Phases of Syntax Analysis

1. Identify the words: Lexical Analysis.

Converts a stream of characters (input program) into a stream of tokens. Also called Scanning or Tokenizing.

2. Identify the sentences: Parsing. Derive the structure of sentences: construct parse trees from a stream of tokens.

Lexical Analysis

Convert a stream of characters into a stream of tokens.

- Simplicity: Conventions about "words" are often different from conventions about "sentences".
- Efficiency: Word identification problem has a much more efficient solution than sentence identification problem.
- Portability: Character set, special characters, device features.

Terminology

- Token: Name given to a family of words. e.g., integer_constant
- Lexeme: Actual sequence of characters representing a word. e.g., 32894
- Pattern: Notation used to identify the set of lexemes represented by a token. e.g., $[0-9]+$

Terminology

A few more examples:

Patterns

How do we compactly represent the set of all lexemes corresponding to a token? For instance:

The token integer constant represents the set of all integers: that is, all sequences of digits (0–9), preceded by an optional sign $(+ or -).$

Obviously, we cannot simply enumerate all lexemes.

Use Regular Expressions.

Regular Expressions

Notation to represent (potentially) infinite sets of strings over alphabet Σ .

- $a:$ stands for the set ${a}$ that contains a single string a .
- $a \mid b$: stands for the set $\{a, b\}$ that contains two strings a and b.
	- ⊲ Analogous to Union.
- *ab*: stands for the set ${ab}$ that contains a single string ab .
	- ⊲ Analogous to Product.
	- \triangleright $(a|b)(a|b)$: stands for the set {aa, ab, ba, bb}.
- a^* : stands for the set { ϵ , a, aa, aaa, ...} that contains all strings of zero or more a's.
	- ⊲ Analogous to closure of the product operation.

Regular Expressions

Examples of Regular Expressions over {a, b}:

- $(a|b)^*$: Set of strings with zero or more a's and zero or more b's: $\{\epsilon, a, b, aa, ab, ba, bb, aaa, aab, \ldots\}$
- (a^*b^*) : Set of strings with zero or more a's and zero or more b's such that all a's occur before any b: $\{\epsilon, a, b, aa, ab, bb, aaa, aab, abb, \ldots\}$
- $(a^*b^*)^*$: Set of strings with zero or more a's and zero or more b's: $\{\epsilon, a, b, aa, ab, ba, bb, aaa, aab, \ldots\}$

 \bm{L}

Language of Regular Expressions

Let R be the set of all regular expressions over Σ . Then,

- Empty String: $\epsilon \in R$
- Unit Strings: $\alpha \in \Sigma \Rightarrow \alpha \in R$
- Concatenation: $r_1, r_2 \in R \Rightarrow r_1 r_2 \in R$
- Alternative: $r_1, r_2 \in R \Rightarrow (r_1 | r_2) \in R$
- Kleene Closure: $r \in R \Rightarrow r^* \in R$

Regular Expressions

Example: $(a | b)^*$

$$
L_0 = \{ \epsilon \}
$$

\n
$$
L_1 = L_0 \cdot \{ \mathbf{a}, \mathbf{b} \}
$$

\n
$$
= \{ \epsilon \} \cdot \{ \mathbf{a}, \mathbf{b} \}
$$

\n
$$
L_2 = L_1 \cdot \{ \mathbf{a}, \mathbf{b} \}
$$

\n
$$
= \{ \mathbf{a}, \mathbf{b} \} \cdot \{ \mathbf{a}, \mathbf{b} \}
$$

\n
$$
= \{ \mathbf{a}, \mathbf{a} \mathbf{b}, \mathbf{b} \mathbf{a}, \mathbf{b} \}
$$

\n
$$
= L_2 \cdot \{ \mathbf{a}, \mathbf{b} \}
$$

\n
$$
= \bigcup_{i=0}^{\infty} L_i = \{ \epsilon, \mathbf{a}, \mathbf{b}, \mathbf{a} \mathbf{a}, \mathbf{a} \mathbf{b}, \mathbf{b} \mathbf{a}, \mathbf{b} \mathbf{b}, \ldots \}
$$

