Parsing

A.k.a. Syntax Analysis

- Recognize sentences in a language.
- Discover the structure of a document/program.
- Construct (implicitly or explicitly) a tree (called as a parse tree) to represent the structure.
- The above tree is used later to guide translation.

Grammars

The syntactic structure of a language is defined using grammars.

- Grammars (like regular expressions) specify a set of strings over an alphabet.
- Efficient recognizers (like DFA) can be constructed to efficiently determine whether a string is in the language.
- Language heirarchy:
- Finite Languages (FL)

Enumeration

- Regular Languages (RL $\supset \mathrm{FL}$)

Regular Expressions

- Context-free Languages (CFL $\supset \mathrm{RL}$)

Context-free Grammars

Regular Languages

$$
\begin{aligned}
& \text { Languages represented by } \\
& \text { regular expressions }
\end{aligned} \equiv \begin{aligned}
& \text { Languages recognized by } \\
& \text { finite automata }
\end{aligned}
$$

Examples:
$\sqrt{ }\{a, b, c\}$
$\sqrt{ }\{\epsilon, a, b, a a, a b, b a, b b, \ldots\}$
$\sqrt{ }\left\{(a b)^{n} \mid n \geq 0\right\}$
$\times\left\{a^{n} b^{n} \mid n \geq 0\right\}$

Grammars

Notation where recursion is explicit.
Examples:

- $\{\epsilon, \mathrm{a}, \mathrm{b}, \mathrm{aa}, \mathrm{ab}, \mathrm{ba}, \mathrm{bb}, \ldots\}$:

$$
\begin{array}{lll}
E & \longrightarrow & \mathrm{a} \\
E & \longrightarrow & \mathrm{~b} \\
S & \longrightarrow & \epsilon \\
S & \longrightarrow & E S
\end{array}
$$

Notational shorthand:

$$
\begin{array}{rll}
E & \longrightarrow \mathrm{a} \mid \mathrm{b} \\
S & \longrightarrow & \epsilon \mid E S
\end{array}
$$

- $\left\{\mathbf{a}^{n} \mathbf{b}^{n} \mid n \geq 0\right\}$:

$$
\begin{array}{rll}
S & \longrightarrow & \epsilon \\
S & \longrightarrow & \mathrm{a} S \mathrm{~b}
\end{array}
$$

- $\{w \mid$ no. of \mathbf{a} 's in $w=$ no. of \mathbf{b} 's in $w\}$

Context-free Grammars

- Terminal Symbols: Tokens
- Nonterminal Symbols: set of strings made up of tokens
- Productions: Rules for constructing the set of strings associated with nonterminal symbols.

Example: Stmt \longrightarrow while Expr do Stmt
Start symbol: nonterminal symbol that represents the set of all strings in the language.

Example

$$
\begin{aligned}
& E \longrightarrow E+E \\
& E \longrightarrow E-E \\
& E \longrightarrow E * E \\
& E \longrightarrow E / E \\
& E \longrightarrow(E) \\
& E \longrightarrow \text { id } \\
& \mathcal{L}(E)=\{\text { id, id }+ \text { id }, \text { id }- \text { id }, \ldots, \text { id }+(\text { id } * \text { id })-\text { id }, \ldots\}
\end{aligned}
$$

Context-free Grammars

Production: rule with nonterminal symbol on left hand side, and a (possibly empty) sequence of terminal or nonterminal symbols on the right hand side.

Notations:

- Terminals: lower case letters, digits, punctuation
- Nonterminals: Upper case letters
- Arbitrary Terminals/Nonterminals: X, Y, Z
- Strings of Terminals: u, v, w
- Strings of Terminals/Nonterminals: α, β, γ
- Start Symbol: S

Context-Free Vs Other Types of Grammars

- Context-free grammar (CFG): Productions of the form $N T \longrightarrow[N T \mid T]^{*}$
- Context-sensitive grammar (CSG): Productions of the form $[t \mid N T] * N T[t \mid N T] * \longrightarrow[t \mid N T] *$
- Unrestricted grammar: Productions of the form $[t \mid N T] * \longrightarrow[t \mid N T] *$

Examples of Non-Context-Free Languages

- Checking that variables are declared before use. If we simplify and abstract the problem, we see that it amounts to recognizing strings of the form wsw
- Checking whether the number of actual and formal parameters match. Abstracts to recognizing strings of the form $a^{n} b^{m} c^{n} d^{m}$
- In both cases, the rules are not enforced in grammar, but deferred to type-checking phase
- Note: Strings of the form $w s w^{R}$ and $a^{n} b^{n} c^{m} d^{m}$ can be described by a CFG

What types of Grammars Describe These Languages?

