(1) parsing
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Parser Generators

 Bison/Yacc
• LALR(1) Parser generator

• Integrates nicely with Lex/Flex
 Use of Bison to specify a parser
 Conflicts 

• How to interpret them

• How to fix them
• Operator precedence

 Bison is a versatile tool
• Can be used for a variety of language processing 

applications
 Error recovery
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Syntax-Directed Translation

 The concept and its use
 Syntax-directed translation using Bison
 Attribute grammars --- acceptance by AG
 Synthesized Vs inherited attributes

• Flow of attribute information

 L-attributed definitions
 S-attributed definitions
 Maintaining attributes during parsing

• Top-down parsing

• Bottom-up parsing



 13

Symbol Tables

 Bindings
 Attributes
 Binding Time
 Scopes
 Visibility
 Lexical scoping
 Implementation of symbol tables
 Static Vs Dynamic scoping
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Semantic Analysis

 Semantic analysis takes place during
• AST construction

• Type-checking

• Intermediate code generation

 ASTs vs Parse trees
 Syntax-directed construction of AST using 

Bison/C++
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Types
 What is a type
 Data types in modern languages

• Simple types
• Compound types

• Products, unions (tagged Vs untagged), arrays, functions, pointers
• Type expressions

 Polymorphism
• Parametric polymorphism Vs overloading
• Code reuse

 Type equivalence
• Structural Vs Name based Vs declaration based

 Type compatibility
 Type checking Vs type inference
 Type conversions

• Explicit, implicit, coercion
 Static Vs Dynamic typing
 Strong Vs Weak typing
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Type-Checking

 Syntax-directed definitions for type-checking
• Expressions

• Assignment

• Function calls/returns

• Other statements
 Subtype principle
 Name resolution

• Overloading resolution

• Resolution of methods in OO languages
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Expression Evaluation

 Semantics of Expressions
• Order of evaluation

• Use of properties of arithmetic operators

• Problems with side-effects
 Boolean expression evaluation

• Short-cirtcuit evaluation
 Control-flow statement evaluation

• Switch-statement
• While statement

• For statement
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Procedure calls
 Parameter-passing mechanisms

• Call-by-Value

• Call-by-Reference

• Call-by-Name

• Call-by-Need

• Macros

• Difficulties with parameter passing mechanisms

 Semantics of parameter passing
 Implementation of procedure calls

• Stack, activation records

• Caller Vs Callee responsibilities
 Exception-handling
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Memory allocation
 Simple types Vs structures and arrays
 Global/static variables
 Stack allocation

• How local variables and parameters are accessed
• Accessing nonlocal variables 

 Structure of activation records
 Heap allocation

• Explicit Vs Automatic management
• Fragmentation
• Garbage collection

• Reference-counting Vs mark/sweep Vs copying collection
• Conservative GC
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Implementation Aspects OO Languages

 Layout of structures and objects
• Accessing data members

 Efficient implementation of virtual functions
 Subtype principle and how it dictates the 

implementation of OO languages
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Code Generation
 Intermediate code formats
 Syntax-directed definition for IC generation

• Declarations

• Expressions

• Assignments
• l- and r-values

• accessing arrays and other complex data types

• Function calls

• Conditionals
• Short-circuit evaluation of boolean expressions and 

handling of conditionals

• Loops
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Machine Code Generation

 Assembly code versus machine code generation issues

• Linkers, shared libraries, executables, symbol tables, etc.
 Register allocation

• Cost savings due to use of registers

• Graph-coloring based algorithm and heuristics

• Works well in practice, no sense in using “register” declarations in 
your program, which will likely lead to less efficient code

 Instruction selection

• Instruction set specification

• Automated generation of assembly code from specifications

• Optimal code generation using dynamic programming

• Combines register allocation with assembly code generation
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Code Optimization
 High-level, intermediate code and low-level 

optimizations
 High-level optimizations

• Inlining, partial evaluation, tail call elimination, loop 
reordering, ...

 Intermediate code optimizations
• CSE

• constant and copy propagation

• strength reduction, loop-invariant code motion

• dead-code elimination

• jump-threading
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Dataflow Analysis

 Formulation
 Setting-up dataflow equations
 Approximation, direction of approximation, 

and soundness 
 Recursion and fixpoint iteration
 Applications

• Reaching definitions
• Available expressions (CSE)
• Live variables

 Difficulties
• Procedure calls
• Aliasing



Translation Strategy

Classic So�ware Engineering Problem

• Objective: Translate a program in a high level language into e�icient executable
code.

• Strategy: Divide translation process into a series of phases.

Each phase manages some particular aspect of translation.

Interfaces between phases governed by specific intermediate forms.
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Translation Steps
Source

Lexical Analysis

Parsing

Semantic Analysis
(e.g., type checking)

Intermediate code
Generation

Code Optimization(s)

Final code generation

Target

COMPILATION

Program

Program

Syntax Analysis Phase: Recognizes “sentences” in the program using
the syntax of the language

Semantic Analysis Phase: Infers information about the program using
the semantics of the language

Intermediate Code Generation Phase: Generates “abstract” code
based on the syntactic structure of the program and the semantic
information from Phase 2.

Optimization Phase: Refines the generated code using a series of
optimizing transformations.

Final Code Generation Phase: Translates the abstract intermediate
code into specific machine instructions.
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Translation Steps: Lexical Analysis (Scanning Phase)
Source

Lexical Analysis

Parsing

Semantic Analysis
(e.g., type checking)

Intermediate code
Generation

Code Optimization(s)

Final code generation

Target

COMPILATION

Program

Program

Convert the stream of characters representing input program into a
sequence of tokens.

Tokens are the “words” of the programming language.

For instance, the sequence of characters “static int” is
recognized as two tokens, representing the two words “static” and
“int”.

The sequence of characters “*x++” is recognized as three tokens,
representing “*”, “x” and “++”.
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Translation Steps: Parsing (Syntax Analysis Phase)
Source

Lexical Analysis

Parsing

Semantic Analysis
(e.g., type checking)

Intermediate code
Generation

Code Optimization(s)

Final code generation

Target

COMPILATION

Program

Program

Uncover the structure of a sentence in the program from a stream of
tokens.

For instance, the phrase “x = -y”, which is recognized as four
tokens, representing “x”, “=” and “-” and “y”, has the structure =(x,
-(y)), i.e., an assignment expression, that operates on “x” and the
expression “-(y)”.

Build a tree called a parse tree that reflects the structure of the input
sentence.

Typically, compilers build an abstract syntax tree directly, skipping the

construction of parse trees.
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Translation Steps: Abstract Syntax Tree (AST)
Source

Lexical Analysis

Parsing

Semantic Analysis
(e.g., type checking)

Intermediate code
Generation

Code Optimization(s)

Final code generation

Target

COMPILATION

Program

Program

Represents the syntactic structure of the program, hiding a few
details that are irrelevent to later phases of compilation.

For instance, consider a statement of the form:

if (m == 0) S1 else S2

where S1 and S2 stand for some block of statements. A possible
AST for this statement is:

If-then-else

AST for S2AST for S1

==

0m
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Translation Steps: Type Checking (Semantic Analysis)
Source

Lexical Analysis

Parsing

Semantic Analysis
(e.g., type checking)

Intermediate code
Generation

Code Optimization(s)

Final code generation

Target

COMPILATION

Program

Program

Decorate the AST with semantic information that is necessary in
later phases of translation.

For instance, the AST
If-then-else

AST for S2AST for S1

==

0m

becomes
If-then-else

AST for S1 AST for S20

== : boolean

: integer : integerm
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Translation Steps: Intermediate Code Generation
Source

Lexical Analysis

Parsing

Semantic Analysis
(e.g., type checking)

Intermediate code
Generation

Code Optimization(s)

Final code generation

Target

COMPILATION

Program

Program

Translate each sub-tree of the decorated AST into intermediate code.

Intermediate code hides many machine-level details, but has
instruction-level mapping to many assembly languages.

Main motivation: portability.
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Translation Steps: Intermediate Code Generation Example
Source

Lexical Analysis

Parsing

Semantic Analysis
(e.g., type checking)

Intermediate code
Generation

Code Optimization(s)

Final code generation

Target

COMPILATION

Program

Program

If-then-else

AST for S1 AST for S20

== : boolean

: integer : integerm

becomes R1 ← mem(m)

cmp R1, 0

jz .L1

jmp .L2

.L1:

.... code for S1

jmp .L3

.L2:

.... code for S2

jmp .L3

.L3:
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Translation Steps: Code Optimization
Source

Lexical Analysis

Parsing

Semantic Analysis
(e.g., type checking)

Intermediate code
Generation

Code Optimization(s)

Final code generation

Target

COMPILATION

Program

Program

Apply a series of transformations to improve the time and space
e�iciency of the generated code.

Peephole optimizations: generate new instructions by
combining/expanding on a small number of consecutive
instructions.

Intraprocedural optimizations: reorder, remove or add
instructions to change the structure of generated code within

each function. Code transformations guided by static analysis.

Interprocedural optimizations: Guided by interprocedural static
analysis.
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Translation Steps: Final Code Generation
Source

Lexical Analysis

Parsing

Semantic Analysis
(e.g., type checking)

Intermediate code
Generation

Code Optimization(s)

Final code generation

Target

COMPILATION

Program

Program

Map instructions in the intermediate code to specific machine
instructions.

Supports standard object file formats.

Generates su�icient information to enable symbolic
debugging.
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Translation Steps: Final Code Generation Example
Source

Lexical Analysis

Parsing

Semantic Analysis
(e.g., type checking)

Intermediate code
Generation

Code Optimization(s)

Final code generation

Target

COMPILATION

Program

Program

R1 ← mem(m)

cmp R1, 0

jz .L1

jmp .L2

.L1:

.... code

for S1

jmp .L3

.L2:

.... code

for S2

jmp .L3

.L3:

=⇒ movl 8(%ebp), %esi

testl %esi, %esi

jne .L2

.L1:

.... code for S1

jmp .L3

.L2:

.... code for S2

.L3:
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Broader Applications of Languages

• Command Interpreters: bash, ksh, Powershell, ...

• Programming: Java, Python, C++, Rust, Go, Haskell, Scala, OCaml, ...

• Document Structuring: LATEX, HTML, RTF, troff, ...

• Page Definition: PDF, PostScript, ...

• Databases: SQL, ...

• Hardware Design: VHDL, VeriLog, ...

• Domain-Specific Languages (DSL)
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Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

Phases of Syntax Analysis

1. Identify the words: Lexical Analysis.

Converts a stream of characters (input program) into a stream of tokens.

Also called Scanning or Tokenizing.

2. Identify the sentences: Parsing.

Derive the structure of sentences: construct parse trees from a stream of tokens.
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Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

Lexical Analysis

Convert a stream of characters into a stream of tokens.

• Simplicity: Conventions about “words” are o�en di�erent from conventions about

“sentences”.

• E�iciency: Word identification problem has a much more e�icient solution than

sentence identification problem.

• Portability: Character set, special characters, device features.
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Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

Terminology

• Token: Name given to a family of words. e.g., integer_constant

• Lexeme: Actual sequence of characters representing a word. e.g., 32894

• Pa�ern: Notation used to identify the set of lexemes represented by a token. e.g.,

[0− 9]+
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Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

Terminology

A few more examples:

Token Sample Lexemes Pa�ern

while while while

integer_constant 32894,−1093, 0 (−|ε)[0− 9]+

identifier buffer_size [_a− zA− Z ]+
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Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

Pa�erns

How do we compactly represent the set of all lexemes corresponding to a token?

For instance:

The token integer_constant represents the set of all integers: that is, all sequences of digits

(0–9), preceded by an optional sign (+ or −).

Obviously, we cannot simply enumerate all lexemes.

Use Regular Expressions.
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Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

Regular Expressions over alphabet

∑
Let R be the set of all regular expressions over Σ. Then,

• Empty String: ε ∈ R

• Unit Strings: α ∈ Σ⇒ α ∈ R

• Concatenation: r1, r2 ∈ R⇒ r1r2 ∈ R

• Alternative: r1, r2 ∈ R⇒ (r1 | r2) ∈ R

• Kleene Closure: r ∈ R⇒ r∗ ∈ R
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Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

Semantics of Regular Expressions

Semantic Function L : Maps regular expressions to sets of strings.

L(ε) = {ε}
L(α) = {α} (α ∈ Σ)

L(r1 | r2) = L(r1) ∪ L(r2)

L(r1 r2) = L(r1) · L(r2)

L(r∗) = {ε} ∪ (L(r) · L(r∗))
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Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

Computing the Semantics

L(a) = {a}

L(a | b) = L(a) ∪ L(b)

= {a} ∪ {b}

= {a,b}

L(ab) = L(a) · L(b)

= {a} · {b}

= {ab}

L((a | b)(a | b)) = L(a | b) · L(a | b)

= {a,b} · {a,b}

= {aa,ab,ba,bb}
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Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA
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Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA
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Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

Computing the Semantics of Closure

L(r∗) = {ε} ∪ (L(r) · L(r∗))
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Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

Computing the Semantics of Closure

Example: L((a | b)∗)

= {ε} ∪ (L(a | b) · L((a | b)∗))

L0 = {ε} Base case

L1 = {ε} ∪ ({a,b} · L0)

= {ε} ∪ ({a,b} · {ε})

= {ε,a,b}

L2 = {ε} ∪ ({a,b} · L1)

= {ε} ∪ ({a,b} · {ε,a,b})

= {ε,a,b,aa,ab,ba,bb}
.
.
.

L((a | b)∗) = L∞ = {ε,a,b,aa,ab,ba,bb, . . .}
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Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

Another Example: L((a∗b∗)∗)

L(a∗) = {ε,a,aa, . . .}

L(b∗) = {ε,b,bb, . . .}

L(a∗b∗) = {ε,a,b,aa,ab,bb,aaa,aab,abb,bbb, . . .}

L((a∗b∗)∗) = {ε}

∪ {ε,a,b,aa,ab,bb,aaa,aab,abb,bbb, . . .}

∪ {ε,a,b,aa,ab,ba,bb,aaa,aab,aba,abb,baa,bab,bba,bbb, . . .}
.
.
.

= {ε,a,b,aa,ab,ba,bb, . . .}
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Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

Regular Definitions

Assign “names” to regular expressions.

For example,

digit −→ 0 | 1 | · · · | 9
natural −→ digit digit

∗

Shorthands:

• a+: Set of strings with one or more occurrences of a.

• a?: Set of strings with zero or one occurrences of a.

Example:

integer −→ (+|−)?digit
+
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Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

Regular Definitions: Examples

float −→ integer . fraction

integer −→ (+|−)? no_leading_zero

no_leading_zero −→ (nonzero_digit digit
∗) | 0

fraction −→ no_trailing_zero exponent
?

no_trailing_zero −→ (digit
∗

nonzero_digit) | 0
exponent −→ (E | e) integer

digit −→ 0 | 1 | · · · | 9
nonzero_digit −→ 1 | 2 | · · · | 9
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Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

Regular Definitions and Lexical Analysis

Regular Expressions and Definitions specify sets of strings over an input alphabet.

They can hence be used to specify the set of lexemes associated with a token.

. Used as the pa�ern language

How do we decide whether an input string belongs to the set of strings specified by a

regular expression?
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Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

Lexical Analysis

Regular Expressions and Definitions are used to specify the set of strings (lexemes)

corresponding to a token.

An automaton (DFA/NFA) is built from the above specifications.

Each final state is associated with an action: emit the corresponding token.
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Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

Specifying Lexical Analysis

Consider a recognizer for integers (sequence of digits) and floats (sequence of digits

separated by a decimal point).

[0-9]+ { emit(INTEGER_CONSTANT); }

[0-9]+"."[0-9]+ { emit(FLOAT_CONSTANT); }

0-9

0-9

0-9

0-9

ε

0-9

0-9

ε "."

INTEGER_CONSTANT

FLOAT_CONSTANT
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Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

Lex

Tool for building lexical analyzers.

Input: lexical specifications (.l file)

Output: C function (yylex) that returns a token on each invocation.

%%

[0-9]+ { return(INTEGER_CONSTANT); }

[0-9]+"."[0-9]+ { return(FLOAT_CONSTANT); }

Tokens are simply integers (#define’s).
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Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

Lex Specifications

%{

C/C++ header statements for inclusion

%}

Regular Definitions e.g.:

digit [0-9]

%%

Token Specifications e.g.:

{digit}+ { return(INTEGER_CONSTANT); }

%%

Support functions in C
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Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

Regular Expressions in Lex

Adds “syntactic sugar” to regular expressions:

• Range: [0-7]: Integers from 0 through 7 (inclusive)

[a-nx-zA-Q]: Le�ers a thru n, x thru z and A thru Q.

• Exception: [^/]: Any character other than /.

• Definition: {digit}: Use the previously specified regular definition digit.

• Special characters: Connectives of regular expression, convenience features.

e.g.: | * ^
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Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

Special Characters in Lex

| * + ? ( ) Same as in regular expressions

[ ] Enclose ranges and exceptions

{ } Enclose “names” of regular definitions

^ Used to negate a specified range (in Exception)

. Match any single character except newline

\ Escape the next character

\n, \t Newline and Tab

For literal matching, enclose special characters in double quotes (") e.g.: "*"

Or use \ to escape. e.g.: \"
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Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

Examples

for Sequence of f, o, r

"||" C-style OR operator (two vert. bars)

.* Sequence of non-newline characters

[^*/]+ Sequence of characters except * and /

\"[^"]*\" Sequence of non-quote characters

beginning and ending with a quote

({letter}|"_")({letter}|{digit}|"_")*

C-style identifiers
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Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

A Complete Example

%{

#include <stdio.h>

#include "tokens.h"

%}

digit [0-9]

hexdigit [0-9a-f]

%%

"+" { return(PLUS); }

"-" { return(MINUS); }

{digit}+ { return(INTEGER_CONSTANT); }

{digit}+"."{digit}+ { return(FLOAT_CONSTANT); }

. { return(SYNTAX_ERROR); }

%%
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Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

Actions

Actions are a�ached to final states.

Distinguish the di�erent final states.

Used to return tokens.

Can be used to set a�ribute values.

Fragment of C code (blocks enclosed by ‘{’ and ‘}’).
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Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

A�ributes

Additional information about a token’s lexeme.

Stored in variable yylval

Type of a�ributes (usually a union) specified by YYSTYPE

Additional variables:

yytext: Lexeme (Actual text string)

yyleng: length of string in yytext
. yylineno: Current line number (number of ‘\n’ seen thus far)

enabled by %option yylineno
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Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

Priority of matching

What if an input string matches more than one pa�ern?

"if" { return(TOKEN_IF); }

{letter}+ { return(TOKEN_ID); }

"while" { return(TOKEN_WHILE); }

A pa�ern that matches the longest string is chosen.

Example: ifs is matched with an identifier, not the keyword if.

Of pa�erns that match strings of same length, the first (from the top of file) is

chosen.

while is matched as an identifier, not the keyword while.

Given if1, a match will be announced for the keyword if, with 1 being considered as

part of the next token.
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Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

Constructing Scanners using (f)lex

Scanner specifications: specifications.l

(f)lex

specifications.l −−−−→ lex.yy.c

Generated scanner in lex.yy.c

(g)cc

lex.yy.c −−−−→ executable
yywrap(): hook for signalling end of file.

Use -lfl (flex) or -ll (lex) flags at link time to include default function yywrap() that

always returns 1.
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Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

Recognizers

Construct automata that recognize strings belonging to a language.

Finite State Automata⇒ Regular Languages

. Finite State→ cannot maintain arbitrary counts.

Push Down Automata⇒ Context-free Languages

. Stack is used to maintain counter, but only one counter can go arbitrarily high.
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Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

Finite State Automata

Represented by a labeled directed graph.

A finite set of states (vertices).

Transitions between states (edges).

Labels on transitions are drawn from Σ ∪ {ε}.

One distinguished start state.

One or more distinguished final states.
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Finite State Automata: An Example

Consider the Regular Expression (a | b)∗a(a | b).

L((a | b)∗a(a | b)) = {aa,ab,aaa,aab,baa,bab,
aaaa,aaab,abaa,abab,baaa, . . .}.

The following automaton determines whether an input string belongs to

L((a | b)∗a(a | b):

a

a

b
b

a

1 2 3
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Finite State Automata: An Example

Consider the Regular Expression (a | b)∗a(a | b).

L((a | b)∗a(a | b)) = {aa,ab,aaa,aab,baa,bab,
aaaa,aaab,abaa,abab,baaa, . . .}.

The following automaton determines whether an input string belongs to

L((a | b)∗a(a | b):

a

a

b
b

a

1 2 3
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Deterministic Vs Nondeterministic FSA

(a | b)∗a(a | b):

Nondeterministic:

(NFA)

a

a

b
b

a

1 2 3

Deterministic:

(DFA)

a

a

b

b

a

a

b

b

1 2

3

4
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Acceptance Criterion

A finite state automaton (NFA or DFA) accepts an input string x

. . . if beginning from the start state

. . . we can trace some path through the automaton

. . . such that the sequence of edge labels spells x

. . . and end in a final state.

Or, there exists a path in the graph from the start state to a final state such that the

sequence of labels on the path spells out x
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NFA vs. DFA

For every NFA, there is a DFA that accepts the same set of strings.

NFA may have transitions labeled by ε.

(Spontaneous transitions)

All transition labels in a DFA belong to Σ.

For some string x , there may be many accepting paths in an NFA.

For all strings x , there is one unique accepting path in a DFA.

Usually, an input string can be recognized faster with a DFA.

