

 CSE 307 Spring 2004

R. Sekar

1

Terminology

�Exception: An error, or more generally, an

unusual condition.

�Raise, Throw, Signal: A statement is said to

"raise" (or "throw" or "signal") an exception if the
execution of this statement leads to an exception.

("throw" is the term used in C++/Java language
descriptions, "raise" is used in SML.)

�Catch: A catch statement is used in C++/Java to

declare a handler. The keyword "handle" is used

in SML to denote the same concept.

 CSE 307 Spring 2004

R. Sekar

2

Terminology (contd.)

�Resumption model: After the execution

of the handler, control returns back to the
statement that raised the exception.

• Example: signal handling in UNIX/C.

�Termination Model: Control does not

return to that statement after the handler is

executed.

• Example: Exception handling in most

programming languages (C++, Java and SML).

 CSE 307 Spring 2004

R. Sekar

3

Exception Handling

� Uncaught exceptions are propagated up the call
stack.

� Example: f calls g, which in turn calls h

� if h raises an exception and there is no handler

for this exception in h, then g gets that exception.

� If there is a handler for the exception in g, the
handler is executed, and execution continues

normally after that.

� otherwise, the exception is propagated to f.

 CSE 307 Spring 2004

R. Sekar

4

Exception Handling in C++/Java

Syntax: <blockWithHandler> ::= try <block> <match>

 <match> ::= <handler> ... <handler>

 <handler> ::= catch (<parameter decl>) { <block> }

 CSE 307 Spring 2004

R. Sekar

5

Exception Handling in C++/Java(contd.)

Example:

 int fac(int n) {

 if (n <= 0) throw (-1) ; else if (n > 15) throw ("n too large");

 else return n*fac(n-1); }

 void g (int n) { int k;

 try { k = fac (n) ;}

 catch (int i) { cout << "negative value invalid" ; }

 catch (char *s) { cout << s; }

 catch (...) { cout << "unknown exception" ;}

� use of g (-1) will print "negative value invalid"

 g (16) will print "n too large"
� If an unexpected error were to arise in evaluation of fac or g, such as

running out of memory, then "unknown excpetion“ will be printed

 CSE 307 Spring 2004

R. Sekar

6

Exception Vs Return Codes

� Exceptions are often used to communicate error values
from a callee to its caller. Return values provide alternate

means of communicating errors.

 Example use of exception handler:
 float g (int a, int b, int c) {

 float x = 1./fac(a) + 1./fac(b) + 1./fac(c) ; return x ; }

 main() {

 try { g(-1, 3, 25); }

 catch (char *s) { cout << "Exception `" << s << "'raised, exiting\n"; }

 catch (...) { cout << "Unknown exception, eixting\n"; }

 We do not need to concern ourselves with every
point in the program where an error may arise.

 CSE 307 Spring 2004

R. Sekar

7

Exception Vs Return Codes(contd.)

float g(int a, int b, int c) {
int x1 = fac(a) ;

 if (x1 > 0) {
 int x2 = fac(b) ;

 if (x2 > 0) {
 int x3 = fac(c) ;

 if (x3 > 0) {
 return 1./x1 + 1./x2 + 1./x3 ;
 }
 }
}

 return …; // there was an error

}

main() {

 int x = g(-1, 2, 25);

 if (x < 0) { /* identify where error
occurred, print */ }

� If return codes
were used to

indicate errors,
then we are
forced to check

return codes
(and take

appropriate
action) at every

point in code.

 CSE 307 Spring 2004

R. Sekar

8

Use of Exceptions in C++ Vs Java
� In C++, exception handling was an after-thought.

• Earlier versions of C++ did not support exception
handling.

• Exception handling not used in standard libraries

• Net result: continued use of return codes for error-
checking

� In Java, exceptions were included from the
beginning.

• All standard libraries communicate errors via exceptions.

• Net result: all Java programs use exception handling
model for error-checking, as opposed to using return
codes.

 CSE 307 Spring 2004

R. Sekar

9

Implementation of Exception Handling in
Programming Languages

� Exception handling can be implemented by
adding "markers" to ARs to indicate the points in
program where exception handlers are available.

� Entering a try-block at runtime would cause such
a marker to be put on the stack

� When exception arises, the RTE gets control and
searches down from stack top for a marker.

� Exception then "handed" to the catch statement
of this try-block that matches the exception

� If no matching catch statement is present, search
for a marker is contined further down the stack

 CSE 307 Spring 2004

R. Sekar

10

Heap management

� Issues

• No LIFO property, so management is difficult

• Fragmentation

• Locality

�Models

• Explicit allocation and free (C, C++)

• Explicit allocation, automatic free (Java)

• Automatic allocation and free (SML, Python,
Javascript)

 CSE 307 Spring 2004

R. Sekar

11

Fragmentation

� Internal fragmentation

• When asked for x bytes, allocator returns y > x
bytes; y-x represents internal fragmentation

�External fragmentation

• When (small) free blocks of memory occur in
between used blocks

• the memory manager may have a total >> N bytes of free
memory available, but none may be large enough to
satisfy a request of size N.

 CSE 307 Spring 2004

R. Sekar

12

Reducing Fragmentation

� Use blocks of single size (early LISP)

• Limits data-structures to use less efficient implementations.