Semantics of Regular Expressions

Semantic Function \mathcal{L} : Maps regular expressions to sets of strings.

$$
\mathcal{L}(\epsilon) = \{\epsilon\} \n\mathcal{L}(\alpha) = \{\alpha\} \quad (\alpha \in \Sigma) \n\mathcal{L}(r_1 | r_2) = \mathcal{L}(r_1) \cup \mathcal{L}(r_2) \n\mathcal{L}(r_1 r_2) = \mathcal{L}(r_1) \cdot \mathcal{L}(r_2) \n\mathcal{L}(r^*) = \{\epsilon\} \cup (\mathcal{L}(r) \cdot \mathcal{L}(r^*))
$$

Computing the Semantics

$$
\mathcal{L}(a) = \{a\}
$$

\n
$$
\mathcal{L}(a | b) = \mathcal{L}(a) \cup \mathcal{L}(b)
$$

\n
$$
= \{a\} \cup \{b\}
$$

\n
$$
= \{a, b\}
$$

\n
$$
\mathcal{L}(ab) = \mathcal{L}(a) \cdot \mathcal{L}(b)
$$

\n
$$
= \{a\} \cdot \{b\}
$$

\n
$$
= \{ab\}
$$

\n
$$
\mathcal{L}((a | b)(a | b)) = \mathcal{L}(a | b) \cdot \mathcal{L}(a | b)
$$

\n
$$
= \{a, b\} \cdot \{a, b\}
$$

\n
$$
= \{aa, ab, ba, bb\}
$$

Computing the Semantics of Closure

Example:
$$
\mathcal{L}((a \mid b)^*)
$$

\n
$$
= \{\epsilon\} \cup (\mathcal{L}(a \mid b) \cdot \mathcal{L}((a \mid b)^*))
$$
\n
$$
L_0 = \{\epsilon\} \qquad \text{Base case}
$$
\n
$$
L_1 = \{\epsilon\} \cup (\{\mathbf{a}, \mathbf{b}\} \cdot L_0)
$$
\n
$$
= \{\epsilon\} \cup (\{\mathbf{a}, \mathbf{b}\} \cdot \{\epsilon\})
$$
\n
$$
= \{\epsilon, \mathbf{a}, \mathbf{b}\}
$$
\n
$$
L_2 = \{\epsilon\} \cup (\{\mathbf{a}, \mathbf{b}\} \cdot L_1)
$$
\n
$$
= \{\epsilon\} \cup (\{\mathbf{a}, \mathbf{b}\} \cdot L_1)
$$
\n
$$
= \{\epsilon, \mathbf{a}, \mathbf{b}\}
$$
\n
$$
= \{\epsilon, \mathbf{a}, \mathbf{b}, \mathbf{aa}, \mathbf{a}\mathbf{b}, \mathbf{ba}, \mathbf{bb}\}
$$
\n
$$
\vdots
$$

$$
\mathcal{L}((a \mid b)^*) = L_\infty = \{\epsilon, \texttt{a}, \texttt{b}, \texttt{aa}, \texttt{ab}, \texttt{ba}, \texttt{bb}, \ldots\}
$$

Another Example

 $\mathcal{L}((a^*b^*)^*)$:

$$
\mathcal{L}(a^*) = \{ \epsilon, \text{a}, \text{aa}, \ldots \}
$$
\n
$$
\mathcal{L}(b^*) = \{ \epsilon, \text{b}, \text{bb}, \ldots \}
$$
\n
$$
\mathcal{L}(a^*b^*) = \{ \epsilon, \text{a}, \text{b}, \text{aa}, \text{ab}, \text{bb}, \ldots \}
$$
\n
$$
a^* = \{ \epsilon, \text{a}, \text{b}, \text{aa}, \text{ab}, \text{bb}, \ldots \}
$$
\n
$$
\mathcal{L}((a^*b^*)^*) = \{ \epsilon \}
$$
\n
$$
\cup \{ \epsilon, \text{a}, \text{b}, \text{aa}, \text{a}, \text{b}, \text{bb}, \ldots \}
$$
\n
$$
\cup \{ \epsilon, \text{a}, \text{b}, \text{aa}, \text{a}, \text{b}, \text{bb}, \ldots \}
$$
\n
$$
\cup \{ \epsilon, \text{a}, \text{b}, \text{aa}, \text{a}, \text{b}, \text{b}, \ldots \}
$$
\n
$$
\vdots
$$
\n
$$
= \{ \epsilon, \text{a}, \text{b}, \text{aa}, \text{a}, \text{b}, \text{ba}, \text{bb}, \ldots \}
$$

Regular Definitions

Assign "names" to regular expressions. For example,

> digit \longrightarrow 0 | 1 | \cdots | 9 natural → digit digit^{*}

SHORTHANDS:

- \bullet a^+ : Set of strings with <u>o</u>ne or more occurrences of **a**.
- \bullet $a^?$: Set of strings with zero or one occurrences of a.

Example:

 $integer \longrightarrow (+|-)^2$ digit $^+$

Regular Definitions: Examples

Regular Definitions and Lexical Analysis

Regular Expressions and Definitions specify sets of strings over an input alphabet.

- They can hence be used to specify the set of lexemes associated with a token.
	- \triangleright Used as the *pattern* language

How do we decide whether an input string belongs to the set of strings specified by a regular expression?

Using Regular Definitions for Lexical Analysis

Q: Is ababbaabbb in $\mathcal{L}(((a^*b^*)^*))$? A: Hm. Well. Let's see.

$$
\mathcal{L}((a^*b^*)^*) = \{ \epsilon \}
$$

\n
$$
\cup \{ \epsilon, a, b, aa, ab, bb,
$$

\naaa, aab, abb, bbb,...} \}
\n
$$
\cup \{ \epsilon, a, b, aa, ab, ba, bb,
$$

\naaa, aab, aba, abb, baa, bab, bba, bbb,...}
\n
$$
\vdots
$$

\n
$$
= ???
$$

Lexical Analysis

- Regular Expressions and Definitions are used to specify the set of strings (lexemes) corresponding to a token.
- An automaton (DFA/NFA) is built from the above specifications.
- Each final state is associated with an *action*: emit the corresponding token.

Specifying Lexical Analysis

Consider a recognizer for integers (sequence of digits) and floats (sequence of digits separated by a decimal point).

FLOAT_CONSTANT

Lex

Tool for building lexical analyzers. Input: lexical specifications (.l file) Output: C function (yylex) that returns a token on each invocation.

Tokens are simply integers (#define's).

Lex Specifications

```
%{
    C header statements for inclusion
%}
  Regular Definitions e.g.:
    digit [0-9]
\frac{9}{6}Token Specifications e.g.:
    {digit}+ { return(INTEGER_CONSTANT); }
\frac{9}{6}Support functions in C
```
Regular Expressions in Lex

Adds "syntactic sugar" to regular expressions:

- Range: $[0-7]$: Integers from 0 through 7 (inclusive) [a-nx-zA-Q]: Letters a thru n, x thru z and A thru Q.
- Exception: [^/]: Any character other than /.
- Definition: {digit}: Use the previously specified regular definition digit.
- Special characters: Connectives of regular expression, convenience features. e.g.: $| * ^ {n}$

Special Characters in Lex

For literal matching, enclose special characters in double quotes (") $e.g.:$ "*" Or use \setminus to escape. *e.g.*: \setminus "

Examples

A Complete Example

```
%{
#include <stdio.h>
#include "tokens.h"
%}
digit [0-9]
hexdigit [0-9a-f]
\frac{9}{6}%
"+" { return(PLUS); }<br>"-" { return(MINUS):
                        \{ return(MINUS); \}{digit}+ { return(INTEGER_CONSTANT); }
{digit}+"."{digit}+ { return(FLOAT_CONSTANT); }
                        . { return(SYNTAX_ERROR); }
\frac{9}{6}
```
Actions

Actions are attached to final states.

