
Compilation

Source

Lexical Analysis

Parsing

Semantic Analysis
(e.g., type checking)

Intermediate code
Generation

Code Optimization(s)

Final code generation

Target

COMPILATION
Program

Program

Syntax-Directed Translation

Technique used to build semantic information for large structures, based on its syntax.
In a compiler, Syntax-Directed Translation is used for

• Constructing Abstract Syntax Tree

• Type checking

• Intermediate code generation

The Essence of Syntax-Directed Translation

The semantics (i.e., meaning) of the various constructs in the language is viewed as attributes of the corresponding
grammar symbols.

Example:

sequence of characters 495
→ grammar symbol TOK INT

→ meaning ≡ integer 495

→ is an attribute of TOK INT (yylval.int val).

Attributes are associated with Terminal as well as Nonterminal symbols.

An Example of Syntax-Directed Translation

E −→ E * E

E −→ E + E

E −→ id

E −→ E1 * E2

E −→ E1 + E2

E −→ int

{E.val := E1.val ∗ E2.val}
{E.val := E1.val + E2.val}
{E.val := int.val}

Syntax-Directed Definitions with yacc

E −→ E1 * E2

E −→ E1 + E2

E −→ int

{E.val := E1.val ∗ E2.val}
{E.val := E1.val + E2.val}
{E.val := int.val}

E : E MULT E

E : E PLUS E

E : INT

{$$.val = $1.val ∗ $3.val}
{$$.val = $1.val + $3.val}
{$$.val = $1.val}

1

Another Example of Syntax-Directed Translation

Decl −→ Type VarList

Type −→ . . .

VarList −→ id , VarList

VarList −→ id

Decl −→ Type VarList

Type −→ . . .

VarList −→ id , VarList1

VarList −→ id

{VarList.type := Type.type}
{Type.type := . . .}
{VarList1.type := VarList.type;

id.type := VarList.type}
{id.type := VarList.type}

Attributes

• Synthesized Attribute: Value of the attribute computed from the values of attributes of grammar symbols on RHS.

Example: val in Expression grammar

• Inherited Attribute: Value of attribute computed from values of attributes of the LHS grammar symbol.

Example: type of VarList in declaration grammar

Syntax-Directed Definition

Actions associated with each production in a grammar.
For a production A −→ X Y , actions may be of the form:

• A.attr := f(X.attr ′, Y.attr ′′) for synthesized attributes

• Y.attr := f(A.attr ′,X.attr ′′) for inherited attributes

Synthesized Attributes: An Example

E −→ E * E

E −→ E + E

E −→ int

E −→ E1 * E2

E −→ E1 + E2

E −→ int

{E.val := E1.val ∗ E2.val}
{E.val := E1.val + E2.val}
{E.val := int.val}

Information Flow for Synthesized Attributes

E

E E

E E int

intint3

3

2

2*

+6

11

5

5

3 2 5* +

2

Another Example of Syntax-Directed Translation

Decl −→ Type VarList

Type −→ integer

Type −→ float

VarList −→ id , VarList

VarList −→ id

Decl −→ Type VarList

Type −→ integer

Type −→ float

VarList −→ id , VarList1

VarList −→ id

{VarList.type := Type.type}
{Type.type := int}
{Type.type := float}
{VarList1.type := VarList.type;

id.type := VarList.type}
{id.type := VarList.type}

Information Flow for Inherited Attributes

Decl

Type VarList

VarListinteger id

id

,

integer x , y

int

int

int

int

int int

int

Attributes and Definitions

• S-Attributed Definitions: Where all attributes are synthesized.

• L-Attributed Definitions: Where all inherited attributes are such that their values depend only on

– inherited attributes of the parent, and

– attributes of left siblings

Attributes and Top-down Parsing

• Inherited: analogous to function arguments

• Synthesized: analogous to return values

L-attributed definitions mean that argument to a parsing function is

• argument of the calling function, or

• return value/argument of a previously called function

Synthesized Attributes and Bottom-up Parsing

Keep track of attributes of symbols while parsing.

