Parsing

A.k.a. Syntax Analysis

- Recognize *sentences* in a language.
- Discover the structure of a document/program.
- Construct (implicitly or explicitly) a tree (called as a parse tree) to represent the structure.
- The above tree is used later to guide translation.

Grammars

The syntactic structure of a language is defined using grammars.

- Grammars (like regular expressions) specify a set of strings over an alphabet.
- Efficient recognizers (like DFA) can be constructed to efficiently determine whether a string is in the language.
- Language heirarchy:
 - Finite Languages (FL) Enumeration
 - Regular Languages (RL \supset FL) Regular Expressions
 - Context-free Languages (CFL \supset RL) Context-free Grammars

Regular Languages

Languages represented by regular expressions	≡	Languages recognized by finite automata

- Examples:
- $\checkmark \ \{a,b,c\}$
- $\sqrt{\{\epsilon, a, b, aa, ab, ba, bb, \ldots\}}$ $\sqrt{\{(ab)^n \mid n \ge 0\}}$
- $\times \{a^n b^n \mid n \ge 0\}$

Grammars

Notation where recursion is explicit. Examples:

• $\{\epsilon, a, b, aa, ab, ba, bb, \ldots\}$:

E	\longrightarrow	a
E	\longrightarrow	b
S	\longrightarrow	ϵ
S	\longrightarrow	ES
E	\longrightarrow	a b

Notational shorthand:

E'	\longrightarrow	a	b
S	\longrightarrow	ϵ	ES

• $\{\mathbf{a}^n\mathbf{b}^n\mid n\geq 0\}$:

 $\begin{array}{cccc} S & \longrightarrow & \epsilon \\ S & \longrightarrow & \mathbf{a}S\mathbf{b} \end{array}$

• $\{w \mid no. of a's in w = no. of b's in w\}$

Context-free Grammars

- Terminal Symbols: Tokens
- Nonterminal Symbols: set of strings made up of tokens
- Productions: Rules for constructing the set of strings associated with nonterminal symbols.
 Example: Stmt → while Expr do Stmt

Start symbol: nonterminal symbol that represents the set of all strings in the language.

Example

E	\longrightarrow	E + E
E	\longrightarrow	E-E
E	\longrightarrow	E * E
E	\longrightarrow	$E \ / \ E$
E	\longrightarrow	(E)
E	\longrightarrow	id

 $\mathcal{L}(E) = \{\mathsf{id}, \mathsf{id} + \mathsf{id}, \mathsf{id} - \mathsf{id}, \dots, \mathsf{id} + (\mathsf{id} * \mathsf{id}) - \mathsf{id}, \dots\}$

Context-free Grammars

Production: rule with *nonterminal* symbol on left hand side, and a (possibly empty) sequence of terminal or nonterminal symbols on the right hand side.

Notations:

- Terminals: lower case letters, digits, punctuation
- Nonterminals: Upper case letters
- Arbitrary Terminals/Nonterminals: X, Y, Z
- Strings of Terminals: u, v, w
- Strings of Terminals/Nonterminals: α, β, γ
- Start Symbol: S

Context-Free Vs Other Types of Grammars

- Context-free grammar (CFG): Productions of the form $NT \longrightarrow [NT|T] *$
- Context-sensitive grammar (CSG): Productions of the form $[t|NT] * NT[t|NT] * \longrightarrow [t|NT] *$
- Unrestricted grammar: Productions of the form $[t|NT]* \longrightarrow [t|NT]*$

Examples of Non-Context-Free Languages

- Checking that variables are declared before use. If we simplify and abstract the problem, we see that it amounts to recognizing strings of the form wsw
- Checking whether the number of actual and formal parameters match. Abstracts to recognizing strings of the form $a^n b^m c^n d^m$
- In both cases, the rules are not enforced in grammar, but deferred to type-checking phase
- Note: Strings of the form wsw^R and $a^nb^nc^md^m$ can be described by a CFG

What types of Grammars Describe These Languages?

- Strings of 0's and 1's of the form xx
- Strings of 0's and 1's in which 011 doesn't occur
- Strings of 0's and 1's in which each 0 is immediately followed by a 1
- Strings of 0's and 1's with equal number of 0's and 1's.

Language Generated by Grammars, Equivalence of Grammars

- How to show that a grammar G generates a language \mathcal{M} ? Show that
 - $\forall s \in \mathcal{M}, \text{ show that } s \in \mathcal{L}(G)$
 - $\forall s \in \mathcal{L}(G)$, show that $s \in \mathcal{M}$
- How to establish that two grammars G_1 and G_2 are equivalent? Show that $\mathcal{L}(G_1) = \mathcal{L}(G_2)$

Grammar Examples

 $S \longrightarrow 0S1S|1S0S|\epsilon$

What is the language generated by this grammar?