- Strings of 0's and 1's of the form $x x$
- Strings of 0's and 1's in which 011 doesn't occur
- Strings of 0 's and 1's in which each 0 is immediately followed by a 1
- Strings of 0's and 1's with equal number of 0's and 1's.

Language Generated by Grammars, Equivalence of Grammars

- How to show that a grammar G generates a language \mathcal{M} ? Show that
- $\forall s \in \mathcal{M}$, show that $s \in \mathcal{L}(G)$
- $\forall s \in \mathcal{L}(G)$, show that $s \in \mathcal{M}$
- How to establish that two grammars G_{1} and G_{2} are equivalent?

Show that $\mathcal{L}\left(G_{1}\right)=\mathcal{L}\left(G_{2}\right)$

Grammar Examples

$$
S \longrightarrow 0 S 1 S|1 S 0 S| \epsilon
$$

What is the language generated by this grammar?

Grammar Examples

$$
\begin{aligned}
& S \longrightarrow 0 A|1 B| \epsilon \\
& A \longrightarrow 0 A A \mid 1 S \\
& B \longrightarrow 1 B B \mid 0 S
\end{aligned}
$$

What is the language generated by this grammar?

The Two Sides of Grammars

Specify a set of strings in a language.
Recognize strings in a given language:

- Is a given string x in the language?

Yes, if we can construct a derivation for x

- Example: Is id $+\mathrm{id} \in \mathcal{L}(E)$?

$$
\begin{aligned}
\mathrm{id}+\mathrm{id} & \Longleftarrow E+\mathrm{id} \\
& \Longleftarrow E+E \\
& \Longleftarrow E
\end{aligned}
$$

Derivations

$$
\begin{array}{llll}
\text { Grammar: } & E & \longrightarrow & E+E \\
E & \longrightarrow & \text { id }
\end{array}
$$

E derives id + id:

$$
\begin{array}{rll}
E & \Longrightarrow E+E \\
& \Longrightarrow E+\mathrm{id} \\
& \Longrightarrow & \mathrm{id}+\mathrm{id}
\end{array}
$$

- $\alpha A \beta \Longrightarrow \alpha \gamma \beta$ iff $A \longrightarrow \gamma$ is a production in the grammar.
- $\alpha \xlongequal{*} \beta$ if α derives β in zero or more steps.

Example: $E \xrightarrow{*}$ id +id

- Sentence: A sequence of terminal symbols w such that $S \xlongequal{+} w$ (where S is the start symbol)
- Sentential Form: A sequence of terminal/nonterminal symbols α such that $S \xlongequal{*} \alpha$

Derivations

- Rightmost derivation: Rightmost nonterminal is replaced first:

$$
\begin{aligned}
E & \Longrightarrow E+E \\
& \Longrightarrow E+\mathrm{id} \\
& \Longrightarrow \quad \mathrm{id}+\mathrm{id}
\end{aligned}
$$

Written as $E \xlongequal{*} r m$ id +id

- Leftmost derivation: Leftmost nonterminal is replaced first:

$$
\begin{aligned}
E & \Longrightarrow E+E \\
& \Longrightarrow \\
& \mathrm{id}+E \\
& \Longrightarrow \quad \mathrm{id}+\mathrm{id}
\end{aligned}
$$

Written as $E \stackrel{*}{\Longrightarrow} / m$ id +id

Parse Trees

Graphical Representation of Derivations

$$
\begin{aligned}
& \begin{aligned}
& E \Longrightarrow E+E \\
& \Longrightarrow E+\mathrm{id} \\
& \Longrightarrow \\
& \mathrm{id}+\mathrm{id}
\end{aligned}
\end{aligned}
$$

A Parse Tree succinctly captures the structure of a sentence.

Ambiguity

A Grammar is ambiguous if there are multiple parse trees for the same sentence. Example: id $+\mathrm{id} *$ id

Disambiguition

Express Preference for one parse tree over others.
Example: id +id $*$ id
The usual precedence of $*$ over + means:

Parsing

Construct a parse tree for a given string.

$$
\begin{aligned}
& S \\
& \longrightarrow \\
& S
\end{aligned} \longrightarrow a+(S) S
$$

A Procedure for Parsing

```
Grammar: \(S \longrightarrow a\)
procedure parse_S() \{
    switch (input_token) \{
        case TOKEN_a:
            consume(TOKEN_a);
            return;
        default:
            /* Parse Error */
    \}
\}
```

Predictive Parsing

```
Predictive Parsing (Contd.)
```

	S
Grammar:	$\longrightarrow(S) S$
	S
S	\longrightarrow

```
procedure parse_S() {
    switch (input_token) {
        case TOKEN_OPEN_PAREN: /* Production 1 */
        consume(TOKEN_OPEN_PAREN);
        parse_S();
        consume(TOKEN_CLOSE_PAREN);
        parse_S();
        return;
```