NFAs are typically smaller than the corresponding DFAs.
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NFA vs. DFA

R = Size of Regular Expression

N = Length of Input String

NFA DFA
Size of

Automaton

O(R) O(2
R)

Recognition time

per input string

O(N × R) O(N)
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Regular Expressions to NFA

Thompson’s Construction: For every regular expression r , derive an NFA N(r) with

unique start and final states.

ε
ε

α ∈ Σ
α

(r1 | r2)

N(r )
1

ε

ε

ε

ε

N(r )
2
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Regular Expressions to NFA (contd.)

r1r2 N(r )
2

N(r )
1

ε ε

r∗
ε ε

N(r)

ε

ε
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Example

(a | b)∗a(a | b):

ε

ε ε

ε

a

b

ε ε a
ε

ε ε

ε

a

b

ε

ε
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Expressive Power of RE Vs FSA

We just saw that every RE can be converted into an equivalent NFA

Implication: NFAs are at least as expressive as REs

It can also be shown that every NFA can be converted into an equivalent RE

Implication: REs are at least as expressive as NFAs

Implication: REs and NFAs have the same expressive power

Where do DFAs stand?

Every DFA is an NFA

We will show that every NFA can be converted into an equivalent DFA

Implication: RE, NFA and DFA are equivalent
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Expressive Power of RE Vs FSA

We just saw that every RE can be converted into an equivalent NFA

Implication: NFAs are at least as expressive as REs

It can also be shown that every NFA can be converted into an equivalent RE

Implication: REs are at least as expressive as NFAs

Implication: REs and NFAs have the same expressive power

Where do DFAs stand?

Every DFA is an NFA

We will show that every NFA can be converted into an equivalent DFA

Implication: RE, NFA and DFA are equivalent
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Recognition with a DFA

Is abab ∈ L((a | b)∗a(a | b))?

a

a

b

b

a

a

b

b

1 2

3

4

Input: a b a b

Path: 1 2 4 2 4 Accept
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Recognition with an NFA

Is abab ∈ L((a | b)∗a(a | b))?

a

a

b
b

a

1 2 3

Input: a b a b

Path 1: 1

1 1 1 1

Path 2: 1 1 1 2 3 Accept

Path 3: 1 2 3 ⊥ ⊥

All Paths {1} {1, 2} {1, 3} {1, 2} {1, 3} Accept
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Recognition with an NFA

Is abab ∈ L((a | b)∗a(a | b))?

a

a

b
b

a

1 2 3

Input: a b a b

Path 1: 1 1

1 1 1

Path 2: 1 1 1 2 3 Accept

Path 3: 1 2 3 ⊥ ⊥

All Paths {1} {1, 2} {1, 3} {1, 2} {1, 3} Accept
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Recognition with an NFA

Is abab ∈ L((a | b)∗a(a | b))?

a

a

b
b

a

1 2 3

Input: a b a b

Path 1: 1 1 1

1 1

Path 2: 1 1 1 2 3 Accept

Path 3: 1 2 3 ⊥ ⊥

All Paths {1} {1, 2} {1, 3} {1, 2} {1, 3} Accept
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Recognition with an NFA

Is abab ∈ L((a | b)∗a(a | b))?

a

a

b
b

a

1 2 3

Input: a b a b

Path 1: 1 1 1 1

1

Path 2: 1 1 1 2 3 Accept

Path 3: 1 2 3 ⊥ ⊥

All Paths {1} {1, 2} {1, 3} {1, 2} {1, 3} Accept
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Recognition with an NFA

Is abab ∈ L((a | b)∗a(a | b))?

a

a

b
b

a

1 2 3

Input: a b a b

Path 1: 1 1 1 1 1

Path 2: 1 1 1 2 3 Accept

Path 3: 1 2 3 ⊥ ⊥

All Paths {1} {1, 2} {1, 3} {1, 2} {1, 3} Accept
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Recognition with an NFA

Is abab ∈ L((a | b)∗a(a | b))?

a

a

b
b

a

1 2 3

Input: a b a b

Path 1: 1 1 1 1 1

Path 2: 1 1 1

2 3 Accept

Path 3: 1 2 3 ⊥ ⊥

All Paths {1} {1, 2} {1, 3} {1, 2} {1, 3} Accept
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Recognition with an NFA

Is abab ∈ L((a | b)∗a(a | b))?

a

a

b
b

a

1 2 3

Input: a b a b

Path 1: 1 1 1 1 1

Path 2: 1 1 1 2

3 Accept

Path 3: 1 2 3 ⊥ ⊥

All Paths {1} {1, 2} {1, 3} {1, 2} {1, 3} Accept
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Recognition with an NFA

Is abab ∈ L((a | b)∗a(a | b))?

a

a

b
b

a

1 2 3

Input: a b a b

Path 1: 1 1 1 1 1

Path 2: 1 1 1 2 3 Accept

Path 3: 1 2 3 ⊥ ⊥

All Paths {1} {1, 2} {1, 3} {1, 2} {1, 3} Accept
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Recognition with an NFA

Is abab ∈ L((a | b)∗a(a | b))?

a

a

b
b

a

1 2 3

Input: a b a b

Path 1: 1 1 1 1 1

Path 2: 1 1 1 2 3 Accept

Path 3: 1 2 3 ⊥ ⊥

All Paths {1} {1, 2} {1, 3} {1, 2} {1, 3} Accept
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Recognition with an NFA

Is abab ∈ L((a | b)∗a(a | b))?

a

a

b
b

a

1 2 3

Input: a b a b

Path 1: 1 1 1 1 1

Path 2: 1 1 1 2 3 Accept

Path 3: 1 2 3 ⊥ ⊥

All Paths {1} {1, 2} {1, 3} {1, 2} {1, 3} Accept
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Recognition with an NFA (contd.)

Is aaab ∈ L((a | b)∗a(a | b))?

a

a

b
b

a

1 2 3

Input: a a a b

Path 1: 1 1 1 1 1

Path 2: 1 1 1 1 2

Path 3: 1 1 1 2 3 Accept

Path 4: 1 1 2 3 ⊥
Path 5: 1 2 3 ⊥ ⊥
All Paths {1} {1, 2} {1, 2, 3} {1, 2, 3} {1, 2, 3} Accept
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Recognition with an NFA (contd.)

Is aabb ∈ L((a | b)∗a(a | b))?

a

a

b
b

a

1 2 3

Input: a a a b

Path 1: 1 1 1 1 1

Path 2: 1 1 2 3 ⊥
Path 3: 1 2 3 ⊥ ⊥
All Paths {1} {1, 2} {1, 2, 3} {1, 3} {1} REJECT
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Converting NFA to DFA

a

a

b
b

a

1 2 3
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Converting NFA to DFA (contd.)

Subset construction

Given a set S of NFA states,

compute Sε = ε-closure(S): Sε is the set of all NFA states reachable by zero or more

ε-transitions from S.

compute Sα = goto(S, α):

S′ is the set of all NFA states reachable from S by taking a transition labeled α.

Sα = ε-closure(S′).
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Converting NFA to DFA (contd).

Each state in DFA corresponds to a set of states in NFA.

Start state of DFA = ε-closure(start state of NFA).

From a state s in DFA that corresponds to a set of states S in NFA:

add a transition labeled α to state s′ that corresponds to a non-empty S′

in NFA,

such that S′ = goto(S, α).

s is a state in DFA such that the corresponding set of states S in NFA contains a final

state of NFA,

⇐ s is a final state of DFA
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NFA→ DFA: An Example

a

a

b
b

a

1 2 3

ε-closure({1}) = {1}
goto({1},a) = {1, 2}
goto({1},b) = {1}
goto({1, 2},a) = {1, 2, 3}
goto({1, 2},b) = {1, 3}
goto({1, 2, 3},a) = {1, 2, 3}
.
.
.
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NFA→ DFA: An Example (contd.)

ε-closure({1}) = {1}
goto({1},a) = {1, 2}
goto({1},b) = {1}
goto({1, 2},a) = {1, 2, 3}
goto({1, 2},b) = {1, 3}
goto({1, 2, 3},a) = {1, 2, 3}
goto({1, 2, 3},b) = {1}
goto({1, 3},a) = {1, 2}
goto({1, 3},b) = {1}

62 / 81



Lexical Analysis Intro Regular Expressions Lex FSA RE to FSA

NFA→ DFA: An Example (contd.)

goto({1},a) = {1, 2}
goto({1},b) = {1}
goto({1, 2},a) = {1, 2, 3}
goto({1, 2},b) = {1, 3}
goto({1, 2, 3},a) = {1, 2, 3}
.
.
.

a

a

b

b

a

a

b

b

{1} {1,2}

{1,3}

{1,2,3}
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Converting RE to FSA

NFA: Compile RE to NFA (Thompson’s construction [1968]), then match.

DFA: Compile to DFA, then match

(A) Convert NFA to DFA (Rabin-Sco� construction), minimize

(B) Direct construction: RE derivatives [Brzozowski 1964].

More convenient and a bit more general than (A).

(C) Direct construction of [McNaughton Yamada 1960]

Can be seen as a (more easily implemented) specialization of (B).

Used in Lex and its derivatives, i.e., most compilers use this algorithm.
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Converting RE to FSA

NFA approach takes O(n) NFA construction plus O(nm) matching, so has worst

case O(nm) complexity.

DFA approach takes O(2
n) construction plus O(m)match, so has worst case

O(2
n + m) complexity.

So, why bother with DFA?

In many practical applications, the pa�ern is fixed and small, while the subject text is very

large. So, the O(mn) term is dominant over O(2
n)

For many important cases, DFAs are of polynomial size

In many applications, exponential blow-ups don’t occur, e.g., compilers.
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Derivative of Regular Expressions

The derivative of a regular expression R w.r.t. a symbol x , denoted ∂x [R] is another

regular expression R′ such that L(R) = L(xR′)

Basically, ∂x [R] captures the su�ixes of those strings that match R and start with x .

Examples

∂a[a(b|c)] = b|c

∂a[(a|b)cd] = cd

∂a[(a|b)∗ cd] = (a|b)∗ cd

∂c[(a|b)∗ cd] = d

∂d [(a|b)∗ cd] = ∅
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Definition of RE Derivative (1)

inclEps(R): A predicate that returns true if ε ∈ L(R)

inclEps(a) = false, ∀a ∈ Σ

inclEps(R1|R2) = inclEps(R1) ∨ inclEps(R2)

inclEps(R1R2) = inclEps(R1) ∧ inclEps(R2)

inclEps(R∗) = true

Note inclEps can be computed in linear-time.
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Definition of RE Derivative (2)

∂a[a] = ε

∂a[b] = ∅
∂a[R1|R2] = ∂a[R1]|∂a[R2]

∂a[R∗] = ∂a[R]R ∗
∂a[R1R2] = ∂a[R1]R2|∂a[R2] if inclEps(R1)

= ∂a[R1]R2 otherwise

Note: L(ε) = {ε} 6= L(∅) = {}
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DFA Using Derivatives: Illustration

Consider R1 = (a|b)∗ a(a|b)

∂a[R1] = R1|(a|b) = R2

∂b[R1] = R1

∂a[R2] = R1|(a|b)|ε = R3

∂b[R2] = R1|ε = R4

∂a[R3] = R1|(a|b)|ε = R3

∂b[R3] = R1|ε = R4

∂a[R4] = R1|(a|b) = R2

∂b[R4] = R1

a

a

b

b

a

a

b

b

1 2

3

4
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McNaughton-Yamada Construction

Can be viewed as a simpler way to represent derivatives

Positions in RE are numbered, e.g.,
0(a1|b2)∗ a3(a4|b5)$6

.

A derivative is identified by its beginning position in the RE

Or more generally, a derivative is identified by a set of positions

Each DFA state corresponds to a position set (pset)

R1 ≡ {1, 2, 3}
R2 ≡ {1, 2, 3, 4, 5}
R3 ≡ {1, 2, 3, 4, 5, 6}
R4 ≡ {1, 2, 3, 6}

a

a

b

b

a

a

b

b

1 2

3

4
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McNaughton-Yamada: Definitions

first(P): Yields the set of first symbols of RE denoted by pset P

Determines the transitions out of DFA state for P

Example: For the RE (a1|b2)∗ a3(a4|b5)$6
, first({1, 2, 3}) = {a, b}

P|s: Subset of P that contain s, i.e., {p ∈ P | R contains s at p}
Example: {1, 2, 3}|a = {1, 3}, {1, 2, 4, 5}|b = {2, 5}

follow(P): set of positions immediately a�er P , i.e.,

⋃
p∈P follow({p}))

Definition is very similar to derivatives

Example: follow({3, 4}) = {4, 5, 6}
follow({1}) = {1, 2, 3}
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McNaughton-Yamada Construction (2)

BuildMY(R, pset)

Create an automaton state S labeled pset

Mark this state as final if $ occurs in R at pset

foreach symbol x ∈ first(pset)− {$} do
Call BuildMY(R, follow(pset|x)) if hasn’t previously been called

Create a transition on x from S to

the root of this subautomaton

DFA construction begins with the call BuildMY(R, follow({0})). The root of the

resulting automaton is marked as a start state.
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BuildMY Illustration on R = 0(a1|b2)∗ a3(a4|b5)$6

Computations Needed

follow({0}) = {1, 2, 3}
follow({1}) = follow({2}) = {1, 2, 3}
follow({3}) = {4, 5}
follow({4}) = follow({5}) = {6}

{1, 2, 3}|a = {1, 3}, {1, 2, 3}|b = {2}
follow({1, 3}) = {1, 2, 3, 4, 5}

{1, 2, 3, 4, 5}|a = {1, 3, 4}
{1, 2, 3, 4, 5}|b = {2, 5}
follow({1, 3, 4}) = {1, 2, 3, 4, 5, 6}
follow({2, 5}) = {1, 2, 3, 6}

{1, 2, 3, 4, 5, 6}|a = {1, 3, 4}
{1, 2, 3, 4, 5, 6}|b = {2, 5}
{1, 2, 3, 6}|a = {1, 3} {1, 2, 3, 6}|b = {2}

Resulting Automaton

a

a

b

b

a

a

b

b

1 2

3

4

State Pset

1 {1,2,3}

2 {1,2,3,4,5}

3 {1,2,3,4,5,6}

4 {1,2,3,6}
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McNaughton-Yamada (MY) Vs Derivatives

Conceptually very similar

MY takes a bit longer to describe, and its correctness a bit harder to follow.

MY is also more mechanical, and hence is found in most implementations

Derivatives approach is more general

Can support some extensions to REs, e.g., complement operator

Can avoid some redundant states during construction

Example: For ac|bc, DFA built by derivative approach has 3 states, but the one built by MY

construction has 4 states

The derivative approach merges the two c’s in the RE, but with MY, the two c’s have di�erent

positions, and hence operations on them are not shared.
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Avoiding Redundant States

Automata built by MY is not optimal

Automata minimization algorithms can be used to produce an optimal automaton.

Derivatives approach associates DFA states with derivatives, but does not say how

to determine equality among derivatives.

There is a spectrum of techniques to determine RE equality

MY is the simplest: relies on syntactic identity

At the other end of the spectrum, we could use a complete decision procedure for RE

equality.

In this case, the derivative approach yields the optimal RE!

In practice we would tend to use something in the middle

Trade o� some power for ease/e�iciency of implementation
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RE to DFA conversion: Complexity

Given DFA size can be exponential in the worst case, we obviously must accept

worst-case exponential complexity.

For the derivatives approach, it is not immediately obvious that it even terminates!

More obvious for McNaughton-Yamada approach, since DFA states correspond to

position sets, of which there are only 2
n
.

Derivative computation is linear in RE size in the general case.

So, overall complexity is O(n2
n)

Complexity can be improved, but the worst-case 2
n

takes away some of the

rationale for doing so.

Instead, we focus on improving performance in many frequently occurring special cases

where be�er complexity is achievable. 76 / 81
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Using States in Lex

Some regular languages are more easily expressed as FSA

Set of all strings representing binary numbers divisible by 3

Lex allows you to use FSA concepts using start states

%x MOD1 MOD2

"0" { }

"1" {BEGIN MOD1}

<MOD1> "0" {BEGIN MOD2}

<MOD1> "1" {BEGIN 0}
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Other Special Directives

ECHO causes Lex to echo current lexeme

REJECT causes abandonment of current match in favor of the next.

Example

a|

ab|

abc|

abcd {ECHO; REJECT;}

.|\n {/* eat up the character */}
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Implementing a Scanner

transition : state × Σ→ state

algorithm scanner() {

current_state = start state;

while (1) {

c = getc(); /* on end of file, ... */

if defined(transition(current_state, c))

current_state = transition(current_state, c);

else

return s;

}

}
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Implementing a Scanner (contd.)

Implementing the transition function:

Simplest: 2-D array.

Space ine�icient.

Traditionally compressed using row/colum equivalence. (default on (f)lex)

Good space-time tradeo�.

Further table compression using various techniques:

Example: RDM (Row Displacement Method):

Store rows in overlapping manner using 2 1-D arrays.

Smaller tables, but longer access times.
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Lexical Analysis: A Summary

Convert a stream of characters into a stream of tokens.

Make rest of compiler independent of character set

Strip o� comments

Recognize line numbers

Ignore white space characters

Process macros (definitions and uses)

Interface with symbol (name) table.
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Parsing

A.k.a. Syntax Analysis

Recognize sentences in a language.

Discover the structure of a document/program.

Construct (implicitly or explicitly) a tree (called as a parse tree) to represent the

structure.

The above tree is used later to guide the translation.
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Grammars

The syntactic structure of a language is defined using grammars.

Grammars (like regular expressions) specify a set of strings over an alphabet.

E�icient recognizers (like DFA) can be constructed to e�iciently determine whether

a string is in the language.

Language hierarchy:

Finite Languages (FL)

Enumeration

Regular Languages (RL ⊃ FL)

Regular Expressions

Context-free Languages (CFL ⊃ RL)

Context-free Grammars
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Regular Languages

Languages represented

by regular expressions

≡
Languages

recognized by finite

automata

Examples:

√
{a, b, c}

√
{ε, a, b, aa, ab, ba, bb, . . .}

√
{(ab)n | n ≥ 0}

× {anbn | n ≥ 0}
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Grammars

Notation where recursion is explicit. Examples

{ε,a,b,aa,ab,ba,bb, . . .}:
E −→ a

E −→ b

S −→ ε

S −→ ES

Notational shorthand:

E −→ a | b
S −→ ε | ES

{anbn | n ≥ 0} :

S −→ ε

S −→ aSb

{w | no. of a’s in w = no. of b’s in w}
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Context-free Grammars

• Terminal Symbols: Tokens

• Nonterminal Symbols: set of strings made up of tokens

• Productions: Rules for constructing the set of strings associated with non-terminal

symbols.

Example: Stmt −→ while Expr do Stmt

Start symbol: nonterminal symbol that represents the set of all strings in the

language.
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Example

E −→ E + E

E −→ E − E

E −→ E ∗ E

E −→ E / E

E −→ ( E )

E −→ id

L(E) = {id, id + id, id− id, . . . , id + (id ∗ id)− id, . . .}
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Context-free Grammars

Production: rule with non-terminal symbol on le� hand side, and a (possibly empty) sequence

of terminal or non-terminal symbols on the right-hand side.

Notations:

• Terminals: lower case le�ers, digits, punctuation

• Nonterminals: Upper case le�ers

• Arbitrary Terminals/Nonterminals: X ,Y ,Z

• Strings of Terminals: u, v,w

• Strings of Terminals/Nonterminals: α, β, γ

• Start Symbol: S
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Context-Free Vs Other Types of Grammars

Context-free grammar (CFG): Productions of the form NT −→ [NT |T ]∗

Context-sensitive grammar (CSG): Productions of the form

[t|NT ] ∗ NT [t|NT ]∗ −→ [t|NT ]∗

Unrestricted grammar: Productions of the form [t|NT ]∗ −→ [t|NT ]∗
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Examples of Non-Context-Free Languages

Checking that variables are declared before use. If we simplify and abstract the

problem, we see that it amounts to recognizing strings of the form wsw

Checking whether the number of actual and formal parameters match. Abstracts to

recognizing strings of the form anbmcndm

In both cases, the rules are not enforced in grammar but deferred to type-checking

phase

Note: Strings of the form wswR
and anbncmdm

can be described by a CFG
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What types of Grammars Describe These Languages?

Strings of 0’s and 1’s of form xx

Strings of 0’s and 1’s in which 011 doesn’t occur

Strings of 0’s and 1’s in which each 0 is immediately followed by a 1

Strings of 0’s and 1’s with ithe equal number of 0’s and 1’s.
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Language Generated by Grammars, Equivalence of

Grammars

How to show that a grammar G generates a languageM? Show that

∀s ∈M, show that s ∈ L(G)

∀s ∈ L(G), show that s ∈M

How to establish that two grammars G1 and G2 are equivalent?

Show that L(G1) = L(G2)
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Grammar Examples

S −→ 0S1S|1S0S|ε

What is the language generated by this grammar?
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Grammar Examples

S −→ 0A|1B|ε

A −→ 0AA|1S

B −→ 1BB|0S

What is the language generated by this grammar?
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The Two Sides of Grammars

Specify a set of strings in a language.

Recognize strings in a given language:

Is a given string x in the language?