Grammar Examples

$$S \longrightarrow 0A|1B|\epsilon$$
$$A \longrightarrow 0AA|1S$$
$$B \longrightarrow 1BB|0S$$

What is the language generated by this grammar?

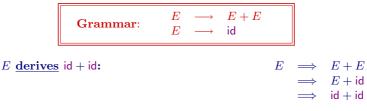
The Two Sides of Grammars

Specify a set of strings in a language. **Recognize** strings in a given language:

- Is a given string x in the language? Yes, if we can construct a *derivation* for x
- Example: Is $\mathsf{id} + \mathsf{id} \in \mathcal{L}(E)$?

$$\begin{array}{rcl} \mathsf{id} + \mathsf{id} & \longleftarrow & E + \mathsf{id} \\ & \longleftarrow & E + E \\ & \longleftarrow & E \end{array}$$

Derivations



- $\alpha A\beta \Longrightarrow \alpha \gamma \beta$ iff $A \longrightarrow \gamma$ is a production in the grammar.
- $\alpha \stackrel{*}{\Longrightarrow} \beta$ if α derives β in zero or more steps. Example: $E \stackrel{*}{\Longrightarrow} id + id$
- Sentence: A sequence of terminal symbols w such that $S \stackrel{+}{\Longrightarrow} w$ (where S is the start symbol)
- Sentential Form: A sequence of terminal/nonterminal symbols α such that $S \stackrel{*}{\Longrightarrow} \alpha$

Derivations

• Rightmost derivation: Rightmost nonterminal is replaced first:

E	\implies	E + E
	\implies	E + id
	\implies	id + id

Written as $E \stackrel{*}{\Longrightarrow} rm \operatorname{id} + \operatorname{id}$

• Leftmost derivation: Leftmost nonterminal is replaced first:

E	\implies	E + E
	\implies	id + E
	\implies	id + id

Written as $E \stackrel{*}{\Longrightarrow}_{Im} \mathsf{id} + \mathsf{id}$

Parse Trees

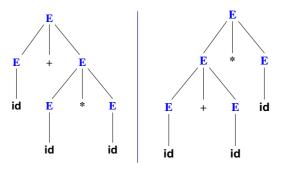
Graphical Representation of Derivations

$$E \implies E + E \\ \implies \operatorname{id} + E \\ \implies \operatorname{id} + \operatorname{id} \qquad \begin{bmatrix} \mathbf{E} \\ \mathbf{E} \\ \mathbf{E} \\ \mathbf{id} \\ \mathbf{id} \\ \mathbf{id} \\ \mathbf{id} \\ \end{bmatrix} \qquad \begin{bmatrix} E \\ \implies E + E \\ \implies E + \operatorname{id} \\ \implies \operatorname{id} + \operatorname{id} \\ \end{bmatrix}$$

A **Parse Tree** succinctly captures the <u>structure</u> of a sentence.

Ambiguity

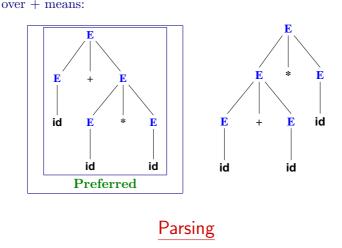
A Grammar is *ambiguous* if there are <u>multiple parse trees</u> for the same sentence. Example: id + id * id



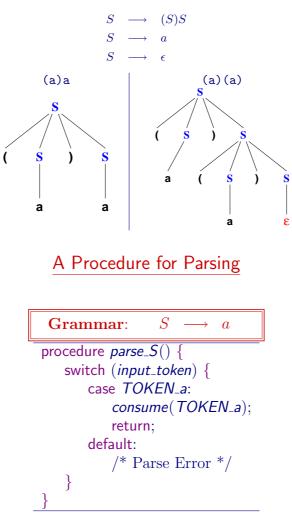
Disambiguition

Express Preference for one parse tree over others.

Example: id + id * idThe usual precedence of * over + means:



<u>Construct</u> a parse tree for a given string.



Predictive Parsing

```
\begin{tabular}{|c|c|c|c|c|c|c|} \hline Grammar: & S & \longrightarrow & a \\ S & \longrightarrow & \epsilon \\ \hline procedure $parse_S()$ { \\ switch (input_token) { \\ case $TOKEN_a: $ /* Production 1 */ $ consume($TOKEN_a: $ /* Production 1 */ $ consume($TOKEN_a); $ return; $ case $TOKEN_EOF: $ /* Production 2 */ $ return; $ case $TOKEN_EOF: $ /* Production 2 */ $ return; $ default: $ /* Parse Error */ $ } \\ \hline \end{tabular}
```

Predictive Parsing (Contd.)

```
procedure parse_S() {
```

switch (input_token) {
 case TOKEN_OPEN_PAREN: /* Production 1 */
 consume(TOKEN_OPEN_PAREN);
 parse_S();
 consume(TOKEN_CLOSE_PAREN);
 parse_S();
 return;

Predictive Parsing (contd.)

