Compilation

Syntax-Directed Translation

Technique used to build semantic information for large structures, based on its syntax. In a compiler, *Syntax-Directed Translation* is used for

- Constructing Abstract Syntax Tree
- Type checking
- Intermediate code generation

The Essence of Syntax-Directed Translation

The semantics (*i.e.*, *meaning*) of the various constructs in the language is viewed as <u>attributes</u> of the corresponding grammar symbols.

Example:

sequence of characters 495

- \rightarrow grammar symbol <code>TOK_INT</code>
- \rightarrow meaning \equiv integer 495
- \rightarrow is an attribute of TOK_INT (yylval.int_val).

Attributes are associated with **Terminal** as well as **Nonterminal** symbols.

An Example of Syntax-Directed Translation

$$E \longrightarrow E * E$$

$$E \longrightarrow E + E$$

$$E \longrightarrow id$$

$$E \longrightarrow E_1 * E_2 \qquad \{E.val := E_1.val * E_2.val\}$$

$$E \longrightarrow E_1 + E_2 \qquad \{E.val := E_1.val + E_2.val\}$$

$$E \longrightarrow int \qquad \{E.val := int.val\}$$

Syntax-Directed Definitions with yacc

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\{E.val := E_1.val * E_2.val\}$ $\{E.val := E_1.val + E_2.val\}$
$E \longrightarrow \text{int}$	$\{E.val := int.val\}$
E : E MULT E	$\{\$\$.val = \$1.val * \$3.val\}$
E : E PLUS E	$\{\$\$.val = \$1.val + \$3.val\}$
E : INT	$\{\$\$.val = \$1.val\}$

Another Example of Syntax-Directed Translation

		Decl	\longrightarrow	Type VarList	
		Туре	\longrightarrow		
		VarList	\longrightarrow	id , VarList	
		VarList	\longrightarrow	id	
Decl	\longrightarrow	Type VarL	ist	{ <i>VarList.type</i> :=	= Type.type}
Туре	\longrightarrow			$\{ Type.type := 1$	}
VarList	\longrightarrow	id , VarList	1	$\{VarList_1.type: \\ id.type := Varticle Varticl$	= VarList.type; nList.type}
VarList	\longrightarrow	id		$\{id.type := Var$	List.type}

Attributes

- Synthesized Attribute: Value of the attribute computed from the values of attributes of grammar symbols on RHS. Example: *val* in Expression grammar
- Inherited Attribute: Value of attribute computed from values of attributes of the LHS grammar symbol. Example: *type* of *VarList* in declaration grammar

Syntax-Directed Definition

Actions associated with each production in a grammar. For a production $A \longrightarrow X Y$, actions may be of the form:

- A.attr := f(X.attr', Y.attr'') for synthesized attributes
- Y.attr := f(A.attr', X.attr'') for inherited attributes

Synthesized Attributes: An Example

$$E \longrightarrow E * E$$

$$E \longrightarrow E + E$$

$$E \longrightarrow \text{ int}$$

$$E \longrightarrow E_1 * E_2 \qquad \{E.val := E_1.val * E_2.val\}$$

$$E \longrightarrow E_1 + E_2 \qquad \{E.val := E_1.val + E_2.val\}$$

$$E \longrightarrow \text{ int} \qquad \{E.val := \text{ int.}val\}$$

Information Flow for Synthesized Attributes

Another Example of Syntax-Directed Translation

Information Flow for Inherited Attributes

Attributes and Definitions

- S-Attributed Definitions: Where all attributes are *synthesized*.
- L-Attributed Definitions: Where all *inherited* attributes are such that their values depend only on
 - inherited attributes of the parent, and
 - attributes of left siblings

Attributes and Top-down Parsing

- Inherited: analogous to function arguments
- Synthesized: analogous to return values
- L-attributed definitions mean that argument to a parsing function is
- argument of the calling function, or
- return value/argument of a previously called function

Synthesized Attributes and Bottom-up Parsing

Keep track of attributes of symbols while parsing.