Yes, if we can construct a derivation for x

Example: Is id + id ∈ L(E)?

id + id ⇐= E + id

⇐= E + E

⇐= E
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Derivations

Grammar:

E −→ E + E

E −→ id

E derives id + id: E =⇒ E + E

=⇒ E + id

=⇒ id + id

αAβ =⇒ αγβ i� A −→ γ is a production in the grammar.

α
∗

=⇒ β if α derives β in zero or more steps.

Example: E ∗
=⇒ id + id

• Sentence: A sequence of terminal symbols w such that S +
=⇒ w (where S is the start symbol)

• Sentential Form: A sequence of terminal/nonterminal symbols α such that S ∗
=⇒ α
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Derivations

• Rightmost derivation: Rightmost non-terminal is replaced first:

E =⇒ E + E

=⇒ E + id

=⇒ id + id

Wri�en as E ∗
=⇒rm id + id

• Le�most derivation: Le�most non-terminal is replaced first:

E =⇒ E + E

=⇒ id + E

=⇒ id + id

Wri�en as E ∗
=⇒lm id + id
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Parse Trees

Graphical Representation of Derivations

E =⇒ E + E

=⇒ id + E

=⇒ id + id

id id

+E E

E

E =⇒ E + E

=⇒ E + id

=⇒ id + id

A Parse Tree succinctly captures the structure of a sentence.
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Ambiguity

A Grammar is ambiguous if there are multiple parse trees for the same sentence.

Example: id + id ∗ id

id

+E E

E

E E

id id

* id

E

E

E

E E

id id

+

*
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Disambiguition

Express Preference for one parse tree over others.
Example: id + id ∗ id

The usual precedence of ∗ over + means:

id

+E E

E

E E

id id

* id

E

E

E

E E

id id

+

*

Preferred
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Parsing

Construct a parse tree for a given string.

S −→ (S)S

S −→ a

S −→ ε

(a)a (a)(a)

S

S S

a a

( )

S

S S( )

S

( )S

a

a ε
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A Procedure for Parsing

Grammar: S −→ a

procedure parse_S() {

switch (input_token) {

case TOKEN_a:

consume(TOKEN_a);

return;

default:

/* Parse Error */

}

}
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Predictive Parsing

Grammar:

S −→ a

S −→ ε

procedure parse_S() {

switch (input_token) {

case TOKEN_a: /* Production 1 */

consume(TOKEN_a);

return;

case TOKEN_EOF : /* Production 2 */

return;

default:

/* Parse Error */

}

}
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Predictive Parsing (contd.)

Grammar:

S −→ (S)S

S −→ a

S −→ ε

procedure parse_S() {

switch (input_token) {

case TOKEN_OPEN_PAREN : /* Production 1 */

consume(TOKEN_OPEN_PAREN);

parse_S();

consume(TOKEN_CLOSE_PAREN);

parse_S();

return;
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Predictive Parsing (contd.)

Grammar:

S −→ (S)S

S −→ a

S −→ ε

case TOKEN_a: /* Production 2 */

consume(TOKEN_a);

return;

case TOKEN_CLOSE_PAREN :

case TOKEN_EOF : /* Production 3 */

return;

default:

/* Parse Error */
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Predictive Parsing: Restrictions

Grammar cannot be le�-recursive
Example: E −→ E + E | a

procedure parse_E() {

switch (input_token) {

case TOKEN_a: /* Production 1 */

parse_E();

consume(TOKEN_PLUS);

parse_E();

return;

case TOKEN_a: /* Production 2 */

consume(TOKEN_a);

return;

}

}
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Removing Le� Recursion

A −→ A a

A −→ b

L(A) = {b, ba, baa, baaa, baaaa, . . .}

A −→ bA′

A′ −→ aA′

A′ −→ ε
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Removing Le� Recursion

More generally,

A −→ Aα1| · · · |Aαm

A −→ β1| · · · |βn

Can be transformed into

A −→ β1A′| · · · |βnA′

A′ −→ α1A′| · · · |αmA′|ε
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Removing Le� Recursion: An Example

E −→ E + E

E −→ id

⇓

E −→ id E ′

E ′ −→ + E E ′

E ′ −→ ε
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Predictive Parsing: Restrictions

May not be able to choose a unique production

S −→ a B d

B −→ b

B −→ bc

Le�-factoring can help:

S −→ a B d

B −→ bC

C −→ c|ε
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Predictive Parsing: Restrictions

In general, though, we may need a backtracking parser:

Recursive Descent Parsing

S −→ a B d

B −→ b

B −→ bc
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Recursive Descent Parsing

Grammar:

S −→ a B d

B −→ b

B −→ bc

procedure parse_B() {

switch (input_token) {

case TOKEN_b: /* Production 2 */

consume(TOKEN_b);

return;

case TOKEN_b: /* Production 3 */

consume(TOKEN_b);

consume(TOKEN_c);

return;

}}
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Non-recursive Parsing

Instead of recursion,

use an explicit stack along with the parsing table.

Data objects:

Parsing Table: M(A, a), a two-dimensional array, dimensions indexed by

nonterminal symbols (A) and terminal symbols (a).

A Stack of terminal/nonterminal symbols

Input stream of tokens

The above data structures manipulated using a table-driven parsing program.
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Table-driven Parsing

Grammar:

A −→ a

B −→ b

S −→ A S B

S −→ ε

Parsing Table:

Input Symbol

Nonterminal a b EOF

S S −→ A S B S −→ ε S −→ ε

A A −→ a

B B −→ b
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Table-driven Parsing Algorithm

stack initialized to EOF .

while (stack is not empty) {

X = top(stack);

if (X is a terminal symbol)

consume(X );

else /* X is a nonterminal */

if (M[X , input_token] = X −→ Y1,Y2, . . . ,Yk ) {

pop(stack);

for i = k downto 1 do

push(stack, Yi);

}

else /* Syntax Error */

}
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FIRST and FOLLOW

Grammar: S −→ (S)S | a | ε

FIRST(X ) = First character of any string that can be derived from X

FIRST(S) = {(,a, ε}.

FOLLOW(A) = First character that, in any derivation of a string in the language,

appears immediately a�er A.

FOLLOW(S) = {), EOF}
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FIRST and FOLLOW (contd.)

a

S

C

b

a ∈ FIRST(C)

b ∈ FOLLOW(C)
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FIRST and FOLLOW

FIRST (X ): First terminal in some α such that X ∗
=⇒ α.

FOLLOW (A): First terminal in some β such that S ∗
=⇒ αAβ.

Grammar:

A −→ a

B −→ b

S −→ A S B

S −→ ε

First(S) = { a, ε }

First(A) = { a }

First(B) = { b }

Follow(S) = { b, EOF }

Follow(A) = { a, b }

Follow(B) = { b, EOF }
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Definition of FIRST

Grammar:

A −→ a

B −→ b

S −→ A S B

S −→ ε

FIRST (α) is the smallest set such that

α = Property of FIRST (α)

a, a terminal a ∈ FIRST (α)

A, a nonterminal

A −→ ε ∈ G =⇒ ε ∈ FIRST (α)

A −→ β ∈ G, β 6= ε =⇒ FIRST (β) ⊆ FIRST (α)
X1X2 · · ·Xk ,

a string of

terminals and

non-terminals

FIRST (X1)− {ε} ⊆ FIRST (α)

FIRST (Xi) ⊆ FIRST (α) if ∀j < i ε ∈ FIRST (Xj)

ε ∈ FIRST (α) if ∀j < k ε ∈ FIRST (Xj)
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Definition of FOLLOW

Grammar:

A −→ a

B −→ b

S −→ A S B

S −→ ε

FOLLOW (A) is the smallest set such that

A Property of FOLLOW(A)

= S, the start symbol

EOF ∈ FOLLOW(S)

Book notation: $ ∈ FOLLOW(S)

B −→ αAβ ∈ G FIRST (β)− {ε} ⊆ FOLLOW(A)

B −→ αA, or

B −→ αAβ, ε ∈ FIRST (β)
FOLLOW(B) ⊆ FOLLOW(A)
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A Procedure to Construct Parsing Tables

procedure table_construct(G) {

for each A −→ α ∈ G {

for each a ∈ FIRST (α) such that a 6= ε

add A −→ α to M[A, a];

if ε ∈ FIRST (α)

for each b ∈ FOLLOW (A)

add A −→ α to M[A, b];

}}
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LL(1) Grammars

Grammars for which the parsing table constructed earlier has no multiple entries.

E −→ id E ′

E ′ −→ + E E ′

E ′ −→ ε

Input Symbol

Nonterminal id + EOF

E E −→ id E ′

E ′ E ′ −→ + E E ′ E ′ −→ ε
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Parsing with LL(1) Grammars

Input Symbol

Nonterminal id + EOF

E E −→ id E ′

E ′ E ′ −→ + E E ′ E ′ −→ ε

$E id + id$ E =⇒ idE ′

$E ′id id + id$

$E ′ + id$ =⇒ id+EE ′

$E ′E+ + id$

$E ′E id$ =⇒ id+idE ′E ′

$E ′E ′id id$

$E ′E ′ $ =⇒ id+idE ′

$E ′ $ =⇒ id+id

$ $
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LL(1) Derivations

Le� to Right Scan of input

Le�most Derivation

(1) look ahead 1 token at each step

Alternative characterization of LL(1) Grammars:

Whenever A −→ α | β ∈ G

1. FIRST (α) ∩ FIRST (β) = { }, and

2. if α
∗

=⇒ ε then FIRST (β) ∩ FOLLOW (A) = { }.

Corollary: No Ambiguous Grammar is LL(1).
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Le�most and Rightmost Derivations

E −→ E+T

E −→ T

T −→ id

Derivations for id + id:

E =⇒ E+T

=⇒ T+T

=⇒ id+T

=⇒ id+id

E =⇒ E+T

=⇒ E+id

=⇒ T+id

=⇒ id+id

LEFTMOST RIGHTMOST
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Bo�om-up Parsing

Given a stream of tokens w , reduce it to the start symbol.

E −→ E+T

E −→ T

T −→ id

Parse input stream: id + id:

id + id

T + id

E + id

E + T

E

Reduction ≡ Derivation−1.
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Handles

Informally, a “handle” of a sentential form is a substring that matches the right side of

a production, and

whose reduction to the non-terminal on the le� hand side of the production

represents one step along the reverse rightmost derivation.
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Handles

A structure that furnishes a means to perform reductions.

E −→ E+T

E −→ T

T −→ id

Parse input stream: id + id:

id + id

T + id

E + id

E + T

E
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Handles

Handles are substrings of sentential forms:

1. A substring that matches the right hand side of a production

2. Reduction using that rule can lead to the start symbol

E =⇒ E + T

=⇒ E + id

=⇒ T + id

=⇒ id + id

Handle Pruning: replace handle by corresponding LHS.
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Shi�-Reduce Parsing

Bo�om-up parsing.

• Shi�: Construct le�most handle on top of stack

• Reduce: Identify handle and replace by corresponding RHS

• Accept: Continue until string is reduced to start symbol and input token stream is

empty

• Error: Signal parse error if no handle is found.

49 / 83



Implementing Shi�-Reduce Parsers

• Stack to hold grammar symbols (corresponding to tokens seen thus far).

• Input stream of yet-to-be-seen tokens.

• Handles appear on top of stack.

Stack is initially empty (denoted by $).

Parse is successful if stack contains only the start symbol when the input stream

ends.
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Shi�-Reduce Parsing: An Example

S −→ aABe

A −→ Abc|b
B −→ d

To parse: a b b c d e

51 / 83



Shi�-Reduce Parsing: An Example

E −→ E+T

E −→ T

T −→ id

Stack Input Stream Action

$ id + id $ shi�

$ id + id $ reduce by T −→ id

$ T + id $ reduce by E −→ T

$ E + id $ shi�

$ E + id $ shi�

$ E + id $ reduce by T −→ id

$ E + T $ reduce by E −→ E+T

$ E $ ACCEPT
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More on Handles

Handle: Let S =⇒∗rm αAw =⇒rm αβw .

Then A −→ β is a handle for αβw at the position imeediately following α.

Notes:

For unambiguous grammars, every right-sentential form has a unique handle.

In shi�-reduce parsing, handles always appear on top of stack, i.e., αβ is in the stack (with β

at top), and w is unread input.
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Identification of Handles and Relationship to Conflicts

Case 1: With αβ on the stack, don’t know if we have a handle on top of the stack, or we

need to shi� some more input to get βx which is a handle.

Shi�-reduce conflict

Example: if-then-else

Case 2: With αβ1β2 on the stack, don’t know if A −→ β2 is the handle, or B −→ β1β2 is

the handle

Reduce-reduce conflict

Example: E −→ E − E| − E|id
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Viable Prefix

Prefix of a right-sentential form that does not continue beyond the rightmost handle.

With αβw example of the previous slides, a viable prefix is something of the form αβ1

where β = β1β2
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LR Parsing

Stack contents as s0X1s1X2 · · ·Xmsm

Its actions are driven by two tables, action and goto

Parser Configuration: (s0X1s1X2 · · ·Xmsm︸ ︷︷ ︸
stack

, aiai+1 · · · an$︸ ︷︷ ︸
unconsumed input

)

action[sm, ai] can be:

shi� s: new config is (s0X1s1X2 · · ·Xmsmais, ai+1 · · · an$)

reduce A −→ β: Let |β| = r , goto[sm−r ,A] = s: new config is

(s0X1s1X2 · · ·Xm−rsm−rAs, aiai+1 · · · an$)

error: perform recovery actions

accept: Done parsing
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LR Parsing

action and goto depend only on the state at the top of the stack, not on all of the stack

contents

The si states compactly summarize the “relevant” stack content that is at the top of the

stack.

You can think of goto as the action taken by the parser on “consuming” (and shi�ing)

nonterminals

similar to the shi� action in the action table, except that the transition is on a nonterminal

rather than a terminal

The action and goto tables define the transitions of an FSA that accepts RHS of productions!
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Example of LR Parsing Table and its Use

See Text book Algorithm 4.7: (follows directly from description of LR parsing actions 2 slides

earlier)

See expression grammar (Example 4.33), its associated parsing table in Fig 4.31, and the use

of the table to parse id ∗ id + id (Fig 4.32)
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LR Versus LL Parsing

Intuitively:

LL parser needs to guess the production based on the first symbol (or first few symbols) on

the RHS of a production

LR parser needs to guess the production a�er seeing all of the RHS

Both types of parsers can use next k input symbols as look-ahead symbols (LL(k) and LR(k)

parsers)

Implication: LL(k) ⊂ LR(k)
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How to Construct LR Parsing Table?

Key idea: Construct an FSA to recognize RHS of productions

States of FSA remember which parts of RHS have been seen already.

We use “ · ” to separate seen and unseen parts of RHS

LR(0) item: A production with “ · ” somewhere on the RHS. Intuitively,

. grammar symbols before the “ · ” are on stack;

. grammar symbols a�er the “ · ” represent symbols in the input stream.

I0:

E ′ −→ · E
E −→ · E+T

E −→ · T
T −→ · id
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How to Construct LR Parsing Table?

If there is no way to distinguish between two di�erent productions at some point during

parsing, then the same state should represent both.

Closure operation: If a state s includes LR(0) item A −→ α · Bβ, and there is a production

B −→ γ, then s should include B −→ · γ
goto operation: For a set I of items, goto[I,X ] is the closure of all items A −→ αX · β for

each A −→ α · Xβ in I

Item set: A set of items that is closed under the closure operation, corresponds to a state of the

parser.
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Constructing Simple LR (SLR) Parsing Tables

Step 1: Construct LR(0) items (Item set construction)

Step 2: Construct a DFA for recognizing items

Step 3: Define action and goto based on the DFA
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Item Set Construction

1. Augment the grammar with a rule S′ −→ S, and make S′ the new start symbol

2. Start with initial set I0 corresponding to the item S′ −→ · S

3. apply closure operation on I0.

4. For each item set I and grammar symbol X , add goto[I,X ] to the set of items

5. Repeat previous step until no new item sets are generated.
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Item Set Construction

E ′ −→ E E −→ E + T | T T −→ T ∗ F | F F −→ (E) | id

I0 : E ′ −→ · E

I1 : E ′ −→ E ·

I2 : E −→ T ·

I3 : T −→ F ·
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Item Set Construction (Contd.)

E ′ −→ E E −→ E + T | T T −→ T ∗ F | F F −→ (E) | id

I4 : F −→ ( · E)

I5 : F −→ id ·

I6 : E −→ E + · T

I7 : T −→ T ∗ · F
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Item Set Construction (Contd.)

E ′ −→ E E −→ E + T | T T −→ T ∗ F | F F −→ (E) | id

I8 : F −→ (E · )

I9 : E −→ E + T ·

I10 : T −→ T ∗ F ·

I11 : F −→ (E) ·
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Item Sets for the Example
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SLR(1) Parse Table for the Example Grammar
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Defining action and goto tables

Let I0, I1, . . . , In be the item sets constructed before

Define action as follows

If A −→ α · aβ is in Ii and there is a DFA transition to Ij from Ii on symbol a then

action[i, a] = “shi� j”

If A −→ α · is in Ii then action[i, a] = “reduce A −→ α” for every a ∈ FOLLOW (A)

If S′ −→ S · is in Ii then action[Ii, $] = “accept”

If any conflicts arise in the above procedure, then the grammar is not SLR(1).

goto transition for LR parsing defined directly from the DFA transitions.

All undefined entries in the table are filled with “error”
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Deficiencies of SLR Parsing

SLR(1) treats all occurrences of a RHS on stack as identical.

Only a few of these reductions may lead to a successful parse.

Example:

S −→ AaAb

S −→ BbBa

A −→ ε

B −→ ε

I0 = {[S′ → · S], [S → · AaAb], [S → · BibBa], [A→ · ], [B→ · ]}.

Since FOLLOW (A) = FOLLOW (B), we have reduce/reduce conflict in state 0.
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LR(1) Item Sets

Construct LR(1) items of the form A −→ α · β, a, which means:

The production A −→ αβ can be applied when the next token on input stream is a.

S −→ AaAb

S −→ BbBa

A −→ ε

B −→ ε

An example LR(1) item set:

I0 = {[S′ → · S, $], [S → · AaAb, $], [S → · BbBa, $],

[A→ · , a], [B→ · , b]}.
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LR(1) and LALR(1) Parsing

LR(1) parsing: Parse tables built using LR(1) item sets.

LALR(1) parsing: Look Ahead LR(1)

Merge LR(1) item sets; then build parsing table.

Typically, LALR(1) parsing tables are much smaller than LR(1) parsing table.
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YACC

Yet Another Compiler Compiler:

LALR(1) parser generator.

Grammar rules are wri�en in a specification (.y) file, analogous to the regular definitions in

a lex specification file.

Yacc translates the specifications into a parsing function yyparse().

spec.y
yacc
−−−→ spec.tab.c

yyparse() calls yylex() whenever input tokens need to be consumed.

bison: GNU variant of yacc.
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Using Yacc

%{

... C headers (#include)

%}

... Yacc declarations:

%token ...

%union{...}

precedences

%%

... Grammar rules with actions:

Expr: Expr TOK_PLUS Expr

| Expr TOK_MINUS Expr

;

%%

... C support functions
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YACC

Yet Another Compiler Compiler:

LALR(1) parser generator.

Grammar rules are wri�en in a specification (.y) file, analogous to the regular definitions in

a lex specification file.

Yacc translates the specifications into a parsing function yyparse().

spec.y
yacc
−−−→ spec.tab.c

yyparse() calls yylex() whenever input tokens need to be consumed.

bison: GNU variant of yacc.
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Using Yacc

%{

... C headers (#include)

%}

... Yacc declarations:

%token ...

%union{...}

precedences

%%

... Grammar rules with actions:

Expr: Expr TOK_PLUS Expr

| Expr TOK_MINUS Expr

;

%%

... C support functions
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Conflicts and Resolution

Operator precedence works well for resolving conflicts that involve operators

But use it with care – only when they make sense, not for the sole purpose of removing

conflict reports

Shi�-reduce conflicts: Bison favors shi�

Except for the dangling-else problem, this strategy does not ever seem to work, so don’t

rely on it.
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Reduce-Reduce Conflicts

sequence: /* empty */

{ printf ("empty sequence\n"); }

| maybeword

| sequence word

{ printf ("added word %s\n", $2); };

maybeword: /* empty */

{ printf ("empty maybeword\n"); }

| word

{ printf ("single word %s\n", $1); };

In general, grammar needs to be rewri�en to eliminate conflicts.
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Sample Bison File: Postfix Calculator

input: /* empty */
| input line

;
line: ’\n’

| exp ’\n’ { printf ("\t%.10g\n", $1); }
;
exp: NUM { $$ = $1; }

| exp exp ’+’ { $$ = $1 + $2; }
| exp exp ’-’ { $$ = $1 - $2; }
| exp exp ’*’ { $$ = $1 * $2; }
| exp exp ’/’ { $$ = $1 / $2; }
/* Exponentiation */

| exp exp ’^’ { $$ = pow ($1, $2); }
/* Unary minus */

| exp ’n’ { $$ = -$1; };
%%
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Infix Calculator

%{
#define YYSTYPE double
#include <math.h>
#include <stdio.h>
int yylex (void);
void yyerror (char const *);
%}
/* Bison Declarations */
%token NUM
%left ’-’ ’+’
%left ’*’ ’/’
%left NEG /* negation--unary minus */
%right ’^’ /* exponentiation */
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Infix Calculator (Continued)

%% /* The grammar follows. */
input: /* empty */

| input line
;
line: ’\n’

| exp ’\n’ { printf ("\t%.10g\n", $1); }
;
exp: NUM { $$ = $1; }

| exp ’+’ exp { $$ = $1 + $3; }
| exp ’-’ exp { $$ = $1 - $3; }
| exp ’*’ exp { $$ = $1 * $3; }
| exp ’/’ exp { $$ = $1 / $3; }
| ’-’ exp %prec NEG { $$ = -$2; }
| exp ’^’ exp { $$ = pow ($1, $3); }
| ’(’ exp ’)’ { $$ = $2; }

;
%%
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Error Recovery

line: ’\n’

| exp ’\n’ { printf ("\t%.10g\n", $1); }

| error ’\n’ { yyerrok; };

Pop stack contents to expose a state where an error token is acceptable

Shi� error token onto the stack

Discard input until reaching a token that can follow this error token

Error recovery strategies are never perfect — some times they lead to cascading errors, unless

carefully designed.
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Le� Versus Right Recursion

expseq1: exp | expseq1 ’,’ exp;

is a le�-recursive definition of a sequence of exp’s, whereas

expseq1: exp | exp ’,’ expseq1;

is a right-recursive definition

Le�-recursive definitions are a no-no for LL parsing, but yes-yes for LR parsing

Right-recursive definition is bad for LR parsing as it needs to shi� ithe entire list on stack

before any reduction — increases stack usage
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Compilation

Source

Lexical Analysis

Parsing

Semantic Analysis
(e.g., type checking)

Intermediate code
Generation

Code Optimization(s)

Final code generation

Target

COMPILATION

Program

Program
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Syntax-Directed Translation

Technique used to build semantic information for large structures, based on its syntax.