- Distinguish the different final states.
- Used to return *tokens*.
- Can be used to set *attribute values*.
- Fragment of C code (blocks enclosed by '{' and '}').

Attributes

Additional information about a token's lexeme.

- Stored in variable yylval
- Type of attributes (usually a union) specified by YYSTYPE
- Additional variables:
	- yytext: Lexeme (Actual text string)
	- yyleng: length of string in yytext
	- ⊲ yylineno: Current line number (number of '\n' seen thus far)
		- ∗ enabled by %option yylineno

Priority of matching

What if an input string matches more than one pattern?

- A pattern that matches the longest string is chosen. Example: if1 is matched with an identifier, not the keyword if.
- Of patterns that match strings of same length, the first (from the top of file) is chosen. Example: while is matched as an identifier, not the keyword while.

Constructing Scanners using (f)lex

• Scanner specifications: specifications.1

(f)lex specifications.1 -→ lex.yy.c

• Generated scanner in lex.yy.c

 (g) cc $lex.yy.c \longrightarrow \text{ }execute$

– yywrap(): hook for signalling end of file.

– Use -lfl (flex) or -ll (lex) flags at link time to include default function yywrap() that always returns 1.

Recognizers

Construct automata that recognize strings belonging to a language.

- Finite State Automata ⇒ Regular Languages
	- ⊲ Finite State → cannot maintain arbitrary counts.
- Push Down Automata ⇒ Context-free Languages
	- ⊲ Stack is used to maintain counter, but only one counter can go arbitrarily high.

Recognizing Finite Sets of Strings

Identifying words from a small, finite, fixed vocabulary is straightforward. For instance, consider a stack machine with push, pop, and add operations with two constants: 0 and 1. We can use the *automaton*:

Finite State Automata

Represented by a labeled directed graph.

- A finite set of *states* (vertices).
- *Transitions* between states (edges).
- Labels on transitions are drawn from $\Sigma \cup {\epsilon}$.
- One distinguished *start* state.
- One or more distinguished *final* states.

Finite State Automata: An Example

Consider the Regular Expression $(a | b)^* a(a | b)$.

 $\mathcal{L}((a \mid b)^*a(a \mid b)) = \{aa, ab, aaa, aab, baa, bab,$

aaaa, aaab, abaa, abab, baaa, . . .}.

The following automaton determines whether an input string belongs to $\mathcal{L}((a | b)^* a (a | b))$:

Using States in Lex

- Some regular languages are more easily expressed as FSA
	- Set of all strings representing binary numbers divisible by 3
- Lex allows you to use FSA concepts using start states

```
%x MOD1 MOD2
"0" { }
"1" {BEGIN MOD1}
<MOD1> "0" {BEGIN MOD2}
<MOD1> "1" {BEGIN 0}
```
Other Special Directives

- ECHO causes Lex to echo current lexeme
- REJECT causes abandonment of current match in favor of the next.
- Example

```
a|
ab|
abc|
abcd {ECHO; REJECT;}
.|\n {/* eat up the character */}
```
Deterministic Vs Nondeterministic FSA

 $(a | b)^* a(a | b)$:

Acceptance Criterion

A finite state automaton (NFA or DFA) $accepts$ an input string x

- . . . if beginning from the start state
- ... we can trace some path through the automaton
- \ldots such that the sequence of edge labels spells x
- $\dots~$ and end in a final state.

Recognition with an NFA

Is abab $\in \mathcal{L}((a \mid b)^*a(a \mid b))$?

Accept

Recognition with an NFA

Is $\underline{\text{abab}} \in \mathcal{L}((a \mid b)^* a(a \mid b))$?