 Predictive Parsing (contd.)
 | | |
| :--- | :--- |
| Grammar: | S |
| | $\longrightarrow(S) S$ |
| | |
| S | \longrightarrow |
| | |

 case TOKEN_a: /* Production 2 */
 consume(TOKEN_a);
 return;
 case TOKEN_CLOSE_PAREN:
 case TOKEN_EOF: /* Production 3 */
 return;
 default:
 /* Parse Error */
 Predictive Parsing: Restrictions

Grammar cannot be left-recursive

```
Example: \(E \longrightarrow E+E \mid a\)
    procedure parse_E() \{
    switch (input_token) \{
            case TOKEN_a: /* Production 1 */
            parse_E();
                    consume(TOKEN_PLUS);
            parse_E();
            return;
        case TOKEN_a: /* Production 2 */
            consume (TOKEN_a);
            return;
        \}
\}
```

Removing Left Recursion

$$
\begin{aligned}
& A \longrightarrow A a \\
& A \longrightarrow b
\end{aligned}
$$

$$
\overline{\mathcal{L}}(A)=\{b, \text { ba, baa, baaa, baaaa }, \ldots\}
$$

$$
A \longrightarrow b A^{\prime}
$$

$$
\begin{aligned}
& A^{\prime} \longrightarrow a A^{\prime} \\
& A^{\prime} \longrightarrow \epsilon
\end{aligned}
$$

Removing Left Recursion

More generally,

$$
\begin{aligned}
& A \longrightarrow A \alpha_{1}|\cdots| A \alpha_{m} \\
& A \longrightarrow \beta_{1}|\cdots| \beta_{n}
\end{aligned}
$$

Can be transformed into

$$
\begin{aligned}
A & \longrightarrow \beta_{1} A^{\prime}|\cdots| \beta_{n} A^{\prime} \\
A^{\prime} & \longrightarrow \alpha_{1} A^{\prime}|\cdots| \alpha_{m} A^{\prime} \mid \epsilon
\end{aligned}
$$

Removing Left Recursion: An Example

$$
\begin{aligned}
E & \longrightarrow \\
E & \text { id } \\
E & \\
& \Downarrow \\
E & \longrightarrow
\end{aligned}
$$

Predictive Parsing: Restrictions

May not be able to choose a unique production

$$
\begin{aligned}
& S \longrightarrow a B d \\
& B \longrightarrow b \\
& B \longrightarrow b c
\end{aligned}
$$

Left-factoring can help:

$$
\begin{aligned}
& S \longrightarrow a B d \\
& B \longrightarrow b C \\
& C \longrightarrow c \mid \epsilon
\end{aligned}
$$

Predictive Parsing: Restrictions

In general, though, we may need a backtracking parser:
Recursive Descent Parsing

$$
\begin{aligned}
& S \longrightarrow a B d \\
& B \longrightarrow b \\
& B \longrightarrow b c
\end{aligned}
$$

Recursive Descent Parsing

Grammar: $B \longrightarrow b$
$B \longrightarrow b c$

```
procedure parse_B() {
```

procedure parse_B() {
switch (input_token) {
switch (input_token) {
case TOKEN_b: /* Production 2 */
case TOKEN_b: /* Production 2 */
consume(TOKEN_b);
consume(TOKEN_b);
return;
return;
case TOKEN_b: /* Production 3 */
case TOKEN_b: /* Production 3 */
consume(TOKEN_b);
consume(TOKEN_b);
consume(TOKEN_c);
consume(TOKEN_c);
return;
return;
}}

```
}}
```


Nonrecursive Parsing

Instead of recursion,
use an explicit stack along with the parsing table.
Data objects:

- Parsing Table: $M(A, a)$, a two-dimensional array, dimensions indexed by nonterminal symbols (A) and terminal symbols (a).
- A Stack of terminal/nonterminal symbols
- Input stream of tokens

The above data structures manipulated using a table-driven parsing program.
Table-driven Parsing

Grammar:	$\begin{aligned} & A \longrightarrow a \\ & B \longrightarrow b \end{aligned}$	$\begin{array}{ll} S & \longrightarrow \\ S & \longrightarrow \end{array}$	$A S B$
Parsing Table:			
Nonterminal	Input Symbol		
	a	b	EOF
S	$S \longrightarrow A S B$	$S \longrightarrow \epsilon$	$S \longrightarrow \epsilon$
A	$A \longrightarrow a$		
B		$B \longrightarrow b$	