In a compiler, Syntax-Directed Translation is used for

Constructing Abstract Syntax Tree

Type checking

Intermediate code generation
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The Essence of Syntax-Directed Translation

The semantics (meaning) of the various constructs in the language is viewed as

a�ributes of the corresponding grammar symbols.

Example: Sequence of characters 495

grammar symbol TOK_INT

meaning ≡ integer 495

is an a�ribute of TOK_INT(yylval.int_val).

A�ributes are associated with Terminal as well as Nonterminal symbols.
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An Example of Syntax-Directed Translation

E −→ E * E

E −→ E + E

E −→ id

E −→ E1 * E2

E −→ E1 + E2

E −→ int

{E.val := E1.val ∗ E2.val}
{E.val := E1.val + E2.val}
{E.val := int.val}
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Syntax-Directed Definitions with yacc

E −→ E1 * E2

E −→ E1 + E2

E −→ int

{E.val := E1.val ∗ E2.val}
{E.val := E1.val + E2.val}
{E.val := int.val}

E : E MULT E

E : E PLUS E

E : INT

{$$.val = $1.val ∗ $3.val}
{$$.val = $1.val + $3.val}
{$$.val = $1.val}
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Another Example of Syntax-Directed Translation

Decl −→ Type VarList

Type −→ . . .

VarList −→ id , VarList

VarList −→ id

Decl −→ Type VarList

Type −→ . . .

VarList −→ id , VarList1

VarList −→ id

{VarList.type := Type.type}
{Type.type := . . .}
{VarList1.type := VarList.type;

id.type := VarList.type}
{id.type := VarList.type}
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A�ributes

Synthesized A�ribute: Value of the a�ribute computed from the values of a�ributes

of grammar symbols on RHS.

Example: val in Expression grammar

Inherited A�ribute: Value of a�ribute computed from values of a�ributes of the LHS

grammar symbol.

Example: type of VarList in declaration grammar
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Syntax-Directed Definition

Actions associated with each production in a grammar.

For a production A −→ X Y , actions may be of the form:

A.a�r := f (X .a�r ′,Y .a�r ′′) for synthesized a�ributes

Y .a�r := f (A.a�r ′,X .a�r ′′) for inherited a�ributes
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Synthesized A�ributes: An Example

E −→ E * E

E −→ E + E

E −→ int

E −→ E1 * E2

E −→ E1 + E2

E −→ int

{E.val := E1.val ∗ E2.val}
{E.val := E1.val + E2.val}
{E.val := int.val}
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Information Flow for Synthesized A�ributes

E

E E

E E int

intint3

3

2

2*

+6

11

5

5

3 2 5* +
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Another Example of Syntax-Directed Translation

Decl −→ Type VarList

Type −→ integer

Type −→ float

VarList −→ id , VarList

VarList −→ id

Decl −→ Type VarList

Type −→ integer

Type −→ float

VarList −→ id , VarList1

VarList −→ id

{VarList.type := Type.type}
{Type.type := int}
{Type.type := float}
{VarList1.type := VarList.type;

id.type := VarList.type}
{id.type := VarList.type}
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Information Flow for Inherited A�ributes

Decl

Type VarList

VarListinteger id

id

,

integer x , y

int

int

int

int

int int

int
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A�ributes and Definitions

S-A�ributed Definitions: Where all a�ributes are synthesized.

L-A�ributed Definitions: Where all inherited a�ributes are such that their values

depend only on

– inherited a�ributes of the parent, and

– a�ributes of le� siblings
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A�ributes and Top-down Parsing

Inherited: analogous to function arguments

Synthesized: analogous to return values

L-a�ributed definitions mean that argument to a parsing function is

argument of the calling function, or

return value/argument of a previously called function
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Synthesized A�ributes and Bo�om-up Parsing

Keep track of a�ributes of symbols while parsing.

Keep a stack of a�ributes corresponding to stack of symbols.

Compute a�ributes of LHS symbol while performing reduction (i.e., while pushing

the symbol on symbol stack)
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Synthesized A�ributes and Bo�om-Up Parsing

E −→ E+E

E −→ E*E

E −→ int

Stack Input Stream Attributes

$ 3 * 2 + 5 $ $

$ int * 2 + 5 $ $ 3

$ E * 2 + 5 $ $ 3

$ E * 2 + 5 $ $ 3 ⊥
$ E * int + 5 $ $ 3 ⊥ 2

$ E + 5 $ $ 6

$ E + 5 $ $ 6 ⊥
$ E + int $ $ 6 ⊥ 5

$ E + E $ $ $ 6 ⊥ 5

$ E $ $ 11
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Inherited A�ributes and Bo�om-up Parsing

Inherited a�ributes depend on the context in which a symbol is used.

For inherited a�ributes, we cannot assign a value to a node’s a�ributes unless the

parent’s a�ributes are known.

When building parse trees bo�om-up, parent of a node is not known when the node

is created!

Solution:

Ensure that all a�ributes are inherited only from le� siblings.

Use “global” variables to capture inherited values,

and introduce “marker” nonterminals to manipulate the global variables.
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Inherited A�ributes & Bo�om-up parsing

Ss −→ S ; Ss | ε
S −→ B | other

B −→ { Ss }

B −→ { M1 Ss M2 }

M1 −→ ε

M2 −→ ε

{current_block++; }
{current_block–; }
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A�ribute Grammars

syntax-directed definitions without side-e�ects

a�ribute definitions can be thought of as logical assertions rather than as things

that need to be computed

distinction between synthesized and inherited a�ributes disappears

E −→ E1 * E2

E −→ E1 + E2

E −→ int

{E.type = E1.type = E2.type}
{E.type = E1.type = E2.type}
{E.type = integer}
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A�ribute Grammars

An a�ribute grammar AG is given by (G,V , F ), where:

G is a context-free grammar

V is the set of a�ributes, each of which is associated with a terminal or a

nonterminal

F is the set of a�ribute assertions, each of which is associated with a production in

the grammar

A string s ∈ L(AG) i� s ∈ L(G) and the a�ribute assertions hold for production used to

derive s, i.e., ∃ a parse tree for s w.r.t. G where assertions associated with each edge in

the parse tree are satisfied.
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Semantic Analysis Phases of Compilation

Build an Abstract Syntax Tree (AST) while parsing

Decorate the AST with type information (type checking/inference)

Generate intermediate code from AST

◦ Optimize intermediate code

◦ Generate final code
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Abstract Syntax Tree (AST)

Represents syntactic structure of a program

Abstracts out irrelevant grammar details

An AST for the statement:

“if (m == 0) S1 else S2”

is

If-then-else

AST for S2AST for S1

==

0m
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Construction of Abstract Syntax Trees

Typically done simultaneously with parsing

. . . as another instance of syntax-directed translation

. . . for translating concrete syntax (the parse tree) to abstract syntax (AST).

. . . with AST as a synthesized a�ribute of each grammar symbol.
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Abstract Syntax Trees

Parse Tree AST

E

T

F

int

E

T

T

F

int

F*

int

5 2 * 3+

+ Binary_Exp

+ Int_Exp Binary_Exp

* Int_Exp Int_Exp

+( *( 2, 3))5,
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Actions and AST

E −→ E1 + T

{ E.ast = new BinaryExpr(OP_PLUS,

E1.ast,T.ast); }

E −→ T { E.ast = T.ast; }

.

.

.

F −→ ( E ) { F.ast = E.ast; }

F −→ int

{ F.ast = new IntValNode(int.val); }
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Actions and AST: Another Example

S −→ if E S1 else S2

{ S.ast = new IfStmtNode(E.ast,

S1.ast, S2.ast); }

S −→ return E

{ S.ast = new ReturnNode(E.ast)}
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Bindings

Bindings: Names and A�ributes

Names are a fundamental abstraction in languages to denote entities

Meanings associated with these entities is captured via a�ributes associated with
the names

A�ributes di�er depending on the entity:

location (for variables)

value (for constants)

formal parameter types (functions)

Binding: Establishing an association between name and an a�ribute.
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Bindings

Names

Names or Identifiers denote various language entities:

Constants

Variables

Procedures and Functions

Types, . . .

Entities have a�ributes

Entity Example A�ributes

Constants type, value, . . .

Variables type, location, . . .

Functions signature, implementation, . . .
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Bindings

A�ributes

A�ributes are associated with names (to be more precise, with the entities they
denote).

A�ributes describe the meaning or semantics of these entities.

int x; There is a variable, named x, of type integer.

int y = 2; Variable named x, of type integer,

with initial value 2.

Set s=new Set(); Variable named s, of type Set that

refers to an object of class Set

An a�ribute may be

static: can be determined at translation (compilation) time, or

dynamic: can be determined only at execution time.
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Bindings

Static and Dynamic A�ributes

int x;

The type of x can be statically determined;

The value of x is dynamically determined;

The location of x (the element in memory will be associated with x) can be statically

determined if x is a global variable.

Set s = new Set();

The type of s can be statically determined.

The value of s, i.e. the object that s refers to, is dynamically determined.

Static vs. Dynamic specifies the earliest time the a�ribute can be computed
. . . not when it is computed in any particular implementation.
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Bindings

Binding

“Binding” is the process of associating a�ributes with names.

Binding time of an a�ribute: whether an a�ribute can be computed at translation
time or only at execution time.

A more refined classification of binding times:
Static:

Language definition time (e.g. boolean, char, etc.)
Language implementation time (e.g. maxint, float, etc.)
Translation time (“compile time”) (e.g. value of n in const int n = 5;)
Link time (e.g. the definition of function f in extern int f();)
Load time (e.g. the location of a global variable, i.e., where it will be stored in memory)

Dynamic:
Execution time
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Bindings

Binding Time (Continued)

Examples

type is statically bound in most langs

value of a variable is dynamically bound

location may be dynamically or statically bound

Binding time also a�ects where bindings are stored

Name→ type: symbol table

Name→ location: environment

Location→value: memory
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Bindings

Declarations and Definitions

Declaration is a syntactic structure to establish bindings.

int x;
const int n = 5;
extern int f();
struct foo;

Definition is a declaration that usually binds all static a�ributes.

int f() { return x;}
struct foo { char *name; int age;};

Some bindings may be implicit, i.e., take e�ect without a declaration.

FORTRAN: All variables beginning with [i-nI-N] are integers; others are real-valued.
PROLOG: All identifiers beginning with [A-Z_] are variables.
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Bindings

Scopes

Region of program over which a declaration is in e�ect

i.e. bindings are maintained

Possible values

Global

Package or module

File

Class

Procedure

Block
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Bindings

Visibility

Redefinitions in inner scopes supercede outer definitions

�alifiers may be needed to make otherwise invisible names to be visible in a scope.

Examples

local variable superceding global variable

names in other packages.

private members in classes.

9 / 23



Bindings

Symbol Table

Maintains bindings of a�ributes with names:

SymbolTable : Names −→ A�ributes

In a compiler, only static a�ributes can be computed; thus:

SymbolTable : Names −→ StaticA�ributes

While execution, the names of entities no longer are necessary: only locations in
memory representing the variables are important.

Store : Locations −→ Values

(Store is also called as Memory)

A compiler then needs to map variable names to locations.

Environment : Names −→ Locations
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Bindings

Blocks and Scope

Usually, a name refers to an entity within a given context.

class A {
int x;
double y;
int f(int x) { // Parameter "x" is different from field "x"

B b = new B();
y = b.f(); // method "f" of object "b"
this.x = x;
...

}
}

The context is specified by “Blocks”

Delimited by “{” and “}” in C, C++ and Java
Delimited by “begin” and “end” in Pascal, Algol and Ada.
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Bindings

Scope

Scope: Region of the program over which a binding is maintained.
int x;

void p(void) {

char y;

...

}

void q(int y) {

double z;

...

}

m() {

int w;

...

}

x

p
y

q
y

z

m
w
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Bindings

Lexical Scope

Lexical scope: the scope of a binding is limited to the block in which its declaration
appears.

The bindings of local variables in C, C++, Java follow lexical scope.

Some names in a program may have a “meaning” outside its lexical scope.

e.g. field/method names in Java

Names must be qualified if they cannot be resolved by lexical scope.

e.g. a.x denotes the field x of object referred by a.

a.x can be used even outside the lexical scope of x.

Visibility of names outside the lexical scope is declared by visibilty modifiers (e.g.
public, private, etc.)

13 / 23



Bindings

Namespaces

Namespaces are a way to specify “contexts” for names.
www.google.com:

The trailing com refers to a set of machines
google is subset of machines in the set com
google is interpreted here in the context of com
www is a subset of machines in the set google
www is interpreted here in the context of google.com

Other common use of name spaces: directory/folder structure.

Names should be fully qualified if they are used outside their context.

e.g. Stack::top() in C++, List.hd in OCAML.

Usually there are ways to declare the context a priori so that names can be specified
without qualifying them.

e.g. import in Java, ns in XML, PATH in shell, . . .
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Bindings

Lifetimes

The lifetime of a binding is the interval during which it is e�ective.

int fact(int n) {
int x;
if (n == 0)

return 1;
else {

x = fact(n-1);
return x * n;

}
}

fact: n = 2

fact: n = 2→ fact: n = 1

fact: n = 2→ fact: n = 1→ fact: n = 0

fact: n = 2→ fact: n = 1, x = 1

fact: n = 2, x = 1

2

Each invocation of fact defines new variables n and x.

The lifetime of a binding may exceed the scope of the binding.

e.g., consider the binding n=2 in the first invocation of fact.
Call to fact(1) creates a new local variable n.
But the first binding is still e�ective.
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Bindings

Symbol Table

Uses data structures that allow e�icient name lookup operations in

the presence of scope changes.

We can use
hash tables to lookup a�ributes for each name
a scope stack that keeps track of the current scope and its surrounding scopes

the top most element in the scope stack corresponds to the current scope
the bo�ommost element will correspond to the outermost scope.
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Bindings

Support for Scopes

Lexical scopes can be supported using a scope stack as follows:

Symbols in a program reside in multiple hash tables

In particular, symbols within each scope are contained in a single hash table for that scope

At anytime, the scope stack keeps track of all the scopes surrounding that program
point.

The elements of the stack contain pointers to the corresponding hash table.
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Bindings

Support for Scopes (Continued)

To lookup a name

Symbols in a program reside in multiple hash tables

Start from the hash table pointed to by the top element of the stack.

If the symbol is not found, try hash table pointed by the next lower entry in the stack.

This process is repeated until we find the name, or we reach the bo�om of the stack.

Scope entry and exit operations modify the scope stack appropriately.

When a new scope is entered, a corresponding hash table is created. A pointer to this

hash table is pushed onto the scope stack.

When we exit a scope, the top of the stack is popped o�.
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Bindings

Example

1: float y = 1.0
2: void f(int x){
3: for(int x=0;...){
4: float x1 = x + y;
5: }
6: {
7: float x = 1.0;
8: }
9: }
10:main() {
11: float y = 10.0;
12: f(1);
13:}
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Bindings

illustration

At (1)

We have a single hash table, which is the global hash table.

The scope stack contains exactly one entry, which points to this global hash table.

When the compiler moves from (1) to (2)

The name y is added to the hash table for the current scope.

Since the top of scope stack points to the global table, “y” is being added to the global

table.

When the compiler moves from (2) to (3)

The name “f” is added to the global table, a new hash table for f’s scope is created.

A pointer to f’s table is pushed on the scope stack.

Then “x” is added to hash table for the current scope.
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Bindings

Static vs Dynamic Scoping

Static or lexical scoping:

associations are determined at compile time

using a sequential processing of program

Dynamic scoping:

associations are determined at runtime

processing of program statements follows the execution order of di�erent statements
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Bindings

Example

if we added a new function "g" to the above program as follows:
void g() {

int y;

f();

}

Consider references to the name “y” at (4).

With static scoping, it always refers to the global variable “y” defined at (1).
With dynamic scoping

if “f” is called from main, “y” will refer to the float variable declared in main.
If “f” is invoked from within “g”, the same name will refer to the integer variable “y” defined in
“g”.
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Bindings

Example (Continued)

Since the type associated with “y” at (4) can di�er depending upon the point of call,
we cannot statically determine the type of “y” .

Dynamic scoping does not fit well with static typing.

Since static typing has now been accepted to be the right approach, almost all
current languages (C/C++/Java/OCAML/LISP) use static scoping.
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Simple/Built-in Types Compound Types Polymorphism Type Equivalence Type Compatibility Type Checking

What is a Type?

A set of values

Together with a set of operations on these values that possess certain properties
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What is a Type?

A set of values

Together with a set of operations on these values that possess certain properties
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Simple/Built-in Types Compound Types Polymorphism Type Equivalence Type Compatibility Type Checking

Topics

Data types in modern languages

simple and compound types

Type declaration

Type inference and type checking

Type equivalence, compatibility, conversion and coercion

Strongly/Weakly/Un-typed languages

Static Vs Dynamic type checking
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Simple/Built-in Types Compound Types Polymorphism Type Equivalence Type Compatibility Type Checking

Simple Types

Predefined

int, float, double, etc in C

All other types are constructed, starting from predefined (aka primitive) types
Enumerated:

enum colors {red, green, blue} in C
type colors = Red|Green|Blue in OCAML
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Simple/Built-in Types Compound Types Polymorphism Type Equivalence Type Compatibility Type Checking

Detour: Evolution of Programming Languages
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Simple/Built-in Types Compound Types Polymorphism Type Equivalence Type Compatibility Type Checking

Compound Types

Types constructed from other types using type constructors

Cartesian product (*)

Function types (→)

Union types (∪)

Arrays

Pointers

Recursive types
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Simple/Built-in Types Compound Types Polymorphism Type Equivalence Type Compatibility Type Checking

Cartesian Product

Let I represent the integer type and R represent real type.

The cross product I × R is defined in the usual manner of product of sets, i.e.,
I × R = {(i, r)|i ∈ I, r ∈ R}

Cartesian product operator is non-associative.
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Simple/Built-in Types Compound Types Polymorphism Type Equivalence Type Compatibility Type Checking

Labeled Product types

In Cartesian products, components of tuples don’t have names.

Instead, they are identified by numbers.

In labeled products each component of a tuple is given a name.

Labeled products are also called records (a language-neutral term)
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Simple/Built-in Types Compound Types Polymorphism Type Equivalence Type Compatibility Type Checking

Labeled Product types (Continued)

struct is a term that is specific to C and C++

struct t {int a;float b;char *c;}; in C
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Simple/Built-in Types Compound Types Polymorphism Type Equivalence Type Compatibility Type Checking

Function Types
T1 → T2 is a function type

Type of a function that takes one argument of type T1 and returns type T2

OCAML supports functions as first class values.

They can be created and manipulated by other functions.

In imperative languages such as C, we can pass pointers to functions, but this does not o�er
the same level of flexibility.

E.g., no way for a C-function to dynamically create and return a pointer to a function;
rather, it can return a pointer to an EXISTING function

Recent versions of C++ (as well Python, JavaScript and recent Java versions) support
dynamically created functions (aka lambda abstractions)

See Functional Programming for Imperative Programmers for a discussion of functional
programming features in C++.
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Simple/Built-in Types Compound Types Polymorphism Type Equivalence Type Compatibility Type Checking

Union types

Union types correspond to set unions, just like product types corresponded to
Cartesian products.

-> operator is right-associative, so we read the type as float -> (float -> float).

Unions can be tagged or untagged. C/C++ support only untagged unions:
union v {

int ival;

float fval;

char cval;

};
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Simple/Built-in Types Compound Types Polymorphism Type Equivalence Type Compatibility Type Checking

Tagged Unions

In untagged unions, there is no way to ensure that the component of the right type
is always accessed.

E.g., an integer value may be stored in the above union, but due to a programming error,

the fval field may be accessed at a later time.

fval doesn’t contain a valid value now, so you get some garbage.

With tagged unions, the compiler can perform checks at runtime to ensure that the
right components are accessed.