	$S \longrightarrow (S)S$
Grammar:	$S \longrightarrow a$
	$S \longrightarrow \epsilon$

case TOKEN_a: /* Production 2 */
 consume(TOKEN_a);
 return;
case TOKEN_CLOSE_PAREN:
case TOKEN_EOF: /* Production 3 */
 return;
default:
 /* Parse Error */

Predictive Parsing: Restrictions

Grammar cannot be left-recursive

Example: $E \longrightarrow E + E \mid a$ procedure parse_E() { switch (input_token) { case TOKEN_a: /* Production 1 */ parse_E(); consume(TOKEN_PLUS); parse_E(); return; case TOKEN_a: /* Production 2 */ consume(TOKEN_a); return; }

Removing Left Recursion

$$\begin{array}{cccc} A & \longrightarrow & A & a \\ A & \longrightarrow & b \end{array}$$

 $\mathcal{L}(A) = \{b, ba, baa, baaa, baaaa, \dots\}$ $A \longrightarrow bA'$ $A' \longrightarrow aA'$ $A' \longrightarrow \epsilon$

Removing Left Recursion

More generally,

$$\begin{array}{rccc} A & \longrightarrow & A\alpha_1 | \cdots | A\alpha_m \\ A & \longrightarrow & \beta_1 | \cdots | \beta_n \end{array}$$

Can be transformed into

$$\begin{array}{rccc} A & \longrightarrow & \beta_1 A' | \cdots | \beta_n A' \\ A' & \longrightarrow & \alpha_1 A' | \cdots | \alpha_m A' | \epsilon \end{array}$$

Removing Left Recursion: An Example

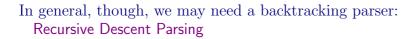
$$\begin{array}{cccc} E & \longrightarrow & E + E \\ E & \longrightarrow & \mathrm{id} \end{array} \\ & & & & \\ E & \longrightarrow & \mathrm{id} \ E' \\ E' & \longrightarrow & + E \ E' \\ E' & \longrightarrow & \epsilon \end{array}$$

May not be able to choose a unique production

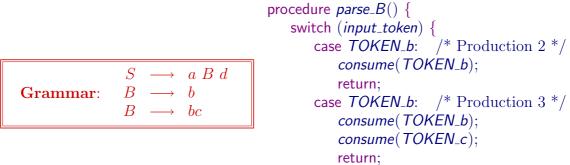
Left-factoring can help:

 $\begin{array}{rcl} S & \longrightarrow & a \ B \ d \\ B & \longrightarrow & bC \\ C & \longrightarrow & c | \epsilon \end{array}$

Predictive Parsing: Restrictions



Recursive Descent Parsing



}}

Nonrecursive Parsing

Instead of recursion,

use an explicit *stack* along with the parsing table. Data objects:

- Parsing Table: M(A, a), a two-dimensional array, dimensions indexed by nonterminal symbols (A) and terminal symbols (a).
- A **Stack** of terminal/nonterminal symbols
- Input stream of tokens

The above data structures manipulated using a table-driven parsing program.

Grammar:	$\begin{array}{cccc} A & \longrightarrow & a \\ B & \longrightarrow & b \end{array}$	$\begin{array}{ccc} S & \longrightarrow \\ S & \longrightarrow \end{array}$	
	Parsing Table:		
	INPUT SYMBOL		
Nonterminal	a	b	EOF
S	$S \longrightarrow A \ S \ B$	$S \longrightarrow \epsilon$	$S \longrightarrow \epsilon$
A	$A \longrightarrow a$		
В		$B \longrightarrow b$	

Table-driven Parsing

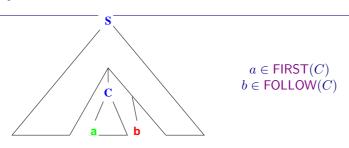
Table-driven Parsing Algorithm

```
stack initialized to EOF.
while (stack is not empty) {
    X = top(stack);
    if (X is a terminal symbol)
        consume(X);
    else /* X is a nonterminal */
        if (M[X, input_token] = X \longrightarrow Y_1, Y_2, \dots, Y_k) {
            pop(stack);
            for i = k downto 1 do
                push(stack, Y_i);
            }
            else /* Syntax Error */
}
```

FIRST and FOLLOW

Grammar: $S \longrightarrow (S)S \mid a \mid \epsilon$

- FIRST(X) = First character of any string that can be derived from X
 FIRST(S) = {(, a, ε}.
- FOLLOW(A) = First character that, in any derivation of a string in the language, appears immediately after A. FOLLOW(S) = {), EOF}



FIRST and FOLLOW

FIRST(X):	First terminal in some α such
FOLLOW(A):	that $X \stackrel{*}{\Longrightarrow} \alpha$. First terminal in some β such
	that $S \stackrel{*}{\Longrightarrow} \alpha A \beta$.