Table-driven Parsing Algorithm

```
stack initialized to EOF.
while (stack is not empty) \{
    \(X=\) top(stack);
    if ( \(X\) is a terminal symbol)
        consume ( \(X\) );
    else /* \(X\) is a nonterminal */
        if \(\left(M[X\right.\), input_token \(\left.]=X \longrightarrow Y_{1}, Y_{2}, \ldots, Y_{k}\right)\{\)
            pop(stack);
            for \(i=k\) downto 1 do
                push(stack, \(\left.Y_{i}\right)\);
        \}
        else /* Syntax Error */
\}
```


FIRST and FOLLOW

$$
\text { Grammar: } \quad S \longrightarrow(S) S|a| \epsilon
$$

- $\operatorname{FIRST}(X)=$ First character of any string that can be derived from X

$$
\operatorname{FIRST}(S)=\{(, \mathrm{a}, \epsilon\}
$$

- $\operatorname{FOLLOW}(A)=$ First character that, in any derivation of a string in the language, appears immediately after A.
$\operatorname{FOLLOW}(\mathrm{S})=\{), \mathrm{EOF}\}$

FIRST and FOLLOW
$\operatorname{FIRST}(X): \quad$ First terminal in some α such that $X \xrightarrow{*} \alpha$.
$\operatorname{FOLLOW}(A):$ First terminal in some β such that $S \xrightarrow{*} \alpha A \beta$.

Grammar:	A	\longrightarrow	a	S	\longrightarrow
	B		b	S	\longrightarrow

First $(S)=\{\mathrm{a}, \epsilon\}$	Follow $(S)=\{\mathrm{b}$, EOF $\}$
$\operatorname{First}(A)=\{\mathrm{a}\}$	Follow $(A)=\{\mathrm{a}, \mathrm{b}\}$
$\operatorname{First}(B)=\{\mathrm{b}\}$	Follow $(B)=\{\mathrm{b}$, EOF $\}$

Definition of FIRST

Definition of FOLLOW

Grammar: $\begin{aligned} & A \longrightarrow a \\ & B \longrightarrow b\end{aligned}$	
$\operatorname{FOLLOW}(A)$ is the smallest set such that	
A	Property of FOLLOW (A)
$=S$, the start symbol	EOF $\in \operatorname{FOLLOW}(S)$ Book notation: $\$ \in \operatorname{FOLLOW}(S)$
$B \longrightarrow \alpha A \beta \in G$	$\operatorname{FIRST}(\beta)-\{\epsilon\} \subseteq \operatorname{FOLLOW}(A)$
$\begin{aligned} & B \longrightarrow \alpha A, \text { or } \\ & B \longrightarrow \alpha A \beta, \epsilon \in \operatorname{FIRST}(\beta) \end{aligned}$	$\operatorname{FOLLOW}(B) \subseteq \operatorname{FOLLOW}(A)$

A Procedure to Construct Parsing Tables

procedure table_construct (G) \{
for each $A \longrightarrow \alpha \in G\{$
for each $a \in \operatorname{FIRST}(\alpha)$ such that $a \neq \epsilon$
add $A \longrightarrow \alpha$ to $M[A, a] ;$
if $\epsilon \in \operatorname{FIRST}(\alpha)$
for each $b \in \operatorname{FOLLOW}(A)$
add $A \longrightarrow \alpha$ to $M[A, b]$;
\}\}

$\underline{L L(1) ~ G r a m m a r s}$

Grammars for which the parsing table constructed earlier has no multiple entries.

Parsing with LL(1) Grammars

LL(1) Derivations

Left to Right Scan of input
Leftmost Derivation
(1) look ahead 1 token at each step

Alternative characterization of LL(1) Grammars:
Whenever $A \longrightarrow \alpha \mid \beta \in G$

1. $\operatorname{FIRST}(\alpha) \cap \operatorname{FIRST}(\beta)=\{ \}$, and
2. if $\alpha \stackrel{*}{\Longrightarrow} \epsilon$ then $\operatorname{FIRST}(\beta) \cap \operatorname{FOLLOW}(A)=\{ \}$.

Corollary: No Ambiguous Grammar is LL(1).

Leftmost and Rightmost Derivations

E	\longrightarrow	$E+T$
E	\longrightarrow	T
T	\longrightarrow	id

Derivations for id + id:

Bottom-up Parsing

Given a stream of tokens w, reduce it to the start symbol.

E	\longrightarrow	$E+T$
E	\longrightarrow	T
T	\longrightarrow	id

Parse input stream: id +id :

$$
\begin{gathered}
\mathrm{id}+\mathrm{id} \\
T+\mathrm{id} \\
E+\mathrm{id} \\
E+T \\
E
\end{gathered}
$$

Reduction \equiv Derivation $^{-1}$.

Handles

Informally, a "handle" of a string is a substring that matches the right side of a production, and whose reduction to the nonterminal on the left hand side of the production represents one step along the reverse rightmost derivation.

Handles

A structure that furnishes a means to perform reductions.

