/ Terminology N / Terminology (contd.) N

® Exception: An error, or more generally, an ® Resumption model: After the execution
unusual condition. of the handler, control returns back to the
® Raise, Throw, Signal: A statement is said to statement that raised the exception.

"raise" (or "throw" or "signal") an exception if the

: : : Example: signal handling in UNIX/C.
execution of this statement leads to an exception. xamp g 9

("throw" is the term used in C++/Java language ® Termination Model: Control does not
descriptions, "raise" is used in SML.) return to that statement after the handler is
® Catch: A catch statement is used in C++/Java to executed.
declare a handler. The keyword "handle" is used Example: Exception handling in most
\in SML to denote the same concepit. / \ programming languages (C++, Java and SML)/
CSE 307 Spring 2004 1 CSE 307 Spring 2004 2
R. Sekar R. Sekar
4 Exception Handling N Exception Handling in C++/Java\
® Uncaught exceptions are propagated up the call
stack. Syntax: <blockWithHandler> ::= try <block> <match>
® Example: f calls g, which in turn calls h <match> ::= <handler> ... <handler>
® if h raises an exception and there is no handler <handler> ::= catch (<parameter decl>) { <block> }

for this exception in h, then g gets that exception.

® |f there is a handler for the exception in g, the
handler is executed, and execution continues
normally after that.

® otherwise, the exception is propagated to f.

N AN J

CSE 307 Spring 2004 3 CSE 307 Spring 2004 4
R. Sekar R. Sekar

\

/Exception Handling in C++/Java(contd.)

Example:

int fac(int n) {
if (n <= 0) throw (-1) ; else if (n > 15) throw ("n too large");
else return n*fac(n-1); }

void g (int n) { int k;
try { k = fac (n) ;}
catch (int i) { cout << "negative value invalid" ; }
catch (char *s) { cout << s; }
catch (...) { cout << "unknown exception" ;}

® use of g (-1) will print "negative value invalid"
g (16) will print "n too large"

® |f an unexpected error were to arise in evaluation of fac or g, such as
running out of memory, then "unknown excpetion“ will be printed /

CSE 307 Spring 2004 5
R. Sekar

~

® |f return codes

Exception Vs Return Codes(contd.)

float g(int a, int b, int ¢) {
int x1 = fac(a) ;

/

if (x1 > 0) { were used to
'i?t(;‘::(‘;";“z(b) ’ indicate errors,
int x3 = fac(c) ; then we are
if (x3 > 0) {
return 1./x1 + 1/x2 + 1.x3 forced to check
} return codes
) } (and take
return ...; // there was an error appropriate
} ion ver
main{) { ac’F 0 .) at every
int x = g(-1, 2, 25); point in code.
if (x < 0) { /* identify where error
occurred, print */ }
CSE 307 Spring 2004 7

R. Sekar

Exception Vs Return Codes

® Exceptions are often used to communicate error values
from a callee to its caller. Return values provide alternate

means of communicating errors.

Example use of exception handler:
float g (int a, int b, int c) {

float x = 1./fac(a) + 1./fac(b) + 1./fac(c) ;
main() {

try { 9(-1, 3, 25);}

catch (char *s) { cout << "Exception ™" << s << "raised, exiting\n"; }

catch (...) { cout << "Unknown exception, eixting\n"; }

return x ; }

We do not need to concern ourselves with every
point in the program where an error may arise. /

CSE 307 Spring 2004 6
R. Sekar

/Use of Exceptions in C++ Vs Java\

® |n C++, exception handling was an after-thought.

Earlier versions of C++ did not support exception
handling.

Exception handling not used in standard libraries
Net result: continued use of return codes for error-
checking
® |n Java, exceptions were included from the
beginning.
All standard libraries communicate errors via exceptions.

model for error-checking, as opposed to using return

Net result: all Java programs use exception handling
codes. /

N

CSE 307 Spring 2004 8
R. Sekar

/I'mplementation of Exception Handling m\
Programming Languages

® Exception handling can be implemented by
adding "markers" to ARs to indicate the points in
program where exception handlers are available.

® Entering a try-block at runtime would cause such
a marker to be put on the stack

®* When exception arises, the RTE gets control and
searches down from stack top for a marker.

® Exception then "handed" to the catch statement
of this try-block that matches the exception

¢ |f no matching catch statement is present, search
\for a marker is contined further down the stack /

CSE 307 Spring 2004 9
R. Sekar

-

® |Internal fragmentation

When asked for x bytes, allocator returns y > x
bytes; y-x represents internal fragmentation

® External fragmentation

When (small) free blocks of memory occur in
between used blocks

* the memory manager may have a total >> N bytes of free
memory available, but none may be large enough to
satisfy a request of size N.

~

Fragmentation

/

® |[ssues
No LIFO property, so management is difficult
Fragmentation
Locality

® Models
Explicit allocation and free (C, C++)
Explicit allocation, automatic free (Java)

Automatic allocation and free (SML, Python,
Javascript)

Heap management

- /

CSE 307 Spring 2004 11
R. Sekar

CSE 307 Spring 2004 10
R. Sekar

Use blocks of single size (early LISP)
Limits data-structures to use less efficient implementations.