- Keep a stack of attributes corresponding to stack of symbols.
- Compute attributes of LHS symbol while performing reduction (*i.e.*, while pushing the symbol on symbol stack)

Synthesized Attributes & Shift-reduce parsing

-	$\begin{array}{cccc} E & \longrightarrow & E + E \\ E & \longrightarrow & E^* E \\ E & \longrightarrow & \text{int} \end{array}$,
Stack	INPUT STREAM	Attributes
\$	3 * 2 + 5 \$	\$
\$ int	* 2 + 5 \$	\$ 3
\$ E	* 2 + 5 \$	\$ 3
\$ E *	2 + 5 \$	\$3⊥
\$ E * int	+ 5 \$	$3 \perp 2$
\$ E	+ 5 \$	\$ 6
\$ E +	5 \$	\$6⊥
E + int	\$	$6 \perp 5$
\$ E + E	\$	$\$ \$ 6 \perp 5$
\$ E	\$	\$ 11

Inherited Attributes and Bottom-up Parsing

Inherited attributes depend on the *context* in which a symbol is used.

For inherited attributes, we cannot assign an value to a node's attributes unless the parent's attributes are known.

When building parse trees bottom-up, parent of a node is not known when the node is created!

Solution: Ensure that all attributes are inherited only from left siblings.

Use "global" variables to capture inherited values,

and introduce "marker" nonterminals to manipulate the global variables.

Inherited Attributes & Bottom-up parsing

Attribute Grammars

- syntax-directed definitions without side-effects
- attribute definitions can be thought of as *logical assertions* rather than as things that need to be computed
 - distinction between synthesized and inherited attributes disappears

 $\begin{array}{rcl} E & \longrightarrow & E_1 * E_2 & & \{E.type = E_1.type = E_2.type\} \\ E & \longrightarrow & E_1 + E_2 & & \{E.type = E_1.type = E_2.type\} \\ E & \longrightarrow & \text{int} & & \{E.type = \text{integer}\} \end{array}$

Attribute Grammars

An attribute grammar AG is given by (G, V, F), where:

- G is a context-free grammar
- V is the set of attributes, each of which is associated with a terminal or a nonterminal
- F is the set of attribute assertions, each of which is associated with a production in the grammar

A string $s \in L(AG)$ iff $s \in L(G)$ and the attribute assertions hold for production used to derive s, i.e., \exists a parse tree for s w.r.t. G where assertions associated with each edge in the parse tree are satisfied.

Semantic Analysis Phases of Compilation

- Build an Abstract Syntax Tree (AST) while parsing
- Decorate the AST with type information (type checking/inference)
- Generate intermediate code from AST
- $\circ~$ Optimize intermediate code
- $\circ~$ Generate final code

- Represents syntactic structure of a program
- Abstracts out irrelevant grammar details

An AST for the statement: "if (m == 0) S1 else S2"

```
is
```


Construction of Abstract Syntax Trees

Typically done simultaneously with parsing

- $\ldots\,$ as another instance of syntax-directed translation
- ... for translating *concrete* syntax (the parse tree) to *abstract* syntax (AST).
- ... with AST as a *synthesized attribute* of each grammar symbol.

Abstract Syntax Trees

Actions and AST

 $E \longrightarrow E_{1} + T \\ \{ E.ast = new BinaryExpr(OP_PLUS, \\ E_{1}.ast, T.ast); \}$ $E \longrightarrow T \{ E.ast = T.ast; \}$ $\vdots \\
F \longrightarrow (E) \{ F.ast = E.ast; \}$ $F \longrightarrow int \\ \{ F.ast = new IntValNode(int.val); \}$ Actions and AST: Another Example

- $\begin{array}{rcl} S & \longrightarrow & \mbox{if } E \; S_1 \; \mbox{else} \; S_2 \\ & & \left\{ \; S.\, \mbox{ast} = \mbox{new } \; \mbox{IfStmtNode}(E.\, \mbox{ast}, \\ & & S_1.\, \mbox{ast}, \; S_2.\, \mbox{ast}); \; \right\} \end{array}$
- $S \longrightarrow \text{return } E \\ \{ S.\text{ast} = \text{new ReturnNode}(E.\text{ast}) \}$