E	\longrightarrow	$E+T$
E	\longrightarrow	T
T	\longrightarrow	id

Parse input stream: id + id:

$$
\begin{aligned}
& \frac{\mid \mathrm{id}}{\frac{1}{T}+\mathrm{id}} \\
& \frac{E+i d}{} \\
& \frac{E+i \mathrm{id}}{E} \\
& \hline
\end{aligned}
$$

Handles

Handles are substrings of sentential forms:

1. A substring that matches the right hand side of a production
2. Reduction using that rule can lead to the start symbol

$$
\begin{aligned}
E & \Longrightarrow E+T \\
& \Longrightarrow E+\mathrm{id} \\
& \Longrightarrow \frac{T}{1+\mathrm{id}} \\
& \Longrightarrow \text { id }
\end{aligned}
$$

Handle Pruning: replace handle by corresponding LHS.

Shift-Reduce Parsing

Bottom-up parsing.

- Shift: Construct leftmost handle on top of stack
- Reduce: Identify handle and replace by corresponding RHS
- Accept: Continue until string is reduced to start symbol and input token stream is empty
- Error: Signal parse error if no handle is found.

Implementing Shift-Reduce Parsers

- Stack to hold grammar symbols (corresponding to tokens seen thus far).
- Input stream of yet-to-be-seen tokens.
- Handles appear on top of stack.
- Stack is initially empty (denoted by $\$$).
- Parse is successful if stack contains only the start symbol when the input stream ends.

Shift-Reduce Parsing: An Example

S	$\longrightarrow a A B e$
A	\longrightarrow
B	\longrightarrow

Shift-Reduce Parsing: An Example

	$\begin{array}{ll} E & \longrightarrow \\ E & \longrightarrow \\ T & \longrightarrow \end{array}$	$\begin{aligned} & E+T \\ & T \\ & \text { id } \end{aligned}$
Stack	InPut Stream	Action
\$	id + id \$	shift
\$ id	+ id \$	reduce by $T \longrightarrow$ id
\$ T	+ id \$	reduce by $E \longrightarrow T$
\$ E	+ id \$	shift
\$ $E+$	id \$	shift
\$ $E+\mathrm{id}$	\$	reduce by $T \longrightarrow$ id
\$ $E+T$,	reduce by $E \longrightarrow E+T$
\$ E	\$	ACCEPT

More on Handles

Handle: Let $S \Longrightarrow_{r m}^{*} \alpha A w \Longrightarrow_{r m} \alpha \beta w$.
Then $A \longrightarrow \beta$ is a handle for $\alpha \beta w$ at the position imeediately following α.

Notes:

- For unambiguous grammars, every right-sentential form has a unique handle.
- In shift-reduce parsing, handles always appear on top of stack, i.e., $\alpha \beta$ is in the stack (with β at top), and w is unread input.

Identification of Handles and Relationship to Conflicts

Case 1: With $\alpha \beta$ on stack, don't know if we hanve a handle on top of stack, or we need to shift some more input to get βx which is a handle.

- Shift-reduce conflict
- Example: if-then-else

Case 2: With $\alpha \beta_{1} \beta_{2}$ on stack, don't know if $A \longrightarrow \beta_{2}$ is the handle, or $B \longrightarrow \beta_{1} \beta_{2}$ is the handle

- Reduce-reduce conflict
- Example: $E \longrightarrow E-E|-E| i d$

Viable Prefix

Prefix of a right-sentential form that does not continue beyond the rightmost handle.
With $\alpha \beta w$ example of the previous slides, a viable prefix is something of the form $\alpha \beta_{1}$ where $\beta=\beta_{1} \beta_{2}$

LR Parsing

- Stack contents as $s_{0} X_{1} s_{1} X_{2} \cdots X_{m} s_{m}$
- Its actions are driven by two tables, action and goto

Parser Configuration: $(\underbrace{s_{0} X_{1} s_{1} X_{2} \cdots X_{m} s_{m}}_{\text {stack }}, \underbrace{a_{i} a_{i+1} \cdots a_{n} \$}_{\text {unconsumed input }})$
$\operatorname{action}\left[s_{m}, a_{i}\right]$ can be:

- shift s : new config is $\left(s_{0} X_{1} s_{1} X_{2} \cdots X_{m} s_{m} a_{i} s, a_{i+1} \cdots a_{n} \$\right)$
- reduce $A \longrightarrow \beta$: Let $|\beta|=r$, goto $\left[s_{m-r}, A\right]=s$: new config is $\left(s_{0} X_{1} s_{1} X_{2} \cdots X_{m-r} s_{m-r} A s, a_{i} a_{i+1} \cdots a_{n} \$\right)$
- error: perform recovery actions
- accept: Done parsing

LR Parsing

- action and goto depend only on the state at the top of the stack, not on all of the stack contents
- The s_{i} states compactly summarize the "relevant" stack content that is at the top of the stack.
- You can think of goto as the action taken by the parser on "consuming" (and shifting) nonterminals
- similar to the shift action in the action table, except that the transition is on a nonterminal rather than a terminal
- The action and goto tables define the transitions of an FSA that accepts RHS of productions!