Grammar:	$\begin{array}{ccc} A & \longrightarrow \\ B & \longrightarrow \end{array}$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
First(S) = First(A) = First(B) =	{a}	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Definition of FIRST

	Gramma	$\mathbf{r}: \begin{array}{cccc} A & \longrightarrow & a & & S & \longrightarrow & A \ S & B & \longrightarrow & b & & S & \longrightarrow & \epsilon \end{array}$
'	F	$IRST(\alpha)$ is the smallest set such that
$\alpha =$		Property of $FIRST(\alpha)$
a, a t	erminal	$a \in FIRST(\alpha)$
A, a ı	$\begin{array}{c} A \longrightarrow \epsilon \in G \Longrightarrow \epsilon \in \textit{FIRST}(\alpha) \\ A \longrightarrow \beta \in G, \ \beta \neq \epsilon \Longrightarrow \textit{FIRST}(\beta) \subseteq \textit{FIRST}(\alpha) \end{array}$	
a st termi	$2 \cdots X_k,$ ring of nals and rminals	$FIRST(X_1) - \{\epsilon\} \subseteq FIRST(\alpha)$ $FIRST(X_i) \subseteq FIRST(\alpha) \text{ if } \forall j < i \epsilon \in FIRST(X_j)$ $\epsilon \in FIRST(\alpha) \text{ if } \forall j < k \epsilon \in FIRST(X_j)$

Definition of FOLLOW

	Grammar:	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	FOLLOW	(A) is the smallest set such that
A	A Property of $FOLLOW(A)$	
=S,	$= S, \text{ the start symbol} \qquad \begin{array}{c} EOF \in \mathit{FOLLOW}(S) \\ \text{Book notation: } \$ \in \mathit{FOLLOW}(S) \end{array}$	
B-	$B \longrightarrow \alpha A \beta \in G \qquad \qquad FIRST(\beta) - \{\epsilon\} \subseteq FOLLOW(A)$	
	$\rightarrow \alpha A, \text{ or}$ $\rightarrow \alpha A\beta, \epsilon \in FIRS$	$T(\beta)$ FOLLOW(B) \subseteq FOLLOW(A)

A Procedure to Construct Parsing Tables

```
procedure table_construct(G) {

for each A \longrightarrow \alpha \in G {

for each a \in FIRST(\alpha) such that a \neq \epsilon

add A \longrightarrow \alpha to M[A, a];

if \epsilon \in FIRST(\alpha)

for each b \in FOLLOW(A)

add A \longrightarrow \alpha to M[A, b];

}}
```

LL(1) Grammars

Grammars for which the parsing table constructed earlier has no multiple entries.

	$E \longrightarrow i$	d E'				
	$E' \longrightarrow -$					
	$E' \longrightarrow \epsilon$					
	INPUT SYMBOL					
Nonterminal	id	+	EOF			
E	$E \longrightarrow id E'$					
E'		$E' \longrightarrow + E E'$	$E' \longrightarrow \epsilon$			

Parsing with LL(1) Grammars

	INPUT SYMBOL					
Nonterminal	id		+		EOF	
E	$E \longrightarrow id E'$					
E'			$E' \longrightarrow$	+ E E'	$E' \longrightarrow \epsilon$	
E	id + id\$	E	\rightarrow	idE'		
E'id	id + id\$					
E'	+ id\$		\implies	id + EE'		
E'E+	+ id\$					
E'E	id\$		\implies	id+idE'	E'	
E'E'id	id\$					
E'E'	\$		\implies	id+idE'		
E'	\$		\implies	id+id		
\$	\$					

LL(1) Derivations

Left to Right Scan of input Leftmost Derivation (1) look ahead 1 token at each step Alternative characterization of LL(1) Grammars: Whenever $A \longrightarrow \alpha \mid \beta \in G$

- 1. $FIRST(\alpha) \cap FIRST(\beta) = \{ \}, \text{ and } \}$
- 2. if $\alpha \stackrel{*}{\Longrightarrow} \epsilon$ then $FIRST(\beta) \cap FOLLOW(A) = \{\}$.

Corollary: No Ambiguous Grammar is LL(1).

Leftmost and Rightmost Derivations

-		
E	\longrightarrow	T
T	\longrightarrow	id

Derivations for id + id:

$E \implies E+T$
\implies E+id
\implies T+id
\implies id+id
RIGHTMOST

Bottom-up Parsing

Given a stream of tokens w, reduce it to the start symbol.