Tagged unions are NOT supported in C/C++.
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Tagged Unions (Continued)

Pascal supports tagged unions using VARIANT RECORDs

RECORD

CASE b: BOOLEAN OF

TRUE: i: INTEGER; |

FALSE: r: REAL END

END

END

Tagged union is also called a discriminated union
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Array types

Array construction is denoted by

array(<range>, <elememtType>).

C-declaration

int a[5];

defines a variable a of type array(0-4, int)

A declaration

union tt b[6][7];

declares a variable b of type array(0-4, array(0-6, union �))

We may not consider range as part of type
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Pointer types

A pointer type will be denoted using the syntax

ptr(<elementType>)

where <elementType> denote the types of the object pointed by a pointer type.

The C-declaration

char *s;

defines a variable s of type ptr(char)

A declaration

int (*f)(int s, float v)

defines a (function) pointer of type ptr(int*float→ int)
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Recursive types

Recursive type: a type defined in terms of itself.

Example in C:
struct IntList {

int hd;

intList tl;

};

Does not work:

This definition corresponds to an infinite list.

There is no end, because there is no way to capture the case when the tail has the value

“nil”
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Recursive types (Continued)

Need to express that tail can be nil or be a list.

Try: variant records:
TYPE charlist = RECORD

CASE IsEmpty: BOOLEAN OF

TRUE: /* empty list */ |

FALSE:

data: CHAR;

next: charlist;

END

END

Still problematic: Cannot predict amount of storage needed.
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Recursive types (Continued)

Solution in typical imperative languages:

Use pointer types to implement recursive type:
struct IntList {

int hd;

IntList *tl;

};

Now, tl can be:

a NULL pointer (i.e., nil or empty list)

or point to a nonempty list value

Now, IntList structure occupies only a fixed amount of storage
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Recursive types In OCAML

Direct definition of recursive types is supported in OCAML using type declarations.

Use pointer types to implement recursive type:
# type intBtree =

LEAF of int

| NODE of int * intBtree * intBtree;;

type intBtree = LEAF of int | NODE of int * intBtree * intBtree

We are defining a binary tree type inductively:

Base case: a binary tree with one node, called a LEAF

Induction case: construct a binary tree by constructing a new node that sores an integer

value, and has two other binary trees as children
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Polymorphism

Ability of a function to take arguments of multiple types.

The primary use of polymorphism is code reuse.

Functions that call polymorphic functions can use the same piece of code to operate
on di�erent types of data.
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Overloading (adhoc polymorphism)

Same function NAME used to represent di�erent functions

implementations may be di�erent

arguments may have di�erent types

Example:

operator ’+’ is overloaded in most languages so that they can be used to add integers or

floats.

But implementation of integer addition di�ers from float addition.

Arguments for integer addition or ints, for float addition, they are floats.

Any function name can be overloaded in C++, but not in C.

All virtual functions are in fact overloaded functions.
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Polymorphism & Overloading

Parametric polymorphism:

same function works for arguments of di�erent types

same code is reused for arguments of di�erent types.

allows reuse of “client” code (i.e., code that calls a polymorphic function) as well

Overloading:

due to di�erences in implementation of overloaded functions, there is no code reuse in

their implementation

but client code is reused
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Parametric polymorphism in C++

Example:
template <class C>

C min(const C* a, int size, C minval) {

for (int i = 0; i < size; i++)

if (a[i] < minval)

minval = a[i];

return minval;

}

Note: same code used for arrays of any type.

The only requirement is that the type support the “<” and “=” operations

The above function is parameterized wrt class C

Hence the term “parametric polymorphism”.

Unlike C++, C does not support templates.
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Code reuse with Parametric Polymorphism

With parametric polymorphism, same function body reused with di�erent types.

Basic property:

does not need to "look below" a certain level

E.g., min function above did not need to look inside each array element.

Similarly, one can think of length and append functions that operate on linked lists of all

types, without looking at element type.
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Code reuse with overloading

No reuse of the overloaded function

there is a di�erent function body corresponding to each argument type.

But client code that calls a overloaded function can be reused.

Example

Let C be a class, with subclasses C1,...,Cn.

Let f be a virtual method of class C

We can now write client code that can apply the function f uniformly to elements of an

array, each of which is a pointer to an object of type C1,...,Cn.
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Example

Example:
void g(int size, C *a[]) {

for (int i = 0; i < size; i++)

a[i]->f(...);

}

Now, the body of function g (which is a client of the function f) can be reused for
arrays that contain objects of type C1 or C2 or ... or Cn,or even a mixture of these
types.
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Type Equivalence

Structural equivalence: two types are equivalent if they are defined by identical
type expressions.

array ranges usually not considered as part of the type

record labels are considered part of the type.

Name equivalence: two types are equal if they have the same name.

Declaration equivalence: two types are equivalent if their declarations lead back to
the same original type expression by a series of redeclarations.
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Type Equivalence (contd.)

Structural equivalence is the least restrictive

Name equivalence is the most restrictive.

Declaration equivalence is in between

TYPE t1 = ARRAY [1..10] of INTEGER; VAR v1: ARRAY [1..10] OF INTEGER;

TYPE t2 = t1; VAR v3,v4: t1; VAR v2: ARRAY [1..10] OF INTEGER;
Structurally equivalent? Declaration equivalent? Name equivalent?

t1,t2 Yes Yes No

v1,v2 Yes No No

v3,v4 Yes Yes Yes
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Declaration equivalence

In Pascal, Modula use decl equivalence

In C

Decl equiv used for structs and unions

Structual equivalence for other types.

struct { int a ; float b ;} x ;

struct { int a; float b; }y;

x and y are structure equivalent but not declaration equivalent.
typedef int* intp ;

typedef int** intpp ;

intpp v1 ;

intp *v2 ;

v1 and v2 are structure equivalent.
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Type Compatibility

Weaker notion than type equivalence

Notion of compatibility di�ers across operators

Example: assignment operator:

v = expr is OK if <expr> is type-compatible with v.

If the type of expr is a Subtype of the type of v, then there is compatibility.

Other examples:

In most languages, assigning integer value to a float variable is permi�ed, since integer is

a subtype of float.

In OO-languages such as Java, an object of a derived type can be assigned to an object of

the base type.
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Type Compatibility (Continued)

Procedure parameter passing uses the same notion of compatibility as assignment

Note: procedure call is a 2-step process
assignment of actual parameter expressions to the formal parameters of the procedure
execution of the procedure body

Formal parameters are the parameter names that appear in the function declaration.

Actual parameters are the expressions that appear at the point of function call.
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Type Checking

Static (compile time)
Benefits

no run-time overhead
programs safer/more robust

Dynamic (run-time)
Disadvantages

runtime overhead for maintaining type info at runtime
performing type checks at runtime

Benefits
more flexible/more expressive
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Examples of Static and Dynamic Type Checking

C++ allows

Upcasts: casting of subclass to superclass (always type-safe)
Downcasts: superclass to subclass (not necessarily type-safe) – but no way to check

since C++ is statically typed.
Actually, runtime checking of downcasts is supported in C++ but is typically not used

due to runtime overhead

Java uses combination of static and dynamic type-checking to catch unsafe casts
(and array accesses) at runtime.
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Type Checking (Continued)

Type checking relies on type compatibility and type inference rules.

Type inference rules are used to infer types of expressions. e.g., type of (a+b)+c is
inferred from type of a, b and c and the inference rule for operator ‘+‘.

Type inference rules typically operate on a bo�om-up fashion.

Example: (a+b)+c

+:float

c:float+:float

b:floata:int
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Type Checking (Continued)

In OCAML, type inference rules capture bo�om-up and top-down flow of type info.

Example of Top-down: let f x y:float*int = (x, y)

f:float*int

y:intx:float

Here types of x and y inferred from return type of f.

Note: Most of the time OCAML programs don’t require type declaration.

But it really helps to include them: programs are more readable, and most important, you

get far fewer hard-to-interpret type error messages.
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Strong Vs Weak Typing

Strongly typed language: such languages will execute without producing uncaught
type errors at runtime.

no invalid memory access
no seg fault
array index out of range
access of null pointer

No invalid type casts

Weakly typed: uncaught type errors can lead to undefined behavior at runtime

In practice, these terms used in a relative sense

Strong typing does not imply static typing
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Type Conversion

Explicit: Functions are used to perform conversion.

example: strtol, atoi, itoa in C; float and int etc.

Implicit conversion (coercion)
example:

If a is float and b is int then type of a+b is float
Before doing the addition, b must be converted to a float value. This conversion is done
automatically.

Casting (as in C)

Invisible “conversion:” in untagged unions
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Data Types Summary

Simple/built-in types

Compound types (and their type expressions)
Product, union, recursive, array, pointer

Parametric Vs subtype polymorphism, Code reuse

Polymorphism in OCAML, C++,

Type equivalence
Name, structure and declaration equivalence

Type compatibility

Type inference, type-checking, type-coercion

Strong Vs Weak, Static Vs Dynamic typing
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OOP (Object Oriented Programming)

So far the languages that we encountered treat data and computation separately.

In OOP, the data and computation are combined into an “object”.

1 / 55



OOP Introduction Type & Subtype Inheritance Overloading and Overriding Template Dynamic Binding OO-language Implementation Summary

Benefits of OOP

more convenient: collects related information together, rather than distributing it.

Example: C++ iostream class collects all I/O related operations together into one central

place.

Contrast with C I/O library, which consists of many distinct functions such as getchar,

printf, scanf, sscanf, etc.

centralizes and regulates access to data.

If there is an error that corrupts object data, we need to look for the error only within its

class

Contrast with C programs, where access/modification code is distributed throughout the

program
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Benefits of OOP (Continued)

Promotes reuse.
by separating interface from implementation.

We can replace the implementation of an object without changing client code.
Contrast with C, where the implementation of a data structure such as a linked list is integrated
into the client code

by permi�ing extension of new objects via inheritance.
Inheritance allows a new class to reuse the features of an existing class.
Example: define doubly linked list class by inheriting/ reusing functions provided by a singly
linked list.
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Encapsulation & Information hiding

Encapsulation

centralizing/regulating access to data

Information hiding

separating implementation of an object from its interface

These two terms overlap to some extent.
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Classes and Objects

Class is an (abstract) type
includes data

class variables (aka static variables)
. shared (global) across all objects of this class

instance variables (aka member variables)
. independent copy in each object
. similar to fields of a struct

and operations
member functions

. always take object as implicit (first) argument
class functions (aka static functions)

. don’t take an implicit object argument

Object is an instance of a class
variable of class type
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Access to Members

Access to members of an object is regulated in C++ using three keywords
Private:

Accessibly only to member functions of the class
Can’t be directly accessed by outside functions

Protected:
allows access from member functions of any subclass

Public:
can be called directly by any piece of code.
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Member Function

Member functions are of two types

statically dispatched

dynamically dispatched.

The dynamically dispatched functions are declared using the keyword “virtual” in
C++

all member function functions are virtual in Java
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C++

Developed as an extension to C

by adding object oriented constructs originally found in Smalltalk (and Simula67).

Most legal C programs are also legal C++ programs

“Backwards compatibility” made it easier for C++ to be accepted by the programming

community

. . . but made certain features problematic (leading to “dirty” programs)

Many of C++ features have been used in Java

Some have been “cleaned up”

Some useful features have been le� out
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Example of C++ Class

A typical convention is C++ is to make all data members private. Most member
functions are public.
Consider a list that consists of integers. The declaration for this could be :
class IntList {

private:

int elem; // element of the list

IntList *next ; // pointer to next element

public:

IntList (int first); //"constructor"

~IntList () ; // "destructor".

void insert (int i); // insert element i

int getval () ; // return the value of elem

IntList *getNext (); // return the value of next

}
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Example of C++ Class (Continued)

We may define a subclass of IntList that uses doubly linked lists as follows:
class IntDList: IntList {

private:

IntList *prev;

public:

IntDlist(int first);

// Constructors need to be redefined

~IntDlist();

// Destructors need not be redefined, but

// typically this is needed in practice.

// Most operations are inherited from IntList.

// But some operations may have to be redefined.

insert (int);

IntDList *prev();

}
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C++ and Java: The Commonalities

Classes, instances (objects), data members (fields) and member functions (methods).

Overloading and inheritance.

base class (C++) → superclass (Java)

derived class (C++) → subclass (Java)

Constructors

Protection (visibility): private, protected and public

Static binding for data members (fields)
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A C++ Primer for Java Programmers

Classes, fields and methods:
Java: C++:

class A extends B {

private int x;

protected int y;

public int f() {

return x;

}

public void print() {

System.out.println(x);

}

}

class A : public B {

private: int x;

protected: int y;

public: int f() {

return x;

}

void print() {

std::cout << x << std::endl;

}

}
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A C++ Primer for Java Programmers

Declaring objects:
In Java, the declaration A va declares va to be a reference to object of class A.

Object creation is always via the new operator

In C++, the declaration A va declares va to be an object of class A.

Object creation may be automatic (using declarations) or via new operator:

A *va = new A;
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Objects and References

In Java, all objects are allocated on the heap; references to objects may be stored in
local variables.

In C++, objects are treated analogous to C structs: they may be allocated and
stored in local variables, or may be dynamically allocated.

Parameters to methods:

Java distinguishes between two sets of values: primitives (e.g. ints, floats, etc.) and

objects (e.g String, Vector, etc.

Primitive parameters are passed to methods by value (copying the value of the argument

to the formal parameter)

Objects are passed by reference (copying only the reference, not the object itself).

C++ passes all parameters by value unless specially noted.
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Type

Apparent Type: Type of an object as per the declaration in the program.

Actual Type: Type of the object at run time.

Let Test be a subclass of Base. Consider the following Java program:
Base b = new Base();

Test t = new Test();

...

b = t;

Variable Apparent type of

object referenced

b Base

t Test
. . . throughout the scope of b and t’s declarations
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Type (Continued)

Let Test be a subclass of Base. Consider the following Java program fragment:
Base b = new Base();

Test t = new Test();

...

b = t;

Variable Program point Actual type of

object referenced

b before b=t Base

t before b=t Test

b a�er b=t Test

t a�er b=t Test
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Type (Continued)

Things are a bit di�erent in C++, because you can have both objects and object
references. Consider the case where variables are objects in C++:
Base b();

Test t();

...

b = t;

Variable Program point Actual type of

object referenced

b before b=t Base

t before b=t Test

b a�er b=t Base

t a�er b=t Test
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Type (Continued)

Things are a bit di�erent in C++, because you can have both objects and object
references. Consider the case where variables are pointers in C++:
Base *b = new Base();

Test *t = new Test();

...

b = t;

Variable Program point Actual type of

object referenced

b before b=t Base*

t before b=t Test*

b a�er b=t Test*

t a�er b=t Test*
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Subtype

A is a subtype of B if every object of type A is also a B, i.e., every object of type A
has

(1) all of the data members of B

(2) supports all of the operations supported by B, with the operations taking the same

argument types and returning the same type.

(3) AND these operations and fields have the “same meaning” in A and B.

It is common to view data field accesses as operations in their own right. In that
case, (1) is subsumed by (2) and (3).
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Subtype Principle

A key principle :

“For any operation that expects an object of type T, it is acceptable to supply object of

type T’, where T’ is subtype of T.”

The subtype principle enables OOL to support subtype polymorphism:

client code that accesses an object of class C can be reused with objects that belong to

subclasses of C.
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Subtype Principle (Continued)

The following function will work with any object whose type is a subtype of IntList.
void q (IntList &i, int j) {

...

i.insert(j) ;

}

Subtype principle dictates that this work for IntList and IntDList.

This must be true even is the insert operation works di�erently on these two types.

Note that use of IntList::insert on IntDList object will likely corrupt it, since the prev

pointer would not be set.
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Subtype Principle (Continued)

Hence, i.insert must refer to

IntList::insert when i is an IntList object, and

IntDList::insert function when i is an IntDList.

Requires dynamic association between the name “insert” and the its
implementation.

achieved in C++ by declaring a function be virtual.

definition of insert in IntList should be modified as follows: virtual void

insert(int i);
all member functions are by default virtual in Java, while they are nonvirtual in C++

equivalent of “virtual” keyword is unavailable in Java.
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Reuse of Code

Reuse achieved through subtype polymorphism
the same piece of code can operate on objects of di�erent type, as long as:

Their types are derived from a common base class
Code assumes only the interface provided by base class.

Polymorphism arises due to the fact that the implementation of operations may
di�er across subtypes.

23 / 55



OOP Introduction Type & Subtype Inheritance Overloading and Overriding Template Dynamic Binding OO-language Implementation Summary

Reuse of Code (Continued)

Example:
Define a base class called DrawableObject

supports draw() and erase().
DrawableObject just defines an interface

no implementations for the methods are provided.
this is an abstract class — a class with one or more abstract methods (declared but not
implemented).
also an interface class — contains only abstract methods subtypes.
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Reuse of Code: example (Continued)

The hierarchy of DrawableObject may look as follows:

DrawableObject

BitMaps

GIFJPEG

GeometricShapes

OpenFigures

...

ClosedFigures

Ellipse

...Circle

Polygon

TriangleRectangle

Square
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Reuse of Code: example (Continued)

The subclasses support the draw() and erase() operation supported by the base class.

Given this se�ing, we can implement the redraw routine using the following code
fragment:

void redraw(DrawableObject* objList[], int size){

for (int i = 0; i < size; i++)

objList[i]->draw();

}
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Reuse of Code: example (Continued)

objList[i].draw will call the appropriate method:

for a square object, Square::draw

for a circle object, Circle:draw

The code need not be changed even if we modify the inheritance hierarchy by
adding new subtypes.
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Reuse of Code: example (Continued)

Compare with implementation in C:
void redraw(DrawableObject *objList[], int size) {

for (int i = 0; i < size; i++){

switch (objList[i]->type){

case SQUARE: square_draw((struct Square *)objList[i]);

break;

case CIRCLE: circle_draw((struct Circle *)objList[i]);

break;

........

default: ....

}

}

}

Di�erences:
no reuse across types (e.g., Circle and Square)

need to explicitly check type, and perform casts

will break when new type (e.g., Hexagon) added 28 / 55
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Reuse of Code (Continued)

Reuse achieved through subtype polymorphism
the same piece of code can operate on objects of di�erent type, as long as:

Their types are derived from a common base class
Code assumes only the interface provided by base class.

Polymorphism arises due to the fact that the implementation of operations may
di�er across subtypes.
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Dynamic Binding

Dynamic binding provides overloading rather than parametric polymorphism.

the draw function implementation is not being shared across subtypes of

DrawableObject, but its name is shared.

Enables client code to be reused

To see dynamic binding more clearly as overloading:

Instead of a.draw(),

view as draw(a)
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Reuse of Code (Continued)

Subtype polymorphism = function overloading

Implemented using dynamic binding

i.e., function name is resolved at runtime, rather than at compile time.

Conclusion: just as overloading enables reuse of client code, subtype polymorphism
enables reuse of client code.
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Inheritance

language mechanism in OO languages that can be used to implement subtypes.

The notion of interface inheritance corresponds conditions (1), (2) and (3) in the
definition of Subtype

but provision (3) is not checked or enforced by a compiler.
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Subtyping & interface inheritance

The notion of subtyping and interface inheritance coincide in OO languages.
OR

Another way to phrase this is to say that “interface inheritance captures an ’is-a’
relationship”

OR

If A inherits B’s interface, then it must be the case that every A is a B.
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Implementation Inheritance

If A is implemented using B, then there is an implementation inheritance
relationship between A and B.

However A need not support any of the operations supported by B

OR

There is no is-a relationship between the two classes.

Implementation inheritance is thus “irrelevant” from the point of view of client code.

Private inheritance in C++ corresponds to implementation-only inheritance, while
public inheritance provides both implementation and interface inheritance.
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Implementation Inheritance (Continued)

Implementation-only inheritance is invisible outside a class

not as useful as interface inheritance.

can be simulated using composition.

class B{

op1(...)

op2(...)

}

class A: private class B {

op1(...) /* Some operations supported by B may also be supported in

A (e.g., op1), while others (e.g., op2) may not be */

op3(...) /* New operations supported by A */

}
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Implementation Inheritance (Continued)

The implementation of op1 in A has to explicitly invoke the implementation of op1
in B:

A::op1(...){

B::op1(...)

}

So, we might as well use composition:

class A{

B b;

op1(...) { b.op1(...) }

op3(...)...

}
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Polymorphism

“The ablilty to assume di�erent forms”

A function/method is polymorphic if it can be applied to values of many types.

Class hierarchy and inheritance provide a form of polymorphism called subtype

polymorphism.

As dicussed earlier, it is a form of overloading.

Overloading based on the first argument alone.

Overloading resolved dynamically rather than statically.

Polymorphic functions increase code reuse.
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Polymorphism (Continued)

Consider the following code fragment: (x < y)? x : y

“Finds the minimum of two values”.

The same code fragment can be used regardless of whether x and y are:

integers

floating point numbers

objects whose class implements operator “<”.

Templates li� the above form of polymorphism (called parametric polymorphism) to
functions and classes.
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Parametric polymorphism Vs Interface Inheritance

In C++,

template classes support parametric polymorphism

public inheritance support interface + implementation inheritance.