Example of LR Parsing Table and its Use

- See Text book Algorithm 4.7: (follows directly from description of LR parsing actions 2 slides earlier)
- See expression grammar (Example 4.33), its associated parsing table in Fig 4.31, and the use of the table to parse $i d * i d+i d$ (Fig 4.32)

LR Versus LL Parsing

Intuitively:

- LL parser needs to guess the production based on the first symbol (or first few symbols) on the RHS of a production
- LR parser needs to guess the production after seeing all of the RHS

Both types of parsers can use next k input symbols as look-ahead symbols (LL (k) and $\operatorname{LR}(k)$ parsers)

- Implication: $L L(k) \subset L R(k)$

How to Construct LR Parsing Table?

Key idea: Construct an FSA to recognize RHS of productions

- States of FSA remember which parts of RHS have been seen already.
- We use ". " to separate seen and unseen parts of RHS

LR(0) item: A production with ". "somewhere on the RHS. Intuitively,
\triangleright grammar symbols before the ". " are on stack;
\triangleright grammar symbols after the "." represent symbols in the input stream.

	$E^{\prime} \longrightarrow \cdot E$
$I_{0}:$	$E \longrightarrow \cdot E+T$
	$E \longrightarrow \cdot T$
	$T \longrightarrow \cdot$ id

How to Construct LR Parsing Table?

- If there is no way to distinguish between two different productions at some point during parsing, then the same state should represent both.
- Closure operation: If a state s includes $\operatorname{LR}(0)$ item $A \longrightarrow \alpha \cdot B \beta$, and there is a production $B \longrightarrow \gamma$, then s should include $B \longrightarrow \cdot \gamma$
- goto operation: For a set I of items, goto $[I, X]$ is the closure of all items $A \longrightarrow \alpha X \cdot \beta$ for each $A \longrightarrow \alpha \cdot X \beta$ in I

Item set: A set of items that is closed under the closure operation, corresponds to a state of the parser.

Constructing Simple LR (SLR) Parsing Tables

Step 1: Construct LR(0) items (Item set construction)
Step 2: Construct a DFA for recognizing items
Step 3: Define action and goto based from the DFA

Item Set Construction

1. Augment the grammar with a rule $S^{\prime} \longrightarrow S$, and make S^{\prime} the new start symbol
2. Start with initial set I_{0} corresponding to the item $S^{\prime} \longrightarrow \cdot S$
3. apply closure operation on I_{0}.
4. For each item set I and grammar symbol X, add goto $[I, X]$ to the set of items
5. Repeat previous step until no new item sets are generated.

Item Set Construction

$E^{\prime} \longrightarrow E$	$E \longrightarrow E+T \mid T$	$T \longrightarrow T * F \mid F$
$I_{0}: E^{\prime} \longrightarrow \cdot T \longrightarrow F \cdot$	$F(E) \mid i d$	
	$I_{4}: F \longrightarrow(\cdot E)$	

$I_{1}: E^{\prime} \longrightarrow E$.
$I_{2}: E \longrightarrow T$.
$I_{5}: F \longrightarrow i d$.

Item Set Construction (Continued)

$\begin{array}{cc}E^{\prime} \longrightarrow E & E \longrightarrow E+T \mid T \\ I_{6}: E \longrightarrow E+\cdot T & T \longrightarrow T * F \mid F \\ I_{8}: F \longrightarrow(E \cdot) & F \longrightarrow(E) \mid i d\end{array}$

$$
I_{8}: F \longrightarrow(E \cdot)
$$

$I_{9}: E \longrightarrow E+T$.
$I_{7}: T \longrightarrow T * \cdot F$

$$
\begin{aligned}
& I_{10}: T \longrightarrow T * F \\
& I_{11}: F \longrightarrow(E)
\end{aligned}
$$