E	\longrightarrow	E+T
E	\longrightarrow	T
T	\longrightarrow	id
	id +	id
	T +	
	<i>E</i> +	
	E +	
	F	'
	L	

Reduction \equiv Derivation⁻¹.

Parse input stream: id + id:

Handles

Informally, a "handle" of a string is a substring that matches the right side of a production, and whose reduction to the nonterminal on the left hand side of the production represents one step along the reverse rightmost derivation.

Handles

A structure that furnishes a means to perform reductions.

$$\begin{array}{ccccc} E & \longrightarrow & E + T \\ E & \longrightarrow & T \\ T & \longrightarrow & \text{id} \end{array}$$

Parse input stream: id + id:

$$\begin{array}{c} \text{id} + \text{id} \\ \hline T + \text{id} \\ \hline E + \text{id} \\ \hline E + T \\ \hline F \end{array}$$

Handles

Handles are substrings of sentential forms:

1. A substring that matches the right hand side of a production

2. Reduction using that rule can lead to the start symbol

$$\begin{array}{ccc} E & \Longrightarrow & \boxed{E+T} \\ \implies & E+\operatorname{id} \\ \implies & \boxed{T}+\operatorname{id} \\ \implies & \operatorname{id}+\operatorname{id} \end{array}$$

Handle Pruning: replace handle by corresponding LHS.

Shift-Reduce Parsing

Bottom-up parsing.

• Shift: Construct leftmost handle on top of stack

- Reduce: Identify handle and replace by corresponding RHS
- Accept: Continue until string is reduced to start symbol and input token stream is empty
- Error: Signal parse error if no handle is found.

Implementing Shift-Reduce Parsers

- Stack to hold grammar symbols (corresponding to tokens seen thus far).
- Input stream of yet-to-be-seen tokens.
- Handles appear on top of stack.
- Stack is initially empty (denoted by \$).
- Parse is successful if stack contains only the start symbol when the input stream ends.

Shift-Reduce Parsing: An Example

Shift-Reduce Parsing: An Example

	E .	$\overline{E+T}$ T id
Stack	INPUT STREAM	ACTION
\$	id + id \$	shift
\$ id	+ id \$	reduce by $T \longrightarrow id$
\$ T	+ id \$	reduce by $E \longrightarrow T$
\$ E	+ id \$	shift
\$ E +	id \$	shift
\$ <i>E</i> + id	\$	reduce by $T \longrightarrow id$
\$ E + T	\$	reduce by $E \longrightarrow E + T$
\$ E	\$	ACCEPT

More on Handles

Handle: Let $S \Longrightarrow_{rm}^* \alpha A w \Longrightarrow_{rm} \alpha \beta w$.

Then $A \longrightarrow \beta$ is a handle for $\alpha \beta w$ at the position ineediately following α .

Notes:

- For unambiguous grammars, every right-sentential form has a unique handle.
- In shift-reduce parsing, handles always appear on top of stack, i.e., $\alpha\beta$ is in the stack (with β at top), and w is unread input.

Identification of Handles and Relationship to Conflicts

- **Case 1:** With $\alpha\beta$ on stack, don't know if we hanve a handle on top of stack, or we need to shift some more input to get βx which is a handle.
 - Shift-reduce conflict
 - Example: if-then-else

Case 2: With $\alpha\beta_1\beta_2$ on stack, don't know if $A \longrightarrow \beta_2$ is the handle, or $B \longrightarrow \beta_1\beta_2$ is the handle

- Reduce-reduce conflict
- Example: $E \longrightarrow E E | E | id$

Viable Prefix

Prefix of a right-sentential form that does not continue beyond the rightmost handle. With $\alpha\beta w$ example of the previous slides, a viable prefix is something of the form $\alpha\beta_1$ where $\beta = \beta_1\beta_2$

LR Parsing

- Stack contents as $s_0 X_1 s_1 X_2 \cdots X_m s_m$
- $\bullet\,$ Its actions are driven by two tables, action and goto

Parser Configuration: $(s_0 X_1 s_1 X_2 \cdots X_m s_m, a_i a_{i+1} \cdots a_n \$)$

unconsumed input

 $action[s_m, a_i]$ can be:

• <u>shift s:</u> new config is $(s_0X_1s_1X_2\cdots X_ms_ma_is, a_{i+1}\cdots a_n\$)$

stack

- reduce $A \longrightarrow \beta$: Let $|\beta| = r$, $goto[s_{m-r}, A] = s$: new config is $(s_0X_1s_1X_2\cdots X_{m-r}s_{m-r}As, a_ia_{i+1}\cdots a_n\$)$
- <u>error</u>: perform recovery actions
- accept: Done parsing

LR Parsing

- action and goto depend only on the state at the top of the stack, not on all of the stack contents
 - The s_i states compactly summarize the "relevant" stack content that is at the top of the stack.
- You can think of *goto* as the action taken by the parser on "consuming" (and shifting) nonterminals
 - similar to the shift action in the *action* table, except that the transition is on a nonterminal rather than a terminal
- The *action* and *goto* tables define the transitions of an FSA that accepts RHS of productions!

