Phases of Syntax Analysis

1. Identify the words: Lexical Analysis.

Converts a stream of characters (input program) into a stream of tokens.

Also called *Scanning* or *Tokenizing*.

2. Identify the sentences: **Parsing**.

Derive the structure of sentences: construct parse trees from a stream of tokens.

Lexical Analysis

Convert a stream of characters into a stream of tokens.

- Simplicity: Conventions about "words" are often different from conventions about "sentences".
- Efficiency: Word identification problem has a much more efficient solution than sentence identification problem.
- Portability: Character set, special characters, device features.

Terminology

• Token: Name given to a family of words.

e.g., integer_constant

• Lexeme: Actual sequence of characters representing a word.

e.g., 32894

• Pattern: Notation used to identify the set of lexemes represented by a token.

e.g., [0-9]+

Terminology

A few more examples:

Token	Sample Lexemes	Pattern
while	while	while
integer_constant	32894, -1093, 0	$(- \epsilon)[0-9]+$
identifier	buffer_size	$\left[a-zA-Z\right] +$

Patterns

How do we *compactly* represent the set of all lexemes corresponding to a token? For instance:

The token integer_constant represents the set of all integers: that is, all sequences of digits (0-9), preceded by an optional sign (+ or -).

Obviously, we cannot simply enumerate all lexemes.

Use Regular Expressions.

Regular Expressions

Notation to represent (potentially) infinite sets of strings over alphabet Σ .

- a: stands for the set {a} that contains a single string a.
- $a \mid b$: stands for the set $\{a, b\}$ that contains two strings a and b.
 - \triangleright Analogous to *Union*.
- ab: stands for the set {ab} that contains a single string ab.
 - ightharpoonup Analogous to Product.
 - $\triangleright (a|b)(a|b)$: stands for the set {aa, ab, ba, bb}.
- a^* : stands for the set $\{\epsilon, a, aa, aaa, \ldots\}$ that contains all strings of zero or more a's.
 - ▶ Analogous to *closure* of the product operation.

Regular Expressions

Examples of Regular Expressions over {a,b}:

- $(a|b)^*$: Set of strings with zero or more a's and zero or more b's: $\{\epsilon, a, b, aa, ab, ba, bb, aaa, aab, ...\}$
- (a^*b^*) : Set of strings with zero or more a's and zero or more b's such that all a's occur before any b: $\{\epsilon, a, b, aa, ab, bb, aaa, aab, abb, \ldots\}$
- $(a^*b^*)^*$: Set of strings with zero or more a's and zero or more b's: $\{\epsilon, a, b, aa, ab, ba, bb, aaa, aab, ...\}$

Language of Regular Expressions

Let R be the set of all regular expressions over Σ . Then,

- Empty String: $\epsilon \in R$
- Unit Strings: $\alpha \in \Sigma \Rightarrow \alpha \in R$
- Concatenation: $r_1, r_2 \in R \Rightarrow r_1 r_2 \in R$
- Alternative: $r_1, r_2 \in R \Rightarrow (r_1 \mid r_2) \in R$
- Kleene Closure: $r \in R \Rightarrow r^* \in R$

Regular Expressions

Example: $(a \mid b)^*$

$$L_0 = \{\epsilon\}$$
 $L_1 = L_0 \cdot \{a, b\}$
 $= \{\epsilon\} \cdot \{a, b\}$
 $= \{a, b\}$
 $L_2 = L_1 \cdot \{a, b\}$
 $= \{a, b\} \cdot \{a, b\}$
 $= \{aa, ab, ba, bb\}$
 $L_3 = L_2 \cdot \{a, b\}$
 \vdots
 $L = \bigcup_{i=0}^{\infty} L_i = \{\epsilon, a, b, aa, ab, ba, bb, \ldots\}$

Semantics of Regular Expressions

Semantic Function \mathcal{L} : Maps regular expressions to sets of strings.