Path 3:

Accept

Recognition with an NFA

Is <u>abab</u> \in $\mathcal{L}((a | b)^*a(a | b))$?

Accept

Is $\underline{\text{abab}} \in \mathcal{L}((a \mid b)^* a(a \mid b))$?

Accept

Recognition with an NFA

Is abab $\in \mathcal{L}((a \mid b)^*a(a \mid b))$?

Accept

Recognition with an NFA

Is $\underline{\text{abab}} \in \mathcal{L}((a \mid b)^* a(a \mid b))$?

Accept

Recognition with a DFA

Is abab $\in \mathcal{L}((a \mid b)^*a(a \mid b))$?

NFA vs. DFA

For every NFA, there is a DFA that accepts the same set of strings.

- NFA may have transitions labeled by ϵ . (Spontaneous transitions)
- All transition labels in a DFA belong to Σ .
- For some string x , there may be *many* accepting paths in an NFA.
- For all strings x , there is *one unique* accepting path in a DFA.
- Usually, an input string can be recognized faster with a DFA.
- NFAs are typically *smaller* than the corresponding DFAs.

Regular Expressions to NFA

Thompson's Construction: For every regular expression r , derive an NFA $N(r)$ with unique start and final states.

Example

Recognition with an NFA

Is $\underline{\text{abab}} \in \mathcal{L}((a \mid b)^* a (a \mid b))$?

All Paths $\{1\}$ $\{1, 2\}$ $\{1, 3\}$ $\{1, 2\}$ $\{1, 3\}$ Accept

Recognition with an NFA (contd.)

Is <u>aaab</u> \in $\mathcal{L}((a \mid b)^*a(a \mid b))$?

Recognition with an NFA (contd.)

Is <u>aabb</u> \in $\mathcal{L}((a \mid b)^*a(a \mid b))$?

Converting NFA to DFA

Subset construction Given a set S of NFA states,

• compute $S_{\epsilon} = \epsilon$ -closure(S): S_{ϵ} is the set of all NFA states reachable by zero or more ϵ -transitions from S.

- compute $S_{\alpha} = \text{goto}(S, \alpha)$:
	- S' is the set of all NFA states reachable from S by taking a transition labeled α .
	- $-S_{\alpha} = \epsilon$ -closure(S').

Converting NFA to DFA (contd).

Each state in DFA corresponds to a set of states in NFA. Start state of DFA = ϵ -closure(start state of NFA). From a state s in DFA that corresponds to a set of states S in NFA:

add a transition labeled α to state s' that corresponds to a non-empty S' in NFA,

such that $S' = \text{goto}(S, \alpha)$.

 s is a state in DFA such that the corresponding set of states S in NFA contains a final state of NFA,

 \Leftarrow s is a final state of DFA

 $NFA \rightarrow DFA$: An Example

NFA → DFA: An Example (contd.)

 $R =$ Size of Regular Expression $N =$ Length of Input String

Implementing a Scanner

```
transition : state \times \Sigma \rightarrow state
```

```
algorithm scanner() {
   current\_state = start state;while (1) {
       c = \text{getc}(; /* on end of file, ... */
       if defined(transition(current\_state, c))current\_state = transition(current\_state, c);else
           return s;
   }
}
```
Implementing a Scanner (contd.)

Implementing the transition function:

- Simplest: 2-D array. Space inefficient.
- Traditionally compressed using row/colum equivalence. (default on (f)lex) Good space-time tradeoff.
- Further table compression using various techniques:

– Example: RDM (Row Displacement Method): Store rows in overlapping manner using 2 1-D arrays.

Smaller tables, but longer access times.

Lexical Analysis: A Summary

Convert a stream of characters into a stream of tokens.

- Make rest of compiler independent of character set
- $\bullet\,$ Strip off comments
- Recognize line numbers
- Ignore white space characters
- Process macros (definitions and uses)
- Interface with symbol (name) table.