Example of LR Parsing Table and its Use

- See Text book Algorithm 4.7: (follows directly from description of LR parsing actions 2 slides earlier)
- See expression grammar (Example 4.33), its associated parsing table in Fig 4.31, and the use of the table to parse id * id + id (Fig 4.32)

LR Versus LL Parsing

Intuitively:

- LL parser needs to guess the production based on the first symbol (or first few symbols) on the RHS of a production
- LR parser needs to guess the production after seeing all of the RHS

Both types of parsers can use next k input symbols as look-ahead symbols (LL(k) and LR(k) parsers)

• Implication: $LL(k) \subset LR(k)$

How to Construct LR Parsing Table?

Key idea: Construct an FSA to recognize RHS of productions

- States of FSA remember which parts of RHS have been seen already.
- $\bullet\,$ We use " \cdot " to separate seen and unseen parts of RHS

LR(0) item: A production with " \cdot " somewhere on the RHS. Intuitively,

- \triangleright grammar symbols <u>before</u> the " \cdot " are on stack;
- \triangleright grammar symbols <u>after</u> the " \cdot " represent symbols in the input stream.

$$I_0: \begin{array}{ccc} E' \longrightarrow \cdot E \\ E \longrightarrow \cdot E + T \\ E \longrightarrow \cdot T \\ T \longrightarrow \cdot \mathrm{id} \end{array}$$

How to Construct LR Parsing Table?

- If there is no way to distinguish between two different productions at some point during parsing, then the same state should represent both.
 - Closure operation: If a state s includes LR(0) item $A \longrightarrow \alpha + B\beta$, and there is a production $B \longrightarrow \gamma$, then s should include $B \longrightarrow \gamma \gamma$
 - goto operation: For a set I of items, goto[I, X] is the closure of all items $A \longrightarrow \alpha X \cdot \beta$ for each $A \longrightarrow \alpha \cdot X\beta$ in I

Item set: A set of items that is closed under the *closure* operation, corresponds to a <u>state</u> of the parser.

Constructing Simple LR (SLR) Parsing Tables

- **Step 1:** Construct LR(0) items (Item set construction)
- Step 2: Construct a DFA for recognizing items
- Step 3: Define *action* and *goto* based from the DFA

Item Set Construction

1. Augment the grammar with a rule $S' \longrightarrow S$, and make S' the new start symbol

- 2. Start with initial set I_0 corresponding to the item $S' \longrightarrow \cdot S$
- 3. apply *closure* operation on I_0 .
- 4. For each item set I and grammar symbol X, add goto[I, X] to the set of items
- 5. Repeat previous step until no new item sets are generated.

Item Set Construction

 $I_1: E' \longrightarrow E \cdot$

$$I_2: E \longrightarrow T \cdot \qquad \qquad I_5: F \longrightarrow id \cdot$$

Item Set Construction (Continued)

$$\begin{array}{cccc} \underline{E' \longrightarrow E} & \underline{E \longrightarrow E + T \mid T} & T \longrightarrow T * F \mid F & F \longrightarrow (E) \mid id \\ \hline I_6 : \underline{E \longrightarrow E + \cdot T} & & \\ & I_8 : F \longrightarrow (E \cdot) \end{array}$$

$$I_9: E \longrightarrow E + T \cdot$$

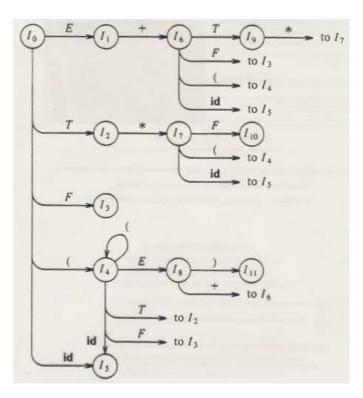
 $I_7: T \longrightarrow T * \cdot F$

$$I_{10}: T \longrightarrow T * F \cdot$$
$$I_{11}: F \longrightarrow (E) \cdot$$