Parametric polymorphism is more flexible in many cases.
template class List<class ElemType>{

private:

ElemType *first; List<ElemType> *next;

public:

ElemType *get(); void insert(ElemType *e);

}

Now, one can use the List class with any element type:
void f(List<A> alist, List<B> blist){

A a = alist.get();

B b = blist.get();

}
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Parametric polymorphism Vs Inheritance (Continued)

If we wanted to write a List class using only subtype polymorphism:

We need to have a common base class for A and B

e.g., in Java, all objects derived from base class “Object”
class AltList{

private:

Object first; AltList next;

public:

Object get(); void insert(Object o);

}

void f(AltList alist, AltList blist) {

A a = (A)alist.get();

B b = (B)blist.get();

}
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Parametric polymorphism Vs Interface Inheritance

(Continued)

Note: get() returns an object of type Object, not A.

Need to explicitly perform runtime casts.

type-checking needs to be done at runtime, and type info maintained at runtime

potential errors, as in the following code, cannot be caught at compile time
List alist, blist;

A a; A b;//Note b is of type A, not B

alist.insert(a);

blist.insert(b);

f(alist, blist);//f expects second arg to be list of B’s, but we are giving a list of A’s.
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Overloading, Overriding, and Virtual Functions

Overloading is the ability to use the same function NAME with di�erent arguments
to denote DIFFERENT functions.

In C++

void add(int a, int b, int& c);

void add(float a, float b, float& c);

Overriding refers to the fact that an implementation of a method in a subclass
supersedes the implementation of the same method in the base class.
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Overloading, Overriding, and Virtual Functions (Continued)

Overriding of non-virtual functions in C++:
class B {

public:

void op1(int i) { /* B’s implementation of op1 */ }

}

class A: public class B {

public:

void op1(int i) { /* A’s implementation of op1 */ }

}

main() {

B b; A a;

int i = 5; b.op1(i); // B’s implementation of op1 is used

a.op1(i); // Although every A is a B, and hence B’s implementation of

// op1 is available to A, A’s definition supercedes B’s defn,

// so we are using A’s implementation of op1.

((B)a).op1(); // Now that a has been cast into a B, B’s op1 applies.

a.B::op1(); // Explicitly calling B’s implementation of op1

}
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Overloading, Overriding, and Virtual Functions (Continued)

In the above example the choice of B’s or A’s version of op1 to use is based on
compile-time type of a variable or expression. The runtime type is not used.

Overloaded (non-member) functions are also resolved using compile-time type
information.
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Overriding In The Presence Of Virtual Function
class B {

public:

virtual void op1(inti){/* B’s implementation of op1 */ }

}

class A: public class B {

public:

void op1(int i) {// op1 is virtual in base class, so it is virtual here too

/* A’s implementation of op1 */ }

}

main() {

B b; A a;

int i = 5;

b.op1(i); // B’s implementation of op1 is used

a.op1(i); // A’s implementation of op1 is used.

((B)a).op1(); // Still A’s implementation is used

a.B::op1(); // Explicitly requesting B’s definition of op1

}
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Overriding In The Presence Of Virtual Function (Continued)

void f (B x , int i ) {
x . op1 (i ) ;

}

which may be invoked as follows:

B b ;
A a ;
f (b , 1 ) ; / / f uses B ’ s op1

f (a , 1 ) ; / / f still uses B ’ s op1 , not A ’ s

void f ( B& x , int i ) {
x . op1 (i ) ;

}

which may be invoked as follows:

B b ;
A a ;
f (b , 1 ) ; / / f uses B ’ s op1

f (a , 1 ) ; / / f uses A ’ s op1

46 / 55



OOP Introduction Type & Subtype Inheritance Overloading and Overriding Template Dynamic Binding OO-language Implementation Summary

Function Template

Declaring function templates:

template <typename T>

T min ( T x, T y ) {

return (x < y)? x : y;

}

typename parameter can be name of any type (e.g. int, long, Base, . . .)

Using template functions:

z = min(x, y)

Compiler fills out the template’s typename parameter using the types of arguments.

Can also be explicitly used as: min<float>(x, y)
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Class Templates

Of great importance in implementing data structures (say list of elements, where all
elements have to be of the same type).

Java does not provide templates:

Some uses of templates can be replaced by using Java interfaces.

Many other uses would require “type casting”

e.g.:

Iterator e = ...

Int x = (Integer) e.next();

Inherently dangerous since it skirts around compile-time type checking.
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Dynamic Binding

A function f may take parameters of class C1

The actual parameter passed into the function may be of class C2 that is a subclass
of C1

Methods invoked on this parameter within f will be the member function supported
by C2, rather than C1

To do this, we have to identify the appropriate member function at runtime, based
on the actual type C2 of the parameter, and not the (statically) determined type C1
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Dynamic Binding (Continued)

Dynamic binding provides overloading rather than parametric polymorphism.
void q (IntList &i, int j) {

...

i.insert(j) ;

}

the insert function implementation is not being shared across subtypes of IntList, but

its name is shared.

enables client code to be reused

To see dynamic binding as overloading, we need to eliminate the “syntactic sugar”
used for calling member functions in OOL:

Instead of viewing it as i.insert(...), we would think of it as a simple function

insert(i,...) that explicitly takes an object as an argument.
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Implementation of OO-Languages

Data
nonstatic data (aka instance variables) are allocated within the object

the data fields are laid out one a�er the other within the object
alignment requirements may result in “gaps” within the object that are unused
each field name is translated at compile time into a number that corresponds to the o�set
within the object where the field is stored

static data (aka class variables) are allocated in a static area, and are shared across all
instances of a class.

Each class variable name is converted into an absolute address that corresponds to the location
within the static area where the variable is stored.
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Implementation of Dynamic Binding

All virtual functions corresponding to a class C are put into a virtual method table
(VMT) for class C

Each object contains a pointer to the VMT corresponding to the class of the object

This field is initialized at object construction time

Each virtual function is mapped into an index into the VMT. Method invocation is
done by

access the VMT table by following the VMT pointer in the object

look up the pointer for the function within this VMT using the index for the member

function
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Implementation of Inheritance

Key requirement to support subtype principle:

a function f may expect parameter of type C1, but the actual parameter may be of type

C2 that is a subclass of C1
the function f must be able to deal with an object of class C2 as if it is an object of class C1

this means that all of the fields of C2 that are inherited from C1, including the VMT pointer,
must be laid out in the exact same way they are laid out in C1
all functions in the interface of C1 that are in C2 must be housed in the same locations within
the VMT for C2 as they are located in the VMT for C1
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Impact of subtype principle on Implementation (Continued)

In order to satisfy the constraint that VMT (Virtual Method Table) ptr appear at the
same position in objects of type A and B, it is necessary for the data field f in A to
appear a�er the VMT field.

A couple of other points:

non-virtual functions are statically dispatched, so they do not appear in the VMT table

when a virtual function f is NOT redefined in a subclass, the VMT table for that class is

initialized with an entry to the function f defined its superclass.
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Summary

The key properties of OOL are:

encapsulation

inheritance+dynamic binding
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Type Checking: Declarations

T −→ int { T .type = int ; }
T −→ float { T .type = float ; }
D −→ T id { D.type = T .type;

sym_enter(id.name, D.type); }
D −→ D1, id { D.type = D1.type;

sym_enter(id.name, D.type); }

1 / 8



Type Checking Expressions

E −→ int_const { E .type = int ; }
E −→ float_const { E .type = float ; }
E −→ id { E .type = sym_lookup(id.name, type); }
E −→ E1 + E2 { if (E1.type 6∈ {int , float}) OR

(E2.type 6∈ {int , float})
E .type = error ;

else if E1.type == E2.type == int

E .type = int ;
else E .type = float ;

}
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Type Checking (contd.)

E −→ E1 [ E2 ] { if E1.type == array(S, T) AND
E2.type == int

E .type = T
else E .type = error }

E −→ * E1 { if E1.type == ptr(T)
E .type = T

else E .type = error }
E −→ & E1 { E .type = ptr(E1.type) }
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Type Checking (contd.)

E −→ E1 E2 { if E1.type ≡ arrow(S, T) AND
E2.type ≡ S

E .type = T
else

E .type = error }

E −→ ( E1, E2 ) { E .type = tuple(E1.type, E2.type) }
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Resolving Names

What entity is represented by t.area()?

Determine the type of t.

t has to be of type user(c).

If c has a method of name area, we are done.

Otherwise, if the superclass of c has a method of name area, we are done.

Otherwise, if the superclass of superclass of c...

=⇒ Determine the nearest superclass of class c that has a method with
name area.
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Resolving Names (contd.)

class Rectangle {

int x,y; // top lh corner

int l, w; // length and width

Rectangle move() {

x = x + 5; y = y + 5;

return this;

}

Rectangle move(int dx, int dy) {

x = x + dx; y = y + dy;

return this;

}

}
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Resolving Names (contd.)

What entity is represented by move in r.move(3, 10)?

Determine the type C of r.

Determine the nearest superclass of class C that has a method with name move

such that move is a method that takes two int parameters.
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Type Checking Statements

S −→ id := E { if isSubType(E .type, id .type)
S.type == void

else S.type = error }
S −→ S1; S2 { if (S1.type == S2.type == void)

S.type == void
else S.type = error }

S −→ if E then
S1 else S2 { if (S1.type == S2.type == void)

&& (E .type == bool)
S.type == void

else S.type = error }
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If-Then-Else Parameter Passing Mechanisms

CSE 504: Compilers
Evaluation and Runtime Environments

R. Sekar
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If-Then-Else Parameter Passing Mechanisms

Expression evaluation

Order of evaluation

For the abstract syntax tree

+

5+

+

42

+

3x

the equivalent expression is (x + 3) + (2 + 4) + 5
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Expression evaluation (Continued)

One possible semantics:

evaluate AST bo�om-up, le�-to-right.

This constrains optimization that uses mathematical properties of operators

(e.g. commutativity and associativity)

e.g.,it may be preferable to evaluate of e1+(e2+e3)instead of (e1+e2)+e3

(x+0)+(y+3)+(z+4)=>x+y+z+0+3+4=>x+y+z+7

the compiler can evaluate 0+3+4 at compile time, so that at runtime, we have two fewer

addition operations.
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Expression evaluation (Continued)

Some languages leave order of evaluation unspecified.

order of evaluation of procedure parameters are also unspecified.

Problem:

Semantics of expressions with side-e�ects, e.g., (x++) + x
If initial value of x is 5

le�-to-right evaluation yields 11 as answer, but
right-to-le� evaluation yields 10

So, languages with expressions with side-e�ects forced to specify evaluation order

Still, a bad programming practice to use expressions where di�erent orders of
evaluation can lead to di�erent results

Impacts readability (and maintainability) of programs
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Le�-to-right evaluation

Le�-to-right evaluation with short-circuit semantics is appropriate for boolean
expressions.

e1&&e2: e2 is evaluated only if e1 evaluates to true.
e1||e2: e2 is evaluated only if e1 evaluates to false.

This semantics is convenient in programming:

Consider the statement: if((i<n) && a[i]!=0)

With short-circuit evaluation, a[i] is never accessed if i>= n

Another example: if ((p!=NULL) && p->value>0)
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Le�-to-right evaluation (Continued)

Disadvantage:

In an expression like “if((a==b)||(c=d))”

The second expression has a statement. The value of c may or may not be the value of d,

depending on if a == b is true or not.

Bo�om-up:

No order specified among unrelated subexpressions.

Short-circuit evaluation of boolean expressions.

Delayed evaluation

Delay evaluation of an expressions until its value is absolutely needed.

Generalization of short-circuit evaluation.
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Control Statements

Structured Control Statements:

Case Statements:

Implementation using if-then-else

Understand semantics in terms of the semantics of simple constructs

actual implementation in a compiler

Loops

while, repeat, for
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If-Then-Else

If-then-else. It is in two forms:

if cond then s1 else s2

if cond then s1

evaluate condition: if and only if evaluates to true, then evaluate s1 otherwise
evaluate s2.
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Case (Switch) Statement

Case statement
switch(<expr>){

case <value> :

case <value> :

...

default :

}

Evaluate “<expr>” to get value v. Evaluate the case that corresponds to v.

Restriction:

“<value>” has to be a constant of an original type e.g., int, enum

Why?
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Implementation of case statement

Naive algorithm:

Sequential comparison of value v with case labels.

This is simple, but ine�icient. It involves O(N) comparisons

switch(e){

case 0:s0;

case 1:s1;

case 2:s2;

case 3:s3;

}

can be translated as:
v = e;

if (v==0) s0;

else if (v == 1) s1;

else if (v == 2) s2;

else if (v == 3) s3;
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Implementation of case statement (Continued)

Binary search:

O(log N) comparisons, a drastic improvement

over sequential search for large N.

Using this, the above case statement can be translated as
v = e;

if (v<=1)

if (v==0) s0;

else if (v==1) s1;

else if (v>=2)

if (v==2) s2;

else if (v==3) s3;
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Implementation of case statement (Continued)

Another technique is to use hash tables.

This maps the value v to the case label that corresponds to the value v.

This takes constant time (expected).
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Control Statements (contd.)
while:

let s1 = while C do S

then it can also be wri�en as

s1 = if C then {S; s1}

repeat:

let s2 = repeat S until C

then it can also be wri�en as

s2 = S; if (!C) then s2

loop

let s = loop S end

its semantics can be understood as S; s

S should contain a break statement, or else it won’t terminate.
13 / 87



If-Then-Else Parameter Passing Mechanisms

For-loop

Semantics of for (S2; C; S3) S can be specified in terms of while:

S2; while C do { S; S3 }

In some languages, additional restrictions imposed to enable more e�icient code

Value of index variable can’t change loop body, and is undefined outside the loop

Bounds may be evaluated only once
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Unstructured Control Flow

Unstructured control transfer statements (goto) can make programs hard to
understand:
40:if (x > y) then goto 10

if (x < y) then goto 20

goto 30

10:x = x - y

goto 40

20:y = y -x

goto 40

30:gcd = x
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Unstructured Control Flow (Continued)

Unstructured control transfer statements (goto) can make programs hard to
understand:
40:if (x > y) then goto 10

if (x < y) then goto 20

goto 30

10:x = x - y

goto 40

20:y = y -x

goto 40

30:gcd = x

Equivalent program with structured control statements is easier to understand:
while (x!=y) {

if (x > y) then x=x-y

else y=y-x

}
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Control Statements (contd.)

goto should be used in rare circumstances

e.g., error handling.

Java doesn’t have goto. It uses labeled break instead:
l1: for ( ... ) {

while (...) {

....

break l1

}

}

break l1 causes exit from loop labeled with l1
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Control Statements (contd.)

Restrictions in use of goto:

jumps across procedures

jumps from outer blocks to inner blocks or unrelated blocks

goto l1;

if (...) then {

int x;

x = 5;

l1: y = x*x;

}

Jumps from inner to outer blocks are permi�ed.
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Control Statements (Continued)

Procedure calls:

Communication between the calling and the called procedures takes place via parameters.

Semantics:

substitute formal parameters with actual parameters
rename local variables so that they are unique in the program

In an actual implementation, we will simply look up the local variables in a di�erent
environment (callee’s environment)
Renaming captures this semantics without having to model environments.

replace procedure call with the body of called procedure
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Parameter-passing semantics

Call-by-value

Call-by-reference

Call-by-value-result

Call-by-name

Call-by-need

Macros
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Call-by-value

Evaluate the actual parameters

Assign them to corresponding formal parameters

Execute the body of the procedure.
int p(int x) {

x =x +1 ;

return x ;

}

An expression y = p(5+3) is executed as follows:

evaluate 5+3 = 8, call p with 8, assign 8 to x, increment x, return x which is assigned to y.
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Call-by-value (Continued)

Preprocessing

create a block whose body is that of the procedure being called

introduce declarations for each formal parameter, and initialize them with the values of

the actual parameters

Inline procedure body

Substitute the block in the place of procedure invocation statement.
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Call-by-value (Continued)

Example:
int z;

void p(int x){

z = 2*x;

}

main(){

int y;

p(y);

}

Replacing the invocation p(y) as
described yields:
int z;

main(){

int y;

{

int x1=y;

z = 2*x1;

}

}
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“Name Capture”

Same names may denote di�erent entities in the called and calling procedures

To avoid name clashes, need to rename local variables of called procedure

Otherwise, local variables in called procedure may be confused with local variables of

calling procedure or global variables
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Call-by-value (Continued)

Example:
int z;

void p(int x){

int y = 2;

z = y*x;

}

main(){

int y;

p(y);

}

A�er replacement:
int z;

main(){

int y;

{

int x1=y;

int y1=2;

z = y1*x1;

}

}
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Call-by-reference

Evaluate actual parameters (must have l-values)

Assign these l-values to formal parameters

Execute the body.
int z = 8;

y=p(z);

A�er the call, y and z will both have value 9.

Call-by-reference supported in C++, but not in C

E�ect realized by explicitly passing l-values of parameters using “&” operator
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Call-by-reference (Continued)

Explicit simulation in C provides a clearer understanding of the semantics of
call-by-reference:
int p(int *x){

*x = *x + 1;

return *x;

}

...

int z;

y= p(&z);
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Call-By-Reference (Continued)

Example:
int z;

void p(int x){

int y = 2;

z = y*x;

}

main(){

int y;

p(y);

}

A�er replacement:
int z;

main(){

int y;

{

int& x1=y;

int y1=2;

z = y1*x1;

}

}

28 / 87



If-Then-Else Parameter Passing Mechanisms

Call-by-value-result

Works like call by value but in addition, formal parameters are assigned to actual
parameters at the end of procedure.
void p (int x, int y) {

x = x +1;

y = y+ 1;

}

...

int a = 3;

p(a, a) ;

A�er the call, a will have the value 4, whereas with call-by- reference, a will have
the value 5.
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Call-by-value-result (Continued)

The following is the equivalent of call-by-value-result call above:
x = a; y =a ;

x = x +1 ;

y =y +1 ;

a =x ; a =y ;

thus, at the end, a = 4.
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Call-By-Value-Result (Continued)

Example:
void p(int x, y){

x = x + 1;

y = y + 1;

}

main(){

int u = 3;

p(u,u);

}

A�er replacement:
main(){

int u = 3;

{

int x1 = u;

int y1 = u;

x1 = x1 + 1;

y1 = y1 + 1;

u = x1; u = y1;

}

}
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Call-by-Name

Instead of assigning l-values or r-values, CBN works by substituting actual
parameter expressions in place of formal parameters in the body of callee

Preprocessing:

Substitute formal parameters in procedure body by actual parameter expressions.

Rename as needed to avoid “name capture”

Inline:

Substitute the invocation expression with the modified procedure body.
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Call-By-Name (Continued)

Example:
void p(int x, y){

if (x==0)

then x=y;

else{

x=y+1;

}

}

main(){

int u=5; int v=0;

p(v,u/v);

}

A�er replacement:
main(){

int u=5; int v=0;

{

if (v==0)

then v=u/v;

else{

v=u/v+1;

}

}

}
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Call-By-Need

Similar to call-by-name, but the actual parameter is evaluated at most once
Has same semantics as call-by-name in functional languages

This is because the value of expressions does not change with time

Has di�erent semantics in imperative languages, as variables involved in the actual

parameter expression may have di�erent values each time the expression is evaluated in

C-B-Name
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Macros

Macros work like CBN, with one important di�erence:

No renaming of “local” variables

This means that possible name clashes between actual parameters and variables in
the body of the macro will lead to unexpected results.

35 / 87



If-Then-Else Parameter Passing Mechanisms

Macros (Continued)

given
#define sixtimes(y) {int z=0; z = 2*y; y = 3*z;}

main() {

int x=5, z=3;

sixtimes(z);

}

A�er macro substitution, we get the program:
main(){

int x=5,z=3;

{int z=0; z = 2*z; z = 3*z;}

}
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Macros (Continued)

It is di�erent from what we would have got with CBN parameter passing.

In particular, the name confusion between the local variable z and the actual
parameter z would have been avoided, leading to the following result:

main() {

int x = 5, z = 3;

{

int z1=0; // z renamed as z1

z1 = 2*z; // y replaced by z without

z = 3*z1; // confusion with original z

}

}
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Di�iculties in Using Parameter Passing Mechanisms

CBV: Easiest to understand, no di�iculties or unexpected results.

CBVR:

When the same parameter is passed in twice, the end result can di�er depending on the

order in which formals are assigned back to the actual parameters.

Otherwise, relatively easy to understand.
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Di�iculties With CBVR (Continued)

Example:
int f(int x, int y) {

x=4;

y=5;

}

void g() {

int z;

f(z, z);

}

If assignment of formal parameter values to actual parameters were performed le�
to right, then z would have a value of 5.

If they were performed right to le�, then z will be 4.
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Di�iculties in Using CBR

Aliasing can create problems.
int rev(int a[], int b[], int size) {

for (int i = 0; i < size; i++)

a[i] = b[size-i-1];

}

The above procedure will normally copy b into a, while reversing the order of
elements in b.

However, if a and b are the same, as in an invocation rev(c,c,4), the result is quite
di�erent.

If c is 1,2,3,4 at the point of call, then its value on exit from rev will be 4,3,3,4.
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Di�iculties in Using CBN

CBN is complicated, and can be confusing in the presence of side-e�ects.

actual parameter expression with side-e�ects:
void f(int x) {

int y = x;

int z = x;

}

main() {

int y = 0;

f(y++);

}

Note that a�er a call to f, y’s value will be 2 rather than 1.
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Di�iculties in Using CBN (Continued)

If the same variable is used in multiple parameters.
void swap(int x, int y) {

int tp = x;

x = y;

y = tp;

}

main() {

int a[] = {1, 1, 0};

int i = 2;

swap(i, a[i]);

}

When using CBN, by replacing the call to swap by the body of swap: i will be 0, and
a will be 2, 1, 0.
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Di�iculties in Using Macro

Macros share all of the problems associated with CBN.

