Compilation

“Source
Program
_Program

COMPILATION

Lexical Analysis

Semantic Analysis
e.g., type checking)

(

Intermediate code

Generation

ode Optimization(s)
al code generati

Target
Program

C

Fi

Syntax-Directed Translation

Technique used to build semantic information for large structures, based on its syntax.
In a compiler, Syntaz-Directed Translation is used for

e Constructing Abstract Syntax Tree
e Type checking

e Intermediate code generation

The Essence of Syntax-Directed Translation

The semantics (i.e., meaning) of the various constructs in the language is viewed as attributes of the corresponding
grammar symbols.
Example:

sequence of characters 495
— grammar symbol TOK_INT
— meaning = integer 495
— is an attribute of TOK_INT (yylval.int_val).

Attributes are associated with Terminal as well as Nonterminal symbols.

An Example of Syntax-Directed Translation

EFE — E*FE
F — E+FE
FE — id

E — E1 * E2 {E.va/ = El.va/ * Ez.Va/}
E — FE|+ B {E.val := E;.val + Ey.val}
E — int {E.val :=int.val}

Syntax-Directed Definitions with yacc

E — E{*E, {E.val := E;.val x E5.val}
E — FE|+ B, {E.val := E;.val + Ey.val}
E — int {E.val := int.val}

E E MULT E {$$.val = $1.val * $3.val}
E : EPLUSE {$$.val = $1.val + $3.val}
E INT {$$.val = $1.val}

Another Example of Syntax-Directed Translation

Decl

Type
VarList

VarlList

Decl
Type
VarlL ist
VarlList

—

—

—

—

Type VarlList

id , VarList
id

Type VarList

id , VarList,

{VarList.type := Type.type}
{Type.type := ...}

{VarList,.type := VarList.type;
id.type := VarList.type}
id {id.type := VarList.type}
Attributes

e Synthesized Attribute: Value of the attribute computed from the values of attributes of grammar symbols on RHS.

Example: val in Expression grammar

e Inherited Attribute: Value of attribute computed from values of attributes of the LHS grammar symbol.

Example: type of VarList in declaration grammar

Syntax-Directed Definition

Actions associated with each production in a grammar.

For a production A — X Y, actions may be of the form:

o A.attr := f(X.attr',Y.attr'") for synthesized attributes

e Yattr := f(A.attr', X.attr'") for inherited attributes

Synthesized Attributes: An Example

F —

EFE — E*FE
F — FE+F

F —

int

int

EF — El*EQ
EF — E1+E2

{E.val := E.val * Ey.val}
{E.val := E;.val + Ey.val}
{E.val :=int.val}

Information Flow for Synthesized Attributes

11

/

N

3 int 2 int

+ <5
5

E

int

Another Example of Syntax-Directed Translation

Decl —— Type VarList
Type —— integer
Type — float
VarList — id, VarList
VarList — id

Dec] — Type VarList {VarList.type := Type.type}

Type —— integer {Type.type := int}
Type — float {Type.type := float}
VarList — id, VarListy {VarList;.type := VarList.type;
id.type := VarList.type}
VarList — id {id.type := VarlList.type}

Information Flow for Inherited Attributes

/> int Decl\

int Type int VarList
< 7

int integer int id , VarList int>
id int

i nt eger X , y

Attributes and Definitions

e S-Attributed Definitions: Where all attributes are synthesized.
e L-Attributed Definitions: Where all inherited attributes are such that their values depend only on

— inherited attributes of the parent, and

— attributes of left siblings

Attributes and Top-down Parsing

e Inherited: analogous to function arguments

e Synthesized: analogous to return values

L-attributed definitions mean that argument to a parsing function is
e argument of the calling function, or

e return value/argument of a previously called function

Synthesized Attributes and Bottom-up Parsing

Keep track of attributes of symbols while parsing.
e Keep a stack of attributes corresponding to stack of symbols.

e Compute attributes of LHS symbol while performing reduction (.e., while pushing the symbol on symbol stack)

Synthesized Attributes & Shift-reduce parsing

F — E+FE
E — E*E
E — int

STACK INPUT STREAM | ATTRIBUTES
$ 3x2+5% | 8§

$ int *x2+58% |83

$E *x2+5% | $3
$E* 2+58% | 831L

$ E *int +5% | $3L2
$E +5% |36

$E + 58 | $6L

$ E + int $| %6 L5
$E+E $ | $886L5
$E $ | $11

Inherited Attributes and Bottom-up Parsing

Inherited attributes depend on the context in which a symbol is used.

For inherited attributes, we cannot assign an value to a node’s attributes unless the parent’s attributes
are known.

When building parse trees bottom-up, parent of a node is not known when the node is created!

Solution: Ensure that all attributes are inherited only from left siblings.
Use “global” variables to capture inherited values,

and introduce “marker” nonterminals to manipulate the global variables.

Inherited Attributes & Bottom-up parsing

Ss — S;S5s | €
S — B | other

B — {Ss}
B — { M1 Ss M2 }
My — € {current_block + +; }
My, — ¢ {current_block — —; }

Attribute Grammars

e syntax-directed definitions without side-effects
e attribute definitions can be thought of as logical assertions rather than as things that need to be computed

— distinction between synthesized and inherited attributes disappears

E — E;*E, {E.type = E;.type = Es.type}
E — E| + Es {E.type = E;.type = Es.type}
E — int {E.type = integer}

Attribute Grammars

An attribute grammar AG is given by (G, V, F'), where:
e (5 is a context-free grammar
e 1/ is the set of attributes, each of which is associated with a terminal or a nonterminal

e [is the set of attribute assertions, each of which is associated with a production in the grammar

A string s € L(AG) iff s € L(G) and the attribute assertions hold for production used to derive s,
i.e., 3 a parse tree for s w.r.t. G where assertions associated with each edge in the parse tree are
satisfied.

Semantic Analysis Phases of Compilation

Build an Abstract Syntax Tree (AST) while parsing

Decorate the AST with type information (type checking/inference)

Generate intermediate code from AST

@]

Optimize intermediate code

o Generate final code

Abstract Syntax Tree (AST)

e Represents syntactic structure of a program
e Abstracts out irrelevant grammar details

An AST for the statement:
“if (m == 0) S1 else S2”
is

If-then-else

AST for S1 AST for S2

Construction of Abstract Syntax Trees

Typically done simultaneously with parsing
. as another instance of syntax-directed translation
. for translating concrete syntax (the parse tree) to abstract syntax (AST).

. with AST as a synthesized attribute of each grammar symbol.

Abstract Syntax Trees

Parse Tree AST
E
E + T Binary_Exp
| I T
T T * = + Int_Exp Binary_Exp
| | | e
= E int * Int_Exp Int_Exp
int int +(5, *(2, 3))
5 + 2 * 3

Actions and AST

E.+T

{ E.ast = new BinaryExpr (OP_PLUS,
Ei.ast,T.ast); }

T { E.ast = T.ast; }

(E) { F.ast = E.ast; }
int
{ F.ast = new IntValNode(int.val); }

Actions and AST: Another Example

if E Sq else Sy
{ S.ast = new IfStmtNode(E.ast,
Si.ast, Sp.ast); }
return E
{ S.ast = new ReturnNode(E.ast)}