Item Sets for the Example

<i>I</i> ₀ :	$\begin{array}{l} E' \rightarrow \cdot E \\ E \rightarrow \cdot E + T \end{array}$	I ₅ :	$F \rightarrow id$ ·
	$E \rightarrow \cdot T$	16:	$E \rightarrow E + \cdot T$
	$T \rightarrow \cdot T * F$		$T \rightarrow \cdot T * F$
	$T \rightarrow \cdot F$		$T \rightarrow \cdot F$
	$F \rightarrow \cdot (E)$		$F \rightarrow \cdot (E)$
	$F \rightarrow \cdot \mathbf{id}$		$F \rightarrow \cdot \mathbf{id}$
<i>I</i> ₁ :	$E' \to E \cdot$	I7:	$T \rightarrow T * \cdot F$
	$E \rightarrow E \cdot + T$		$F \rightarrow \cdot (E)$
			$F \rightarrow \cdot \mathbf{id}$
I 2:	$E \rightarrow T$		
	$T \to T \cdot \ast F$	I 8:	$F \rightarrow (E \cdot)$
			$E \rightarrow E \cdot + T$
I3:	$T \rightarrow F \cdot$		
		I9:	$E \rightarrow E + T$
I4:	$F \rightarrow (\cdot E)$		$T \to T \cdot \ast F$
	$E \rightarrow \cdot E + T$		
	$E \rightarrow T$	I 10:	$T \rightarrow T * F \cdot$
	$T \rightarrow \cdot T * F$		
	$T \rightarrow \cdot F$	I 11:	$F \rightarrow (E) \cdot$
	$F \rightarrow \cdot (E)$		
	$F \rightarrow \cdot id$		

Constructing DFA to Recognize Viable Prefixes



SLR(1) Parse Table for the Example Grammar

STATE			a	ction				goto	
SIATE	id	+	*	()	\$	E	T	F
0	s5			s4			1	2	3
1		s6				acc			
2		r2	s7		r2	r2			
3		r4	r4		r4	r4	6		
4	s5			s4			8	2	3
5		r6	r6		r6	r6			
6	s5			s4				9	3
7	s5			s4					10
8		s6			s11				
9		r1	s7		rl	rl			
10		r3	r3		r3	r3			
11		r5	r5		r5	r5			

Define *action* and *goto* tables

- Let I_0, I_1, \ldots, I_n be the item sets constructed before
- Define *action* as follows
 - If $A \longrightarrow \alpha \cdot a\beta$ is in I_i and there is a DFA transition to I_j from I_i on symbol a then action[i, a] = "shift j"
 - If $A \longrightarrow \alpha \cdot$ is in I_i then action[i, a] = "reduce $A \longrightarrow \alpha$ " for every $a \in FOLLOW(A)$
 - If $S' \longrightarrow S \cdot$ is in I_i then $action[I_i, \$] = "accept"$
- If any conflicts arise in the above procedure, then the grammar is not SLR(1).
- $\bullet~goto$ transition for LR parsing defined directly from the DFA transitions.
- All undefined entries in the table are filled with "error"

Deficiencies of SLR Parsing

SLR(1) treats all occurrences of a RHS on stack as identical. Only a few of these reductions may lead to a successful parse. Example:

$$\begin{array}{cccc} S & \longrightarrow & A \texttt{a} A \texttt{b} & & A \longrightarrow \epsilon \\ S & \longrightarrow & B \texttt{b} B \texttt{a} & & B \longrightarrow \epsilon \end{array}$$

$$\begin{split} I_0 = \{[S' \to \cdot S], [S \to \cdot A a A b], [S \to \cdot B b B a], [A \to \cdot], [B \to \cdot]\}.\\ \text{Since } \textit{FOLLOW}(A) = \textit{FOLLOW}(B), \text{ we have reduce/reduce conflict in state } 0. \end{split}$$

LR(1) Item Sets

Construct LR(1) items of the form $A \longrightarrow \alpha + \beta$, a, which means:

The production $A \longrightarrow \alpha \beta$ can be applied when the next token on input stream is a.

$$\begin{array}{cccc} S & \longrightarrow & A a A b & A \longrightarrow \epsilon \\ S & \longrightarrow & B b B a & B \longrightarrow \epsilon \end{array}$$

An example LR(1) item set: $I_0 = \{ [S' \to \cdot S, \$], [S \to \cdot A a A b, \$], [S \to \cdot B b B a, \$], [A \to \cdot, a], [B \to \cdot, b] \}.$

LR(1) and LALR(1) Parsing

LR(1) parsing: Parse tables built using LR(1) item sets.

LALR(1) parsing: *Look Ahead* LR(1)

Merge LR(1) item sets; then build parsing table.

Typically, LALR(1) parsing tables are much smaller than LR(1) parsing table.

<u>YACC</u>

 $\underline{\mathbf{Y}}$ et $\underline{\mathbf{A}}$ nother $\underline{\mathbf{C}}$ ompiler $\underline{\mathbf{C}}$ ompiler:

LALR(1) parser generator.

- Grammar rules written in a specification (.y) file, analogous to the regular definitions in a lex specification file.
- Yacc translates the specifications into a parsing function yyparse().

 $\texttt{spec.y} \xrightarrow{\texttt{yacc}} \texttt{spec.tab.c}$

- yyparse() calls yylex() whenever input tokens need to be consumed.
- bison: GNU variant of yacc.