In addition, macro substitution does not perform renaming of local variables,
leading to additional problems.
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Components of Runtime Environment (RTE)

Static area: allocated at load/startup time.

Examples: global/static variables and load-time constants.

Stack area: for execution-time data that obeys a last-in first-out lifetime rule.

Examples: nested declarations and temporaries.

Heap: a dynamically allocated area for “fully dynamic” data, i.e. data that does not
obey a LIFO rule.

Examples: objects in Java, lists in OCaml.
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Languages and Environments

Languages di�er on where activation records must go in the environment:
(Old) Fortran is static: all data, including activation records, are statically allocated.

Each function has only one activation record — no recursion!

Functional languages (Scheme, ML) and some OO languages (Smalltalk) are
heap-oriented:

almost all data, including AR, allocated dynamically.

Most languages are in between: data can go anywhere

ARs go on the stack.
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Procedures and the environment

An Activation Record (AR) is created for each invocation of a procedure

Structure of AR:

Direction of stack 
growth

Return address

Actual parameters

Saved BP (control link)

Temporary variables

Base
Pointer

Return value

Local variables
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Access to Local Variables

Local variables are allocated at a fixed o�set on the stack
Accessed using this constant o�set from BP

Example: to load a local variable at o�set 8 into the EBX register (x86 architecture)
mov 0x8(%ebp),%ebx

Example:

{int x; int y;

{ int z; }

{ int w; }

}
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Steps involved in a procedure call

Caller

Save registers
Evaluate actual parameters, push on the stack

Push l-values for CBR, r-values in the case of CBV

Allocate space for return value on stack (unless return is through a register)

Call: Save return address, jump to the beginning of called function

Callee

Save BP (control link field in AR)

Move SP to BP

Allocate storage for locals and temporaries (Decrement SP)

Local variables accessed as [BP-k], parameters using [BP+l]
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Steps in return

Callee

Copy return value into its location on AR

Increment SP to deallocate locals/temporaries

Restore BP from Control link

Jump to return address on stack

Caller

Copy return values and parameters

Pop parameters from stack

Restore saved registers
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Example (C):

int x;

void p(int y){

int i = x;

char c; ...

}

void q (int a){

int x;

p(1);

}

main(){

q(2);

return 0;

}
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Non-local variable access

Requires that the environment be able to identify frames representing enclosing
scopes.

Using the control link results in dynamic scope (and also kills the fixed-o�set
property).

If procedures can’t be nested (C), the enclosing scope is always locatable:

it is global/static (accessed directly)

If procedures can be nested (Ada, Pascal), to maintain lexical scope a new link must
be added to each frame:

access link, pointing to the activation of the defining environment of each procedure.
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Access Link vs Control Link
Control Link is a reference to the AR of the caller

Access link is a reference to the AR of the surrounding scope

Dynamic Scoping: When an identifier is not found in the current AR, use control link to

access caller’s AR and look up the name there

If not found, keep walking up the control links until name is found

Static Scoping: When an identifier is not found in the AR of the current function, use

access link to get to AR for the surrounding scope and look up the name there

If not found, keep walking up the access links until the name is found.

Note: Except for top-level functions, access links correspond to function scopes, so they

cannot be determined statically

They need to be “passed in” like a parameter.
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Access Link vs Control Link
Control Link is a reference to the AR of the caller

Access link is a reference to the AR of the surrounding scope

Dynamic Scoping: When an identifier is not found in the current AR, use control link to

access caller’s AR and look up the name there

If not found, keep walking up the control links until name is found

Static Scoping: When an identifier is not found in the AR of the current function, use

access link to get to AR for the surrounding scope and look up the name there

If not found, keep walking up the access links until the name is found.

Note: Except for top-level functions, access links correspond to function scopes, so they

cannot be determined statically

They need to be “passed in” like a parameter.
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Access Link vs Control Link
Control Link is a reference to the AR of the caller

Access link is a reference to the AR of the surrounding scope

Dynamic Scoping: When an identifier is not found in the current AR, use control link to

access caller’s AR and look up the name there

If not found, keep walking up the control links until name is found

Static Scoping: When an identifier is not found in the AR of the current function, use

access link to get to AR for the surrounding scope and look up the name there

If not found, keep walking up the access links until the name is found.

Note: Except for top-level functions, access links correspond to function scopes, so they

cannot be determined statically

They need to be “passed in” like a parameter.
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Access Link vs Control Link
Control Link is a reference to the AR of the caller

Access link is a reference to the AR of the surrounding scope

Dynamic Scoping: When an identifier is not found in the current AR, use control link to

access caller’s AR and look up the name there

If not found, keep walking up the control links until name is found

Static Scoping: When an identifier is not found in the AR of the current function, use

access link to get to AR for the surrounding scope and look up the name there

If not found, keep walking up the access links until the name is found.

Note: Except for top-level functions, access links correspond to function scopes, so they

cannot be determined statically

They need to be “passed in” like a parameter.
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Access Link Vs Control Link: Example

int q(int x) {

int p(int y) {

if (y==0)

return x+y;

else {

int x = 2*p(y-1);

return x;

}

}

return p(3);

}

If p used its caller’s BP to access x, then it ends up accessing

the variable x defined within p

This would be dynamic scoping.

To get static scoping, access should use q’s BP

Access link: q explicitly passes a link to its BP

Calls to self: pass access link without change.

Calls to immediately nested functions: pass your BP

Calls to outer functions: Follow your access link to find the

right access link to pass

Other calls: these will be invalid (like goto to an inner block)
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Supporting Closures

Closures are needed for

Call-by-name and lazy evaluation

Returning dynamically constructed functions containing references to variables in

surrounding scope

Variables inside closures may be accessed long a�er the functions defining them
have returned

Need to “copy” variable values into the closure, or
Not free the AR of functions when they return,

i.e., allocate ARs on heap and garbage collect them

59 / 87



If-Then-Else Parameter Passing Mechanisms

60 / 87



If-Then-Else Parameter Passing Mechanisms

61 / 87



If-Then-Else Parameter Passing Mechanisms

Exception Handling

Example:

int fac(int n) {

if (n <= 0) throw (-1) ; else if (n > 15) throw ("n too large");

else return n*fac(n-1); }

void g (int n) {

int k;

try { k = fac (n) ;}

catch (int i) { cout << "negative value invalid" ; }

catch (char *s) { cout << s; }

catch (...) { cout << "unknown exception" ;}

g(-1) will print “negative value invalid”, g(16) will print “n too large”

If an unexpected error were to arise in evaluation of fac or g, such as running out of

memory, then “unknown exception” will be printed.
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Exception Vs Return Codes

Exceptions are o�en used to communucate error values from a callee to its caller.
Return values provide alternate means of communicating errors.
Example use of exception handler:
float g (int a, int b, int c) {

float x = fac(a) + fac(b) + fac(c) ; return x ; }

main() {

try { g(-1, 3, 25); }

catch (char *s) { cout << "Exception ‘" << s << "’raised, exiting\n"; }

catch (...) { cout << "Unknown exception, eixting\n";

}

We do not need to concern ourselves with every point in the program where an
error may arise.
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Exception Vs Return Codes (Continued)

float g(int a, int b, int c) {

int x1 = fac(a);

if (x1 > 0) {

int x2 = fac(b);

if (x2 > 0) {

int x3 = fac(c);

if (x3 > 0)

return x1 + x2 + x3;

else return x3;

}

else return x2;

}

else return x1;

}

main() {

int x = g(-1, 2, 25);

if (x < 0) { /* identify where error occurred, print */ }

}

Assume that fac returns 0 or a
negative number to indicated errors

If return codes were used to indicate
errors, then we are forced to check
return codes (and take appropriate
action) at every point in code.
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Use of Exceptions in C++ Vs Java

In C++, exception handling was an a�er-thought.

Earlier versions of C++ did not support exception handling.

Exception handling not used in standard libraries

Net result: continued use of return codes for error-checking

In Java, exceptions were included from the beginning.

All standard libraries communicate errors via exceptions.

Net result: all Java programs use exception handling model for error-checking, as opposed

to using return codes.
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Implementation of Exception Handling

Exception handling can be implemented by adding “markers” to ARs to indicate the points

in program where exception handlers are available.

In C++, entering a try-block at runtime would cause such a marker to be put on the stack

When exception arises, the RTE gets control and searches down from stack top for a marker.

Exception then "handed" to the catch statement of this try-block that matches the exception

If no matching catch statement is present, search for a marker is continued further down

the stack, and the whole process is repeated.
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Memory Allocation

A variable is stored in memory at a location corresponding to the variable.

Constants do not need to be stored in memory.

Environment stores the binding between variable names and the corresponding
locations in memory.

The process of se�ing up this binding is known as storage allocation.

67 / 87



If-Then-Else Parameter Passing Mechanisms

Static Allocation

Allocation performed at compile time.

Compiler translates all names to corresponding location in the code generated by it.

Examples:

all variables in original FORTRAN

all global and static variables in C/C++/Java
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Stack Allocation

Needed in any language that supports the notion of local variables for procedures.

Also called “automatic allocation”, but this is somewhat of a misnomer now.

Examples: all local variables in C/C++/Java procedures and blocks.

Implementation:

Compiler translates all names to relative o�sets from a location called the “base pointer”

or “frame pointer”.

The value of this pointer varies will, in general, be di�erent for di�erent procedure

invocations
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Stack Allocation (Continued)

The pointer refers to the base of the “activation record” (AR) for an invocation of a
procedure.

The AR holds such information as parameter values, local variables, return address,
etc.
int fact(int n){

if n=0 then 1

else{

int rv = n*fact(n-1);

return rv;

}

}

main(){

fact(5);

}
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Stack Allocation (Continued)

An activation record is created on the stack for each a call to function.

The start of activation record is pointed to by a register called BP.

On the first call to fact, BP is decremented to point to new activation record, n is
initialized to 5, rv is pushed but not initialized.

New activation record is created for the next recursive call and so on.

When n becomes 0, stack is unrolled where successive rv’s are assigned the value of
n at that stage and the rv of previous stage.
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Heap Management

Issues

No LIFO property, so management is di�icult

Fragmentation

Locality

Models
explicit allocation, free

e.g., malloc/free in C, new/delete in C++
explicit allocation, automatic free

e.g., Java
automatic allocation, automatic free

e.g., Lisp, OCAML, Python, JavaScript
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Fragmentation

Internal fragmentation: When asked for x bytes, allocator returns y > x bytes

y − x represents internal fragmentation

External fragmentation: When (small) free blocks of memory occur in between (i.e.,
external to) allocated blocks

the memory manager may have a total of M � N bytes of free memory
available, but no contiguous block larger enough to satisfy a request of size N .
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Fragmentation
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Approaches for Reducing Fragmentation

Use blocks of single size (early LISP)

Limits data-structures to use less e�icient implementations.

Use bins of fixed sizes, e.g., 2n for n = 0, 1, 2, ...

When you run out of blocks of a certain size, break up a block of next available size

Eliminates external fragmentation, but increases internal fragmentation

Maintain bins as LIFO lists to increase locality

malloc implementations (Doug Lea)

For small blocks, use bins of size 8k bytes, 0 < k < 64

For larger blocks, use bins of sizes 2n for n > 9
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Coalescing

What if a program allocates many 8 byte chunks, frees them all and then requests
lots of 16 byte chunks?

Need to coalesce 8-byte chunks into 16-byte chunks
Requires additional information to be maintained

for allocated blocks: where does the current block end, and whether the next block is free
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Coalescing
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Explicit Vs Automatic Management

Explicit memory management can be more e�icient, but takes a lot of programmer
e�ort

Programmers o�en ignore memory management early in coding, and try to add it
later on

But this is very hard, if not impossible

Result:
Majority of bugs in production code is due to memory management errors

Memory leaks
Null pointer or uninitalized pointer access
Access through dangling pointers
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Managing Manual Deallocation

How to avoid errors due to manual deallocation of memory

Never free memory‼!
Use a convention of object ownership (owner responsible for freeing objects)

Tends to reduce errors, but still requires a careful design from the beginning. (Cannot ignore
memory deallocation concerns initially and add it later.)

Smart data structures, e.g., reference counting objects
Region-based allocation

When a collection of objects having equal life time are allocated
Example: Apache web server’s handling of memory allocations while serving a HTTP request
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Garbage Collection

Garbage collection aims to avoid problems associated with manual deallocation

Identify and collect garbage automatically

What is garbage?

Unreachable memory

Automatic garbage collection techniques have been developed over a long time

Since the days of LISP (1960s)
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Garbage Collection Techniques

Reference Counting

Works if there are no cyclic structures

Mark-and-sweep

Generational collectors

Issues

Overhead (memory and space)

Pause-time

Locality
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Reference Counting

Each heap block maintains a count of the number of pointers referencing it.

Each pointer assignment increments/decrements this count

Deallocation of a pointer variable decrements this count

When reference count becomes zero, the block can be freed
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Reference Counting (Continued)

Disadvantages:

Does not work with cyclic structures
May impact locality
Increases cost of each pointer update operation

Advantages:

Overhead is predictable, fixed
Garbage is collected immediately, so more e�icient use of space
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Reference Counting
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Mark-and-Sweep

Mark every allocated heap block as “unreachable”

Start from registers, local and global variables

Do a depth-first search, following the pointers

Mark each heap block visited as “reachable”

At the end of the sweep phase, reclaim all heap blocks still marked as unreachable
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Mark-and-Sweep
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Garbage Collection Issues

Memory fragmentation

Memory pages may become sparsely populated

Performance will be hit due to excessive virtual memory usage and page faults
Can be a problem with explicit memory management as well

But if a programmer is willing to put in the e�ort, the problem can be managed by freeing
memory as soon as possible

Solution:
Compacting GC

Copy live structures so that they are contiguous

Copying GC
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Copying Garbage Collection

Instead of doing a sweep, simply copy over all reachable heap blocks into a new area

A�er the copying phase, all original blocks can be freed

Now, memory is compacted, so paging performance will be much be�er

Needs up to twice the memory of compacting collector, but can be much faster

Reachable memory is o�en a small fraction of total memory
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Copying Garbage Collection
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Generational Garbage Collection

Take advantage of the fact that most objects are short-lived

Exploit this fact to perform GC faster

Idea:

Divide heap into generations

If all references go from younger to older generation (as most do), can collect youngest

generation without scanning regions occupied by other generations

Need to track references from older to younger generation to make this work in all cases

90 / 87



If-Then-Else Parameter Passing Mechanisms

Garbage collection in Java

Generational GC for young objects

“Tenured” objects stored in a second region

Use mark-and-sweep with compacting

Makes use of multiple processors if available

References
http://java.sun.com/javase/technologies/hotspot/gc/gc_tuning_6.html

http://www.ibm.com/developerworks/java/library/j-jtp11253/
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GC for C/C++: Conservative Garbage Collection

Cannot distinguish between pointers and nonpointers

Need “conservative garbage collection”

The idea: if something “looks” like a pointer, assume that it may be one!
Problem: works for finding reachable objects, but cannot modify a value without being
sure

Copying and compaction are ruled out!

Reasonable GC implementations are available, but they do have some drawbacks

Unpredictable performance

Can break some programs that modify pointer values before storing them in memory
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Code Generation

Intermediate code generation: Abstract (machine independent) code.

Code optimization: Transformations to the code to improve time/space performance.

Final code generation: Emi�ing machine instructions.
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Syntax Directed Translation

Interpretation:
E −→ E1 + E2 { E .val := E1.val + E2.val; }

Type Checking:
E −→ E1 + E2 {

if E1.type ≡ E2.type ≡ int

E .type = int ;
else

E .type = float ;
}
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Code Generation via Syntax Directed Translation

Code Generation:
E −→ E1 + E2 {

E .code = E1.code ||
E2.code ||
“add”)

}
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Intermediate Code

“Abstract” code generated from AST

Simplicity and Portability
Machine independent code.

Enables common optimizations on intermediate code.

Machine-dependent code optimizations postponed to last phase.
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Intermediate Forms

Stack machine code:

Code for a “postfix” stack machine.

Two address code:

Code of the form “add r1, r2”

Three address code:

Code of the form “add src1, src2, dest”

�adruples and Triples: Representations for three-address code.
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�adruples

Explicit representation of three-address code.
Eixample: a := a + b * -c;

Instr Operation Arg 1 Arg 2 Result

(0) uminus c t1

(1) mult b t1 t2

(2) add a t2 t3

(3) move t3 a
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Triples

Representation of three-address code with implicit destination argument.
Example: a := a + b * -c;

Instr Operation Arg 1 Arg 2

(0) uminus c

(1) mult b (0)
(2) add a (1)
(3) move a (2)
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Intermediate Forms

Choice depends on convenience of further processing

Stack code is simplest to generate for expressions.

�adruples are most general, permi�ing most optimizations including code motion.

Triples permit optimizations such as common subexpression elimination, but code
motion is di�icult.
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Static Single Assignment (SSA)

Each variable is assigned at most once

φ nodes used to combine values of variables a�er a conditional

if (f) x = 1; else x=2;

y=x*x;

Becomes

if (f) x1 = 1; else x2=2;

x3 = φ(x1, x2);

y=x3*x3;
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Generating 3-address code

E −→ E1 + E2 {
E .addr = newtemp();
E .code = E1.code ||E2.code ||

E .addr || ’:=’ ||E1.addr ||’+’ ||E2.addr ;
}
E −→ int {

E .addr = newtemp();
E .code = E .addr || ’:=’ || int.val;

}
E −→ id {

E .addr = id.name;
E .code = ”;

}
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Generation of Postfix Code for Boolean Expressions

E −→ E1 && E2 {
E .code = E1.code ||

E2.code ||
gen(and)

}
E −→ ! E1 {

E .code = E1.code ||
gen(not)

}
E −→ true {E .code = gen(load_immed, 1) }
E −→ id {E .code = gen(load, id.addr) }
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Code for Boolean Expressions

if ((p != NULL)

&& (p->next != q)) {

... then part

} else {

... else part

}

load(p);
null();
neq();
load(p);
ildc(1);
getfield();
load(q);
neq();
and();
jnz elselabel;
... then part

elselabel:
... else part
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Shortcircuit Code

if ((p != NULL)

&& (p->next != q)) {

... then part

} else {

... else part

}

load(p);
null();
neq();
jnz elselabel;
load(p);
ildc(1);
getfield();
load(q);
neq();
jnz elselabel;
... then part

elselabel:
... else part
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l- and r-Values

i := i + 1;

l-value: location where the value of the expression is stored.

r-value: actual value of the expression
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Computing l-values

E −→ id {
E .lval = id.loc;
E .code = ‘’; }

E −→ E1 [ E2 ] {
E .lval = newtemp();
x = newtemp();
E .lcode = E1.lcode ||E2.code ||

x || ’:=’ ||E2.rval || ’*’ ||E1.elemsize ||
E .lval || ’:=’ ||E1.lval || ’+’ ||x }

E −→ E1 . id { // for field access
E .lval = newtemp();
E .lcode = E1.lcode ||

E .lval || ’:=’ ||E1.lval || ’+’ || id.o�set }
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Computing lval and rval a�ributes

E −→ E1 = E2 {
E .code = E1.lcode ||E2.code ||

gen(‘*’ E1.lval ‘:=’ E2.rval)
E .rval = E2.rval }

E −→ E1 [ E2 ] {
E .lval = newtemp();
E .rval = newtemp();
x = newtemp();
E .lcode = E1.lcode ||E2.code ||

gen(x ‘:=’ E2.rval∗E1.elemsize) ||
gen(E .lval ‘:=’ E1.lval ‘+’ x)

E .code = E .lcode ||
gen(E .rval ‘:=’ ‘*’ E .lval)

}
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Function Calls (Call-by-Value)

E −→ E1 ( E2, E3 ) {
E .rval = newtemp();
E .code = E1.code ||

E2.code ||
E3.code ||
gen(push E2.rval)
gen(push E3.rval)
gen(call E1.rval)
gen(pop E .rval)

}
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Function Calls (Call-by-Reference)

E −→ E1 ( E2, E3 ) {
E .rval = newtemp();
E .code = E1.code ||

E2.lcode ||
E3.lcode ||
gen(push E2.lval)
gen(push E3.lval)
gen(call E1.rval)
gen(pop E .rval)

}
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Code Generation for Statements

S −→ S1 ; S2 {
S.code = S1.code ||

S2.code;
}

S −→ E { S.code = E .code; }
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Conditional Statements

S −→ if E , S1, S2

jne

jmp

cmp 1

S.elsepart:

S.end:

S
2

.code

S .code
1

E.temp

E.code
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Conditional Statements

S −→ if E , S1, S2 {
elselabel = newlabel();
endlabel = newlabel();
S.code = E .code ||

gen(if E .temp ‘ 6=’ ‘1’ elselabel) ||
S1.code ||
gen(jmp endlabel) ||

gen(elselabel:) ||
S2.code ||

gen(endlabel:)
}
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If Statements: An Alternative

S −→ if E , S1, S2

(On end, will go to )S.end

(On end, will go to )S.end

jne

cmp 1

S.end:

S .code
1

E.temp

E.code

S.begin:

S

S
2

.begin:

.begin:

S
2
.code

1
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Continuations

An a�ribute of a statement that specifies where control will flow to a�er the
statement is executed.