• Keep a stack of attributes corresponding to stack of symbols.

• Compute attributes of LHS symbol while performing reduction (i.e., while pushing the symbol on symbol stack)

Synthesized Attributes & Shift-reduce parsing

3

E −→ E+E

E −→ E*E

E −→ int

Stack Input Stream Attributes

$ 3 * 2 + 5 $ $

$ int * 2 + 5 $ $ 3

$ E * 2 + 5 $ $ 3

$ E * 2 + 5 $ $ 3 ⊥

$ E * int + 5 $ $ 3 ⊥ 2

$ E + 5 $ $ 6

$ E + 5 $ $ 6 ⊥

$ E + int $ $ 6 ⊥ 5

$ E + E $ $ $ 6 ⊥ 5

$ E $ $ 11

Inherited Attributes and Bottom-up Parsing

Inherited attributes depend on the context in which a symbol is used.
For inherited attributes, we cannot assign an value to a node’s attributes unless the parent’s attributes

are known.
When building parse trees bottom-up, parent of a node is not known when the node is created!

Solution: Ensure that all attributes are inherited only from left siblings.

Use “global” variables to capture inherited values,

and introduce “marker” nonterminals to manipulate the global variables.

Inherited Attributes & Bottom-up parsing

Ss −→ S ; Ss | ǫ

S −→ B | other
B −→ { Ss }

B −→ { M1 Ss M2 }
M1 −→ ǫ

M2 −→ ǫ

{current block + +; }
{current block −−; }

Attribute Grammars

• syntax-directed definitions without side-effects

• attribute definitions can be thought of as logical assertions rather than as things that need to be computed

– distinction between synthesized and inherited attributes disappears

E −→ E1 * E2

E −→ E1 + E2

E −→ int

{E.type = E1.type = E2.type}
{E.type = E1.type = E2.type}
{E.type = integer}

Attribute Grammars

An attribute grammar AG is given by (G, V, F), where:

• G is a context-free grammar

• V is the set of attributes, each of which is associated with a terminal or a nonterminal

• F is the set of attribute assertions, each of which is associated with a production in the grammar

4

A string s ∈ L(AG) iff s ∈ L(G) and the attribute assertions hold for production used to derive s,
i.e., ∃ a parse tree for s w.r.t. G where assertions associated with each edge in the parse tree are

satisfied.

Semantic Analysis Phases of Compilation

• Build an Abstract Syntax Tree (AST) while parsing

• Decorate the AST with type information (type checking/inference)

• Generate intermediate code from AST

◦ Optimize intermediate code

◦ Generate final code

Abstract Syntax Tree (AST)

• Represents syntactic structure of a program

• Abstracts out irrelevant grammar details

An AST for the statement:
“if (m == 0) S1 else S2”
is

If-then-else

AST for S2AST for S1

==

0m

Construction of Abstract Syntax Trees

Typically done simultaneously with parsing

. . . as another instance of syntax-directed translation

. . . for translating concrete syntax (the parse tree) to abstract syntax (AST).

. . . with AST as a synthesized attribute of each grammar symbol.

Abstract Syntax Trees

Parse Tree AST

E

T

F

int

E

T

T

F

int

F*

int

5 2 * 3+

+ Binary_Exp

+ Int_Exp Binary_Exp

* Int_Exp Int_Exp

+(*(2, 3))5,

5

Actions and AST

E −→ E 1 + T

{ E.ast = new BinaryExpr(OP PLUS,

E 1.ast,T.ast); }

E −→ T { E.ast = T.ast; }
...
F −→ (E) { F.ast = E.ast; }

F −→ int
{ F.ast = new IntValNode(int.val); }

Actions and AST: Another Example

S −→ if E S1 else S2

{ S.ast = new IfStmtNode(E.ast,

S1.ast, S2.ast); }

S −→ return E

{ S.ast = new ReturnNode(E.ast)}

6