Item Sets for the Example

	$\begin{aligned} & E^{\prime} \rightarrow \cdot E \\ & E \rightarrow E+T \end{aligned}$	I_{5} :	$F \rightarrow$ id.
	$E \rightarrow \cdot T$	I_{6} :	$E \rightarrow E+\cdot T$
	$T \rightarrow \cdot T * F$		$T \rightarrow \cdot T * F$
	$T \rightarrow F$		$T \rightarrow F$
	$F \rightarrow \cdot(E)$		$F \rightarrow \cdot(E)$
	$F \rightarrow$ id		$F \rightarrow$ id
I_{1} :	$E^{\prime} \rightarrow E$	I_{7} :	$T \rightarrow T * \cdot F$
	$E \rightarrow E+T$		$F \rightarrow \cdot(E)$
			$F \rightarrow$ id
I_{2} :	$E \rightarrow T$.		
	$T \rightarrow T \cdot * F$	I_{8} :	$F \rightarrow\left(E^{\cdot}\right)$
			$E \rightarrow E+T$
I_{3} :	$T \rightarrow F$.		
		I_{9} :	$E \rightarrow E+T$
I_{4} :	$F \rightarrow(\cdot E)$		$T \rightarrow T \cdot * F$
	$E \rightarrow E+T$		
	$E \rightarrow \cdot T$	I_{10} :	$T \rightarrow T * F$.
	$T \rightarrow \cdot T * F$		
	$T \rightarrow \cdot F$	I_{11} :	$F \rightarrow(E)$.
	$F \rightarrow \cdot(E)$		
	$F \rightarrow$ id		

Constructing DFA to Recognize Viable Prefixes

SLR(1) Parse Table for the Example Grammar

State	action						goto		
	id	$+$	*	()	\$	E	T	F
0	s5			s4			1	2	3
1		s6				acc			
2		r2	s7		r2	r2			
3		r4	r4		r4	r4			
4	s5			s4			8	2	3
5		r6	r6		r6	r6			
6	s5			s4				9	3
7	s5			s4					10
8		s6			s11				
9		r1	s7		rl	11			
10		r3	r3		r3	r3			
11		r5	r5		r5	r5			

Define action and goto tables

- Let $I_{0}, I_{1}, \ldots, I_{n}$ be the item sets constructed before
- Define action as follows
- If $A \longrightarrow \alpha \cdot a \beta$ is in I_{i} and there is a DFA transition to I_{j} from I_{i} on symbol a then action $[i, a]=$ "shift j "
- If $A \longrightarrow \alpha \cdot$ is in I_{i} then action $[i, a]=$ "reduce $A \longrightarrow \alpha$ " for every $a \in \operatorname{FOLLOW}(A)$
- If $S^{\prime} \longrightarrow S \cdot$ is in I_{i} then action $\left[I_{i}, \$\right]=$ "accept"
- If any conflicts arise in the above procedure, then the grammar is not $\operatorname{SLR}(1)$.
- goto transition for LR parsing defined directly from the DFA transitions.
- All undefined entries in the table are filled with "error"

Deficiencies of SLR Parsing

SLR(1) treats all occurrences of a RHS on stack as identical.
Only a few of these reductions may lead to a successful parse.
Example:

S	\longrightarrow	$A \mathrm{a} A \mathrm{~b}$	$A \longrightarrow \epsilon$
S	\longrightarrow	$B \mathrm{~b} B \mathrm{a}$	$B \longrightarrow \epsilon$

$I_{0}=\left\{\left[S^{\prime} \rightarrow \cdot S\right],[S \rightarrow \cdot A \mathrm{a} A \mathrm{~b}],[S \rightarrow \cdot B \mathrm{~b} B \mathrm{a}],[A \rightarrow \cdot],[B \rightarrow \cdot]\right\}$.
Since $\operatorname{FOLLOW}(A)=\operatorname{FOLLOW}(B)$, we have reduce/reduce conflict in state 0 .

LR(1) Item Sets

Construct $\underline{\operatorname{LR}(1)}$ items of the form $A \longrightarrow \alpha \cdot \beta$, a, which means:
The production $A \longrightarrow \alpha \beta$ can be applied when the next token on input stream is a.

S	\longrightarrow	$A \mathrm{a} A \mathrm{~b}$	$A \longrightarrow \epsilon$
S	\longrightarrow	$B \mathrm{~b} B \mathrm{a}$	$B \longrightarrow \epsilon$

An example $\mathrm{LR}(1)$ item set:
$I_{0}=\left\{\left[S^{\prime} \rightarrow \cdot S, \$\right],[S \rightarrow \cdot A \mathrm{a} A \mathrm{~b}, \$],[S \rightarrow \cdot B \mathrm{~b} B \mathrm{a}, \$]\right.$, $[A \rightarrow \cdot, \mathrm{a}],[B \rightarrow \cdot, \mathrm{~b}]\}$.

$\underline{L R(1) \text { and LALR(1) Parsing }}$

LR(1) parsing: Parse tables built using LR(1) item sets.
LALR(1) parsing: Look Ahead LR(1)
Merge LR(1) item sets; then build parsing table.
Typically, LALR(1) parsing tables are much smaller than LR(1) parsing table.

YACC

$\underline{\text { Yet }}$ Another Compiler Compiler:
LALR(1) parser generator.