� Use bins of fixed sizes, e.g., 2n for n=0,1,2,...

• When you run out of blocks of a certain size, break up a block
of next available size

• Eliminates external fragmentation, but increases internal
fragmentation

� Maintain bins as LIFO lists to increase locality

� malloc implementations (Doug Lea)

• For small blocks, use bins of size 8k bytes, 0 < k < 64

• For larger blocks, use bins of sizes 2n for n > 9

 CSE 307 Spring 2004

R. Sekar

13

Coalescing

� What if a program allocates many 8 byte chunks,frees

them all and then requests lots of 16 byte chunks?

• Need to coalesce 8-byte chunks into 16-byte chunks

• Requires additional information to be maintained

• for allocated blocks: where does the current block end,

and whether the next block is free

 CSE 307 Spring 2004

R. Sekar

14

Explicit Vs Implicit Management

� Explicit memory management can be more
efficient, but takes a lot of programmer effort

� Programmers often ignore memory management

early in coding, and try to add it later on

• But this is very hard, if not impossible

� Result:

• Majority of bugs in production code is due to memory

management errors

• Memory leaks

• Null pointer or uninitalized pointer access

• Access through dangling pointers

 CSE 307 Spring 2004

R. Sekar

15

Managing Manual Deallocation

�How to avoid errors due to manual deallocation

of memory

• Never free memory!!!

• Use a convention of object ownership (owner
responsible for freeing objects)

• Tends to reduce errors, but still requires a careful design from
the beginning. (Cannot ignore memory deallocation concerns

initially and add it later.)

• Smart data structures, e.g., reference counting objects

• Region-based allocation

• When a bunch of objects having equal life time are allocated

 CSE 307 Spring 2004

R. Sekar

16

Garbage Collection

� Garbage collection aims to avoid problems
associated with manual deallocation

• Identify and collect garbage automatically

� What is garbage?

• Unreachable memory

� Automatic garbage collection techniques
have been developed over a long time

• Since the days of LISP (1960s)

 CSE 307 Spring 2004

R. Sekar

17

Garbage Collection Techniques

�Reference Counting

• Works if there are no cyclic structures

�Mark-and-sweep

�Generational collectors

� Issues

• Overhead (memory and space)

• Pause-time

• Locality

 CSE 307 Spring 2004

R. Sekar

18

Reference Counting

�Each heap block maintains a count of the
number of pointers referencing it.

�Each pointer assignment
increments/decrements this count

�Deallocation of a pointer variable decrements

this count

�When reference count becomes zero, the

block can be freed

 CSE 307 Spring 2004

R. Sekar

19

Reference Counting

�Disadvantages

• Does not work with cyclic structures

• May impact locality

• Increases cost of each pointer update operation

�Advantages

• Overhead is predictable, fixed

• Garbage is collected immediately, so more

efficient use of space

 CSE 307 Spring 2004

R. Sekar

20

Mark-and-Sweep (“Trace-based”)

� Mark every allocated heap block as
“unreachable”

� Start from registers, local and global
variables

� Do a DFS, following the pointers

• Mark each heap block visited as “reachable”

� At the end of the sweep phase, reclaim all
heap blocks still marked as unreachable

 CSE 307 Spring 2004

R. Sekar

21

Issues with GC

�Memory fragmentation

• Memory pages may become sparsely populated

• Performance will be hit due to excessive virtual
memory usage and page faults

• Can be a problem with explicit memory
management as well

�Solution:

• Compacting GC

• Copy live structures so that they are contiguous

• Copying GC

 CSE 307 Spring 2004

R. Sekar

22

Copying Collection

� Instead of doing a sweep, simply copy over
all reachable heap blocks into a new area

�After the copying phase, all original blocks
can be freed

�Now, memory is compacted, so paging

performance will be much better

�Needs up to twice the memory of compacting

collector, but can be much faster

• Reachable memory is often a small fraction of total
memory

 CSE 307 Spring 2004

R. Sekar

23

Generational GC

�Take advantage of the fact that most objects

are short-lived

�Exploit this fact to perform GC faster

� Idea:

• Divide heap into generations

• If all references go from younger to older generation

(as most do), can collect youngest generation w/o
scanning regions occupied by other generations

• Need to track references from older to younger generation
to make this work in all cases

 CSE 307 Spring 2004

R. Sekar

24

Garbage collection in Java

� Generational GC for young objects

� “Tenured” objects stored in a second region

• Use mark-and-sweep with compacting

� Makes use of multiple processors if available

� References

• http://java.sun.com/javase/technologies/hotspot/gc/gc_tuning_6.html

• http://www.ibm.com/developerworks/java/library/j-jtp11253/

 CSE 307 Spring 2004

R. Sekar

25

GC for C/C++
� Cannot distinguish between pointers and nonpointers

• Need “conservative garbage collection”

� The idea: if something “looks” like a pointer, assume
that it may be one!

• Problem: works for finding reachable objects, but cannot

modify a value without being sure

• Copying and compaction are ruled out!

� Reasonable GC implementations are available, but
they do have some drawbacks

• Unpredictable performance

• Can break some programs that modify pointer values before
storing them in memory