Use bins of fixed sizes, e.g., 2" for n=0,1,2,...

When you run out of blocks of a certain size, break up a block
of next available size

Eliminates external fragmentation, but increases internal
fragmentation

Maintain bins as LIFO lists to increase locality

malloc implementations (Doug Lea)
For small blocks, use bins of size 8k bytes, 0 < k < 64

\ For larger blocks, use bins of sizes 2"forn > 9

Reducing Fragmentation

/

CSE 307 Spring 2004 12
R. Sekar

/ Coalescing N

® What if a program allocates many 8 byte chunks,frees
them all and then requests lots of 16 byte chunks?
Need to coalesce 8-byte chunks into 16-byte chunks
Requires additional information to be maintained

e for allocated blocks: where does the current block end,
and whether the next block is free

\ /

CSE 307 Spring 2004 13
R. Sekar

4 Managing Manual Deallocation\

® How to avoid errors due to manual deallocation
of memory
Never free memory!!!

Use a convention of object ownership (owner
responsible for freeing objects)

® Tends to reduce errors, but still requires a careful design from
the beginning. (Cannot ignore memory deallocation concerns
initially and add it later.)

Smart data structures, e.g., reference counting objects
Region-based allocation

)

/Explicit Vs Implicit Managemen

® Explicit memory management can be more
efficient, but takes a lot of programmer effort

® Programmers often ignore memory management
early in coding, and try to add it later on
But this is very hard, if not impossible

® Result:
Majority of bugs in production code is due to memory
management errors
®* Memory leaks
* Null pointer or uninitalized pointer access

\ * When a bunch of objects having equal life time are aIIocaW

CSE 307 Spring 2004 15
R. Sekar

\ ® Access through dangling pointers /

CSE 307 Spring 2004 14
R. Sekar

4 Garbage Collection \

® Garbage collection aims to avoid problems
associated with manual deallocation
Identify and collect garbage automatically
® What is garbage?
Unreachable memory
® Automatic garbage collection techniques
have been developed over a long time
Since the days of LISP (1960s)

- /

CSE 307 Spring 2004 16
R. Sekar

\

/Garbage Collection Techniques

® Reference Counting
Works if there are no cyclic structures
® Mark-and-sweep
® Generational collectors
® |ssues
Overhead (memory and space)

Pause-time
Locality

_
-

® Disadvantages

Does not work with cyclic structures

May impact locality

Increases cost of each pointer update operation
® Advantages

Overhead is predictable, fixed

Garbage is collected immediately, so more
efficient use of space

/
~

CSE 307 Spring 2004 17
R. Sekar

Reference Counting

- N

® Each heap block maintains a count of the
number of pointers referencing it.

® Each pointer assignment
increments/decrements this count

® Deallocation of a pointer variable decrements
this count

® \When reference count becomes zero, the
block can be freed

Reference Counting

.

CSE 307 Spring 2004 19
R. Sekar

. /

CSE 307 Spring 2004 18
R. Sekar

/I\Ilark-and-Sweep (“Trace-based’%

® Mark every allocated heap block as
“unreachable”

® Start from registers, local and global
variables

® Do a DFS, following the pointers
Mark each heap block visited as “reachable”

® At the end of the sweep phase, reclaim all
heap blocks still marked as unreachable

N

/

CSE 307 Spring 2004 20
R. Sekar

4 Issues with GC N 4 Copying Collection O

®* Memory fragmentation ® |[nstead of doing a sweep, simply copy over
Memory pages may become sparsely populated all reachable heap blocks into a new area
Performance will be hit due to excessive virtual ® After the copying phase, all original blocks

memory usage and page faults
Can be a problem with explicit memory
management as well
® Solution:
Compacting GC

® Copy live structures so that they are contiguous

can be freed
® Now, memory is compacted, so paging
performance will be much better

® Needs up to twice the memory of compacting
collector, but can be much faster

Copving GC Reachable memory is often a small fraction of total
\ Pying / memory /
CSE 307 Spring 2004 21 CSE 307 Spring 2004 22
R. Sekar R. Sekar
4 Generational GC N Garbage collection in Java N
® Take advantage of the fact that most objects ® Generational GC for young objects
are short-lived ® “Tenured” objects stored in a second region
* EXp|O|t th|S faCt to perform GC faSter Use mark-and_sweep with Compacting
® Idea: ® Makes use of multiple processors if available
Divide heap into generations ® References
If all references go from younger to older generation
(as most do), can collect youngest generation w/o
scanning regions occupied by other generations
* Need to track references from older to younger generation

\ to make this work in all cases / \ j

CSE 307 Spring 2004 23 CSE 307 Spring 2004 24
R. Sekar R. Sekar

/ GC for C/C++ \

¢ Cannot distinguish between pointers and nonpointers
Need “conservative garbage collection”
® The idea: if something “looks” like a pointer, assume
that it may be one!
Problem: works for finding reachable objects, but cannot
modify a value without being sure
® Copying and compaction are ruled out!
®* Reasonable GC implementations are available, but
they do have some drawbacks
Unpredictable performance
Can break some programs that modify pointer values before

\ storing them in memory /

CSE 307 Spring 2004 25
R. Sekar