- Grammar rules written in a specification (.y) file, analogous to the regular definitions in a lex specification file.
- Yacc translates the specifications into a parsing function yyparse().

```
spec.y }\xrightarrow{}{\mathrm{ yacc }}\mathrm{ spec.tab.c
```

- yyparse() calls yylex() whenever input tokens need to be consumed.
- bison: GNU variant of yacc.

```
                    Using Yacc
%{
    ... C headers (#include)
%}
    ... Yacc declarations:
        %token ...
        %union{...}
        precedences
    %%
    ... Grammar rules with actions:
    Expr: Expr TOK_PLUS Expr
        Expr TOK_MINUS Expr
        ;
        %%
        ... C support functions
```


YACC

Yet Another Compiler Compiler:
LALR(1) parser generator.

- Grammar rules written in a specification (.y) file, analogous to the regular definitions in a lex specification file.
- Yacc translates the specifications into a parsing function yyparse().

$$
\text { spec.y } \xrightarrow{\text { yacc }} \text { spec.tab.c }
$$

- yyparse() calls yylex() whenever input tokens need to be consumed.
- bison: GNU variant of yacc.

```
            Using Yacc
%{
    ... C headers (#include)
%}
... Yacc declarations:
    %token ...
        %union{...}
        precedences
%%
... Grammar rules with actions:
Expr: Expr TOK_PLUS Expr
    Expr TOK_MINUS Expr
    ;
%%
... C support functions
Conflicts and Resolution
```

- Operator precedence works well for resolving conflicts that involve operators
- But use it with care - only when they make sense, not for the sole purpose of removing conflict reports
- Shift-reduce conflicts: Bison favors shift
- Except for the dangling-else problem, this strategy does not ever seem to work, so don't rely on it.

Reduce-Reduce Conflicts

```
sequence: /* empty */
    \{ printf ("empty sequence\n"); \}
    | maybeword
    | sequence word
    \{ printf ("added word \%s\n", \$2); \};
```

maybeword: /* empty */
\{ printf ("empty maybeword\n"); \}
| word
\{ printf ("single word \%s\n", \$1); \};

In general, grammar needs to be rewritten to eliminate conflicts.
Sample Bison File: Postfix Calculator

```
input: /* empty */
    | input line
;
line: '\n'
    | exp '\n' { printf ("\t%. 10g\n", $1); }
;
exp: NUM { $$ = $1; }
    | \operatorname{exp exp '+' { $$ = $1 + $2; }}
    | \operatorname{exp exp ', , { $$ = $1 - $2; }}
    | \operatorname{exp exp '*' {$$ = $1*$2; }}
    | \operatorname{exp exp '/, { $$ = $1 / $2; }}
    /* Exponentiation */
    | exp exp ,~, { $$ = pow ($1, $2); }
    /* Unary minus */
    | exp 'n' { $$ = -$1; };
%%
```

Infix Calculator

\% \{

\#define YYSTYPE double
\#include <math.h>
\#include <stdio.h>
int yylex (void);
void yyerror (char const *) ;
\%\}
/* Bison Declarations */
\%token NUM
$\%$ left ' , ' ',
$\%$ left '*' '/'
\%left NEG /* negation--unary minus */
\%right '~, /* exponentiation */
Infix Calculator (Continued)

```
%% /* The grammar follows. */
input: /* empty */
    | input line
;
line: '\n'
    | exp '\n' { printf ("\t%.10g\n", $1); }
;
exp: NUM { $$ = $1; }
    | exp '+' exp { $$ = $1 + $3; }
    | exp '-' exp { $$ = $1 - $3; }
    | exp '*' exp { $$ = $1 * $3; }
    | exp '/' exp { $$ = $1 / $3; }
    | '-' exp %prec NEG { $$ = -$2; }
    | exp ,^' exp { $$ = pow ($1, $3); }
    | '(' exp ')' { $$ = $2; }
;
%%
```


Error Recovery

line: '\n'
| exp '\n' \{ printf ("\t\%.10g\n", \$1); \}
| error '\n' \{ yyerrok; \};

- Pop stack contents to expose a state where error token is acceptable
- Shift error token onto the stack
- Discard input until reaching a token that can follow this error token

Error recovery strategies are never perfect - some times they lead to cascading errors, unless carefully designed.

Left Versus Right Recursion

expseq1: $\exp \mid \operatorname{expseq} 1$ ',' exp;
is a left-recursive definition of a sequence of exp's, whereas
expseq1: $\exp \mid \exp$ ',' expseq1;
is a right-recursive definition

- Left-recursive definitions are no-no for LL parsing, but yes-yes for LR parsing
- Right-recursive definition is bad for LR parsing as it needs to shift entire list on stack before any reduction - increases stack usage