Analogous to the follow sets of grammar symbols.

In deterministic languages, there is only one continuation for each statement.

Can be generalized to include local variables whose values are needed to execute
the following statements:

Uniformly captures call, return and exceptions.
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Conditional Statements and Continuations

S −→ if E , S1, S2 {
S.begin = newlabel();
S.end = newlabel();
S1.end = S2.end = S.end ;
S.code = gen(S.begin:) ||

E .code ||
gen(if E .rval ’==’ ’1’ S2.begin) ||
S1.code ||
S2.code;||
gen(S.end :)

}

24 / 32



Continuations

Each boolean expression has two possible continuations:

E.true: where control will go when expression in E evaluates to true.

E.false: where control will go when expression in E evaluates to false.

Every statement S has one continuation, S.next

Every while loop statement has an additional continuation, S.begin
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Shortcircuit Code for Boolean Expressions
E −→ E1 && E2 {

E1.true = newlabel();
E1.false = E2.false = E .false;
E2.true = E .true;
E .code = E1.code ||gen(E1.true‘:’) ||E2.code

}

E −→ E1 or E2 {
E1.true = E2.true = E .true;
E1.false = newlabel();
E2.false = E .false;
E .code = E1.code ||gen(E1.false‘:’) ||E2.code

}

E −→ ! E1 {
E1.false = E .true; E1.true = E .false;

}
E −→ true { E .code = gen(jmp, E .true) }
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Short-circuit code for Conditional Statements

S −→ S1 ; S2 {
S1.next = newlabel();
S.code = S1.code ||gen(S1.next ‘:’) ||S2.code;

}
S −→ if E then S1 else S2 {

E .true = newlabel();
E .false = newlabel();
S1.next = S2.next = S.next ;
S.code = E .code ||

gen(E .true‘:’) ||S1.code ||
gen(jmp S.next) ||
gen(E .false‘:’) ||S2.code;

}
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Short-circuit code for While

S −→ while E do S1 {
S.begin = newlabel();
E .true = newlabel();
E .false = S.next ;
S1.next = S.begin;
S.code = gen(S.begin‘:’) ||E .code ||

gen(E .true‘:’) ||S1.code ||
gen(jmp S.begin);

}
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Continuations and Code Generation

Continuation of a statement is an inherited a�ribute.

It is not an L-inherited a�ribute!

Code of statement is a synthesized a�ribute, but is dependent on its continuation.
Backpatching: Make two passes to generate code.

1. Generate code, leaving “holes” where continuation values are needed.
2. Fill these holes on the next pass.
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Machine Code Generation Issues

Register assignment

Instruction selection

. . .
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How GCC Handles Machine Code Generation

gcc uses machine descriptions to automatically generate code for target machine

machine descriptions specify:

memory addressing (bit, byte, word, big-endian, ...)

registers (how many, whether general purpose or not, ...)

stack layout

parameter passing conventions

semantics of instructions

. . .
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Specifying Instruction Semantics

gcc uses intermediate code called RTL, which uses a LISP-like syntax
a�er parsing, programs are translated into RTL
semantics of each instruction is also specified using RTL:
movl (r3), @8(r4) ≡

(set (mem: SI (plus: SI (reg: SI 4) (const_int 8)))

(mem: SI (reg: SI 3)))
cost of machine instructions also specified
gcc code generation = selecting a low-cost instruction sequence that has the same
semantics as the intermediate code
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Optimization Techniques
 The most complex component of modern compilers
 Must always be sound, i.e., semantics-preserving

• Need to pay attention to exception cases as well

• Use a conservative approach: risk missing out optimization rather 
than changing semantics

 Reduce runtime resource requirements (most of the time)
• Usually, runtime, but there are memory optimizations as well

• Runtime optimizations focus on frequently executed code 
• How to determine what parts are frequently executed?

• Assume: loops are executed frequently

• Alternative: profile-based optimizations

• Some optimizations involve trade-offs, e.g., more memory for 
faster execution

 Cost-effective, i.e., benefits of optimization must be worth 
the effort of its implementation
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Code Optimizations
 High-level optimizations

• Operate at a level close to that of source-code

• Often language-dependent

 Intermediate code optimizations
• Most optimizations fall here

• Typically, language-independent

 Low-level optimizations
• Usually specific to each architecture
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High-level optimizations

• Inlining
•Replace function call with the function body

• Partial evaluation 
•Statically evaluate those components of a 
  program that can be evaluated

• Tail recursion elimination
• Loop reordering
• Array alignment, padding, layout
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Intermediate code optimizations

• Common subexpression elimination
• Constant propagation
• Jump-threading
• Loop-invariant code motion
• Dead-code elimination
• Strength reduction
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Constant Propagation
 Identify expressions that can be evaluated at 

compile time, and replace them with their 
values.

  x = 5;         =>    x =    5;      =>   x =    5;
 y = 2;                 y = 2;                 y = 2;
 v = u + y;           v = u + y;           v = u + 2;
 z = x * y;            z = x * y;            z = 10;
 w = v + z + 2;    w = v + z + 2;    w = v + 12;
 ...                       ...                      ...
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Strength Reduction

•Replace expensive operations with equivalent
 cheaper (more efficient) ones.
        y = 2;       =>      y = 2;
        z = x^y;              z = x*x;
         ...                       ...
•The underlying architecture may determine
  which operations are cheaper and which 
  ones are more expensive.



 7

Loop-Invariant Code Motion

•Move code whose effect is independent of 
 the loop's iteration outside the loop.
  for (i=0; i<N; i++) {     =>      for (i=0; i<N; i++) {
     for (j=0; j<N; i++) {               base = a + (i * dim1);
        ... a[i][j] ...                          for (j=0; j<N; i++) {
                                                       ... (base + j) ...
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Low-level Optimizations

• Register allocation
• Instruction Scheduling for pipelined machines.
• loop unrolling
• instruction reordering
• delay slot filling

• Utilizing features of specialized components,
   e.g., floating-point units.
• Branch Prediction
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Peephole Optimization
• Optimizations that examine small code sections at a time,
  and transform them

• Peephole: a small, moving window in the target program

• Much simpler to implement than global optimizations

• Typically applied at machine code, and some times at
  intermediate code level as well

• Any optimization can be a peephole optimization, 
  provided it operates on the code within the peephole.

• redundant instruction elimination

• flow-of control optimizations

• algebraic simplifications

• ...
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Profile-based Optimization
• A compiler has difficulty in predicting:

• likely outcome of branches

• functions and/or loops that are most frequently 
  executed

• sizes of arrays

• or more generally, any thing that depends on 
  dynamic rogram behavior.

• Runtime profiles can provide this missing information,
  making it easier for compilers to decide when certain
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Example Program: Quicksort
Most optimizations 

opportunities arise in 
intermediate code
• Several aspects of 

execution (e.g., address 
calculation for array 
access) aren’t exposed in 
source code

Explicit representations 
provide most 
opportunities  for 
optimization

It is best for programmers 
to focus on writing 
readable code, leaving 
simple optimizations to a 
compiler



 12

3-address code for Quicksort
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Organization of Optimizer
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Flow Graph for Quicksort
B1,…,B6 are basic blocks

• sequence of statements where 
control enters at beginning, 
with no branches in the middle

Possible optimizations
• Common subexpression 

elimination (CSE)

• Copy propagation
• Generalization of constant 

folding to handle assignments 
of the form x = y

• Dead code elimination

• Loop optimizations
• Code motion

• Strength reduction

• Induction variable elimination
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Common Subexpression Elimination
Expression 

previously 
computed

Values of all 
variables in 
expression have 
not changed.

Based on 
available 
expressions 
analysis
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Copy Propagation
 Consider

   x = y;
   z = x*u;
   w = y*u;
Clearly, we can replace 
assignment on w by
    w = z

 This requires recognition of 
cases where multiple variables 
have same value (i.e., they are 
copies of each other)

 One optimization may expose 
opportunities for another

• Even the simplest 
optimizations can pay off

• Need to iterate optimizations 
a few times
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Dead Code Elimination
Dead variable: a 

variable whose value is 
no longer used

Live variable: opposite 
of dead variable

Dead code: a statement 
that assigns to a dead 
variable

Copy propagation turns 
copy statement into 
dead code.
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Induction Vars, Strength Reduction 
and IV Elimination

 Induction Var: a variable whose value 
changes in lock-step with a loop index

 If expensive operations are used for 
computing IV values, they can be replaced 
by less expensive operations

 When there are multiple IVs, some can be 
eliminated
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Strength Reduction on IVs
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After IV Elimination …
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Program Analysis
 Optimization is usually expressed as a 

program transformation
    C1   C2 when property P holds

 Whether property P holds is determined by a 
program analysis

 Most program properties are undecidable in 
general
• Solution: Relax the problem so that the answer is 

an “yes” or “don’t know”
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Applications of Program Analysis
 Compiler optimization
 Debugging/Bug-finding

• “Enhanced” type checking
• Use before assign
• Null pointer dereference
• Returning pointer to stack-allocated data

 Vulnerability analysis/mitigation
• Information flow analysis

• Detect propagation of sensitive data, e.g., passwords
• Detect use of untrustworthy data in security-critical context 

• Find potential buffer overflows
 Testing – automatic generation of test cases
 Verification: Show that program satisfies a specified 

property, e.g., no deadlocks
• model-checking
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Dataflow Analysis
Answers questions relating to how data flows 

through a program
•What can be asserted about the value of a variable (or 

more generally, an expression) at a program point
Examples

•Reaching definitions: which assignments reach a 
program statement

•Available expressions

• Live variables

•Dead code

•…
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Dataflow Analysis
 Equations typically of the form

   out[S] = gen[S]  (in[S] – kill[S])
where the definitions of out, gen, in and kill
differ for different analysis

 When statements have multiple 
predecessors, the equations have to be 
modified accordingly

 Procedure calls, pointers and arrays require 
careful treatment
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Points and Paths



 26

Reaching Definitions
 A definition of a variable x is a statement that 

assigns to x
• Ambiguous definition: In the presence of aliasing, a 

statement may define a variable, but it may be impossible to 
determine this for sure.

 A definition d reaches a point p provided:
• There is a path from d to p, and this definition is not “killed” 

along p

• “Kill” means an unambiguous redefinition

 Ambiguity  approximation
• Need to ensure that approximation is in the right direction, 

so that the analysis will be sound
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DFA of Structured Programs
 S  id := E 

     | S;S 
     | if E then S else S
     | do S while E

 E  E + E
     | id
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DF Equations for Reaching Defns
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DF Equations for Reaching Defns
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Direction of Approximation
 Actual kill is a superset of the set computed by 

the dataflow equations
 Actual gen is a subset of the set computed by 

these equations
 Are other choices possible?

• Subset approximation of kill, superset approximation of gen

• Subset approximation of both

• Superset approximation of both

 Which approximation is suitable depends on the 
intended use of analysis results
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Solving Dataflow Equations
 Dataflow equations are recursive
 Need to compute so-called fixpoints, to solve 

these equations
 Fixpoint computations uses an interative 

procedure
• out0 =  

• outi is computed using the equations by 
substituting outi-1 for occurrences of out on the rhs

• Fixpoint is a solution, i.e., outi = outi-1
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Computing Fixpoints: Equation for Loop
 Rewrite equations using more compact notation, with:

   J standing for in[S] and 
   I, G, K, and O  for in[S1], gen[S1], kill[S1] and out[S1]: 
        I = J  O,
       O = G (I – K)

 Letting I0 = O0 = we have:
 I1 = J O1 = G (I0 – K) = G
 I2 = J  O1 = J  G O2 = G (I1 – K) = G (J – K)
 I3 = J  O2 O3 = G (I2 – K) 
     = J G (J – K) = G (J  G – K) 
     = J G = I2 = G (J – K) = O2

(Note that for all sets A and B, A U (A-B) = A, and
                 for all sets A, B and C, A U (A U C –B) = A U (C-B).)  
Thus, we have a fixpoint.
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Use-Definition Chains
 Convenient way to represent reaching 

definition information
 ud-chain for a variable links each use of the 

variable to its reaching definitions
• One list for each use of a variable
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Available Expressions
 An expression e is available at point p if 

• every path to p evaluates e

• none of the variables in e are assigned after last 
computation of e

 A block kills e if it assigns to some variable in e 
and does not recompute e.

  A block generates e if it computes e and doesn’t 
subsequently assign to variables in e

 Exercise: Set up data-flow equations for 
available expressions. Give an example use for 
which your equations are sound, and another 
example for which they aren’t
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Available expressions -- Example

a := b+c

b := a-d

c := b+c

d := a-d
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Live Variable Analysis
 A variable x is live at a program point p if the 

value of x is used in some path from p
 Otherwise, x is dead.
 Storage allocated for dead variables can be 

freed or reused for other purposes.
 in[B] = use[B]  (out[B] – def[B])
 out[B] =  in[S], for S a successor of B
 Equation similar to reaching definitions, but 

the role of in and out are interchanged
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Def-Use Chains
 du-chain links the definition of a variable with 

all its uses
• Use of a definition of a variable x at a point p 

implies that there is a path from this definition to p 
in which there are no assignments to x

 du-chains can be computed using a dataflow 
analysis similar to that for live variables
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Optimizations and Related Analyses
 Common subexpression elimination

• Available expressions
 Copy propagation

• In every path that reaches a program point p, the variables 
x and y have identical values

 Detection of loop-invariant computation
• Any assignment x := e where the definition of every variable 

in e occurs outside the loop.
 Code reordering: A statement x := e can be moved

• earlier before statements that (a) do not use x, (b) do not 
assign to variables in e

• later after statements that (a) do not use x, (b) do not assign 
to variables in e
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Difficulties in Analysis
 Procedure calls

 Aliasing
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Difficulties in Analysis
 Procedure calls

• may modify global variables

• potentially kill all available expressions involving global 
variables 

• modify reaching definitions on global variables

 Aliasing
• Create ambiguous definitions

• a[i] = a[j] --- here, i and j may have same value, so 
assignment to a[i] can potentially kill a[j]

• *p = q + r --- here, p could potentially point to q, r or any 
other variable

• creates ambiguous redefinition for all variables in the program!
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Low-level Code Generation
 Assembly code generation

• Register allocation

• Instruction selection

 Machine code generation
• Instruction encoding

• Linker and loader

• Relocatable code

• Defer assignment of locations for static objects (code, 
variables) to linking phase

• Static linking

• Dynamic linking
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Machine code generation (contd.)
• Position-independent code (PIC)

• Can be shared by different processes that map a library to 
different locations

• Code does not assume knowledge of memory location of its 
code or variables

• Symbol tables

• Often, code that is shipped has all symbols “stripped off”

• For libraries, need to maintain a minimal amount of symbol info
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Register Allocation: Factors
 Special-purpose registers

• Stack pointer, Base pointer, Instruction pointer, ...

• Reserved for specific uses across most code

• Register allocation deals with general-purpose registers

 Application/binary interface requirements
• Caller- Vs Callee-save registers

• Caller-save registers need to be explicitly saved by the 
caller before every procedure call, and restored after

• Callee-save registers have to be saved before use by 
every function, and restored if used.

 Some (most) instructions may operate only on 
register operands
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Register Allocation: Simple Strategies

1.Load a register from memory before each 
operation, store immediately afterwards
• Too inefficient

2.Avoid load/store's within a basic block
 Load registers at entry of a BB, and store at its end. 
 Fails to discriminate between loops and other Bbs
 May require too many registers

• “Global” register allocation
 Consider uses across Bbs
 Even more “pressure” on registers ...
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Global Register Allocation
 Model cost of instructions

• Cost of fetching

• On modern processors, fetching costs can be ignored to a 
certain extent due to the use of dedicated pipelines for 
instruction fetching/decoding, plus branch prediction etc.

• Cost of memory access

• For loading registers

• For saving registers

• For accessing memory (in case of instructions that accept 
memory operands)

• Take into account loops

• e.g., treat the cost of non-loop operations to be zero
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Register usage counts
 Use(x) = number of uses of variable x (before 

reassignment) within a block, plus 2 if x is live at the 
end of the loop
• Use registers to hold variables with highest use count

 If there are nested loops, allocate registers for 
innermost loop, and then allocate remaining 
registers to outer loops
• Alternatively, reuse registers used in inner loops in outer 

loops by saving/restoring registers

• Avoid unnecessary save/restores by analyzing across BBs 
to find variables used in inner as well as outer loops.
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Working with fixed number of Registers

 Can be modeled as a graph-coloring problem
• Allocate a symbolic register for each variable

• Construct a register-interference graph (RIG)

• Edge between two symbolic registers if one is live at the 
point where the other is assigned

• You can use N registers if RIG is N-colorable

• i.e., there is a way to assign N colors to graph nodes such 
that neighboring nodes have different colors
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Graph-coloring (contd.)
 Graph-coloring problem is NP-complete

• But good heuristics exist:

• Eliminate all nodes that have less than degree N

• Eliminating one node will reduce the degree of nodes 
connected to it

• Color for the eliminated node can be chosen to be one of 
those that is not assigned to any of its neighbors

• If all nodes have degree >= N, pick one to “spill,” i.e., save 
to memory and restore later

• Pick registers that have least cost savings

• Avoid spills in inner loops
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Instruction Selection
 Instruction selection is a complex task, especially 

when considering modern processors with a large 
number of instructions and addressing modes

 Many semantically equivalent instructions 
sequences may perform the same desired task
• How to select the “minimal cost” sequence?

 Ideally, one does not have to hand-code a code 
generator, but have it be generated from 
specifications!
• Instruction selection by tree-rewriting 

• Initially, the tree represents generated intermediate code



  

Target code generation in GCC
 gcc uses machine descriptions to automatically 

generate code for target machine
• Enables gcc to support numerous target machines, 

with greatly reduced programmer effort
 machine descriptions specify:

• memory addressing (bit, byte, word, big-endian, ...)

• registers (how many, whether general purpose or 
not, ...)

• stack layout

• parameter passing conventions

• semantics of instructions

• …
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Instruction Specification
 For each instruction in target language, specify: 

• Assembly representation of target machine instructions

• Instruction parameters include registers and constants

• Its semantics in the intermediate language

• Parameterized in terms of registers and constants in the 
target instruction

• Specify input operands as well as the location where the 
result is stored

• Cost of executing the instruction

• Additional constraints on applicability of instruction

• e.g., a certain constant must be at most 8 bits



 15

Code generation by rewriting
 Represent intermediate code generated by the compiler as a 

tree, and use rewriting using the rules in the instruction 
specification

 Trees can represent expressions as well as sequence of 
statements

• Introduce a sequencing operation to represent sequencing

• Don't force sequencing of unrelated statements, or else the code 
generator won't be able to choose evaluation orders that lead to 
more efficient code. 

• Example: a=b+5; c=d+5; e=a+b

• More efficient if c=d+5 is moved later, as it would allow a and b 
to continue to be in registers while evaluating e=a+b



  

GCC target code generation
 gcc uses intermediate code called RTL, which 

uses a LISP-like syntax
• Actually, gcc uses multiple intermediate languages, 

with RTL being the lowest level among them
 semantics of each instruction is also specified 

using RTL:
• movl (r3), @8(r4) 

     (set (mem: SI (plus: SI (reg: SI 4) (const_int 8)))
            (mem: SI (reg: SI 3)))

 gcc code generation = selecting a low-cost 
instruction sequence that has the same 
semantics as the intermediate code
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Instruction Specification
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Instruction Selection Example
 Intermediate code for a[i] = b+1
 Rewrite tree repeatedly using rules corresponding to instruction 

specifications until you get to a single node tree.
 Result

  LD    R0, #a
  ADD R0, R0, SP
  ADD R0, R0, i[SP]
  LD    R1, b
  INC  R1
  ST    *R0, R1
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Optimal Code Generation
 Some intermediate operations may not have 

equivalent instructions
• e.g.,“add R0, R0, M” versus “ld R1, M; add R0, R0, R1”

 Multiple rules may match the same node
• Cost of evaluation may hinge on which match is chosen

• Example: “inc R0” versus “add R0, 1”

 The order of rewriting can change the cost
• Mainly due to selection of registers, and based on which 

intermediate results remain in registers as opposed to 
being stored in memory.
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Optimal Code Generation
 But, dynamic programming algorithms for optimal 

code generation exist under reasonable 
assumptions
• Optimal code for E1 op E2 will contain optimal code for 

evaluating E1 and optimal code for evaluating E2

• Dynamic programming algorithm tries to construct the 
optimal code bottom-up: from E1 and E2's optimal 
codes, build optimal code for E1 op E2

• Dynamic programming algorithm iterates over

• number of registers used for operand evaluation

• order of evaluation of operand (when permissible)
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Dynamic Programming Algorithm
 For each node n in tree, compute C[n][i] which represents the minimum 

cost for evaluating the subtree rooted at n using at most i registers, for 0 
<= i <= k (# of registers in the target architecture)

 The operands for evaluating the operation at n may differ, depending on 
the matching instruction

 While evaluating operands of n, we may use:

• All i registers for evaluating each operand, but this requires evaluation 
results to be stored in memory in order to free up registers for evaluating 
other operands

• Use less than i registers so that operands can be retained in registers

• We prefer an order of evaluation that minimizes the number of registers that 
need to be saved to memory

 For the root node r, pick how many registers to use (may be k)
 Generate instructions based on the choices at each node that result in 

the least cost for C[r][k] 
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Target 
Instructions

Optimal Code

Illustration of Dynamic Programming Algorithm
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