Using Yacc

```
%{
    ... C headers (#include)
%}
... Yacc declarations:
        %token ...
        %union{...}
        precedences
%%
... Grammar rules with actions:
Expr: Expr TOK_PLUS Expr
        [ Expr TOK_MINUS Expr
        ;
%%
... C support functions
```

YACC

 $\underline{\mathbf{Y}}$ et $\underline{\mathbf{A}}$ nother $\underline{\mathbf{C}}$ ompiler $\underline{\mathbf{C}}$ ompiler:

LALR(1) parser generator.

- Grammar rules written in a specification (.y) file, analogous to the regular definitions in a lex specification file.
- Yacc translates the specifications into a parsing function yyparse().

 $spec.y \xrightarrow{yacc} spec.tab.c$

- yyparse() calls yylex() whenever input tokens need to be consumed.
- bison: GNU variant of yacc.

Using Yacc

```
%{
    ... C headers (#include)
%}
... Yacc declarations:
        %token ...
        %union{...}
        precedences
%%
... Grammar rules with actions:
Expr: Expr TOK_PLUS Expr
        [ Expr TOK_MINUS Expr
        ;
%%
... C support functions
```

Conflicts and Resolution

- Operator precedence works well for resolving conflicts that involve operators
 - But use it with care only when they make sense, not for the sole purpose of removing conflict reports
- Shift-reduce conflicts: Bison favors shift
 - Except for the dangling-else problem, this strategy does not ever seem to work, so don't rely on it.

Reduce-Reduce Conflicts

```
sequence: /* empty */
    { printf ("empty sequence\n"); }
    maybeword
    sequence word
    { printf ("added word %s\n", $2); };

maybeword: /* empty */
    { printf ("empty maybeword\n"); }
    word
    { printf ("single word %s\n", $1); };
```

In general, grammar needs to be rewritten to eliminate conflicts.

Sample Bison File: Postfix Calculator

```
/* empty */
input:
        | input line
;
          '\n'
line:
        | exp '\n' { printf ("\t%.10g\n", $1); }
;
          NUM
                         \{ \$\$ = \$1;
                                                }
exp:
                        \{ \$\$ = \$1 + \$2;
        | exp exp '+'
                                                }
        | exp exp '-'
                        \{ \$\$ = \$1 - \$2;
                                                }
        | exp exp '*'
                       \{ \$\$ = \$1 * \$2;
                                                }
        | exp exp '/'
                        \{ \$\$ = \$1 / \$2;
                                                }
         /* Exponentiation */
        | exp exp '^' { $$ = pow ($1, $2); }
         /* Unary minus */
        | exp 'n'
                         \{ \$\$ = -\$1;
                                                };
%%
```

Infix Calculator

```
%{
#define YYSTYPE double
#include <math.h>
#include <stdio.h>
int yylex (void);
void yyerror (char const *);
%}
/* Bison Declarations */
%token NUM
%left '-' '+'
%left '*' '/'
%left NEG /* negation--unary minus */
%right '^' /* exponentiation */
```

Infix Calculator (Continued)

```
%% /* The grammar follows. */
input: /* empty */
        | input line
line:
         '∖n'
        | exp '\n' { printf ("\t%.10g\n", $1); }
;
                              \{ \$\$ = \$1;
                                                  }
exp:
          NUM
                              \{ \$\$ = \$1 + \$3;
        | exp '+' exp
                                                  }
        | exp '-' exp
                              \{ \$\$ = \$1 - \$3;
                                                  }
        | exp '*' exp
                              \{ \$\$ = \$1 * \$3;
                                                  }
        | exp '/' exp
                              \{ \$\$ = \$1 / \$3;
                                                  }
        | '-' exp %prec NEG { $$ = -$2;
                                                  }
        | exp '^' exp
                             { $$ = pow ($1, $3); }
                              { $$ = $2;
         '(' exp ')'
                                                  7
```

```
,
%%
```

```
line: '\n'
| exp '\n' { printf ("\t%.10g\n", $1); }
| error '\n' { yyerrok; };
```

- Pop stack contents to expose a state where **error** token is acceptable
- Shift error token onto the stack
- Discard input until reaching a token that can follow this error token

 Error recovery strategies are never perfect — some times they lead to cascading errors, unless carefully designed.

Left Versus Right Recursion

expseq1: exp | expseq1 ',' exp;

is a left-recursive definition of a sequence of exp's, whereas

```
expseq1: exp | exp ',' expseq1;
```

is a right-recursive definition

- Left-recursive definitions are no-no for LL parsing, but yes-yes for LR parsing
- Right-recursive definition is bad for LR parsing as it needs to shift entire list on stack before any reduction increases stack usage