$$\mathcal{L}(\epsilon) = \{\epsilon\}$$

$$\mathcal{L}(\alpha) = \{\alpha\} \quad (\alpha \in \Sigma)$$

$$\mathcal{L}(r_1 \mid r_2) = \mathcal{L}(r_1) \cup \mathcal{L}(r_2)$$

$$\mathcal{L}(r_1 \mid r_2) = \mathcal{L}(r_1) \cdot \mathcal{L}(r_2)$$

$$\mathcal{L}(r^*) = \{\epsilon\} \cup (\mathcal{L}(r) \cdot \mathcal{L}(r^*))$$

Computing the Semantics

$$\begin{array}{rcl} \mathcal{L}(a) & = & \{ \mathtt{a} \} \\ \mathcal{L}(a \mid b) & = & \mathcal{L}(a) \cup \mathcal{L}(b) \\ & = & \{ \mathtt{a} \} \cup \{ \mathtt{b} \} \\ & = & \{ \mathtt{a}, \mathtt{b} \} \\ \mathcal{L}(ab) & = & \mathcal{L}(a) \cdot \mathcal{L}(b) \\ & = & \{ \mathtt{a} \} \cdot \{ \mathtt{b} \} \\ & = & \{ \mathtt{ab} \} \\ \mathcal{L}((a \mid b)(a \mid b)) & = & \mathcal{L}(a \mid b) \cdot \mathcal{L}(a \mid b) \\ & = & \{ \mathtt{a}, \mathtt{b} \} \cdot \{ \mathtt{a}, \mathtt{b} \} \\ & = & \{ \mathtt{aa}, \mathtt{ab}, \mathtt{ba}, \mathtt{bb} \} \end{array}$$

Computing the Semantics of Closure

```
Example: \mathcal{L}((a \mid b)^*)
= \{\epsilon\} \cup (\mathcal{L}(a \mid b) \cdot \mathcal{L}((a \mid b)^*))
L_0 = \{\epsilon\} \qquad Base \ case
L_1 = \{\epsilon\} \cup (\{a, b\} \cdot L_0)
= \{\epsilon\} \cup (\{a, b\} \cdot \{\epsilon\})
= \{\epsilon, a, b\}
L_2 = \{\epsilon\} \cup (\{a, b\} \cdot L_1)
= \{\epsilon\} \cup (\{a, b\} \cdot \{\epsilon, a, b\})
= \{\epsilon, a, b, aa, ab, ba, bb\}
\vdots
\mathcal{L}((a \mid b)^*) = L_{\infty} = \{\epsilon, a, b, aa, ab, ba, bb, \ldots\}
```

 $\mathcal{L}((a^*b^*)^*)$:

Another Example

```
 \begin{array}{rcl} \mathcal{L}(a^*) & = & \{\epsilon, \mathbf{a}, \mathbf{aa}, \ldots\} \\ & \mathcal{L}(b^*) & = & \{\epsilon, \mathbf{b}, \mathbf{bb}, \ldots\} \\ & \mathcal{L}(a^*b^*) & = & \{\epsilon, \mathbf{a}, \mathbf{b}, \mathbf{aa}, \mathbf{ab}, \mathbf{bb}, \\ & & \mathbf{aaa}, \mathbf{aab}, \mathbf{abb}, \mathbf{bbb}, \ldots\} \\ & \mathcal{L}((a^*b^*)^*) & = & \{\epsilon\} \\ & & \cup \{\epsilon, \mathbf{a}, \mathbf{b}, \mathbf{aa}, \mathbf{ab}, \mathbf{bb}, \\ & & \mathbf{aaa}, \mathbf{aab}, \mathbf{abb}, \mathbf{bbb}, \ldots\} \\ & & \cup \{\epsilon, \mathbf{a}, \mathbf{b}, \mathbf{aa}, \mathbf{ab}, \mathbf{ba}, \mathbf{bb}, \\ & & \mathbf{aaa}, \mathbf{aab}, \mathbf{abb}, \mathbf{baa}, \mathbf{bab}, \mathbf{bba}, \mathbf{bbb}, \ldots\} \\ & \vdots \\ & = & \{\epsilon, \mathbf{a}, \mathbf{b}, \mathbf{aa}, \mathbf{ab}, \mathbf{ba}, \mathbf{bb}, \ldots\} \end{array}
```

Regular Definitions

Assign "names" to regular expressions. For example,

```
\begin{array}{ccc} \text{digit} & \longrightarrow & 0 \mid 1 \mid \dots \mid 9 \\ \text{natural} & \longrightarrow & \text{digit digit}^* \end{array}
```

SHORTHANDS:

- a^+ : Set of strings with one or more occurrences of a.
- a?: Set of strings with zero or one occurrences of a.

Example:

```
integer \longrightarrow (+|-)^?digit<sup>+</sup>
```

Regular Definitions: Examples

Regular Definitions and Lexical Analysis

Regular Expressions and Definitions *specify* sets of strings over an input alphabet.

- They can hence be used to specify the set of lexemes associated with a token.
 - \triangleright Used as the *pattern* language

How do we decide whether an input string belongs to the set of strings specified by a regular expression?

Using Regular Definitions for Lexical Analysis

Q: Is <u>ababbaabbb</u> in $\mathcal{L}(((a^*b^*)^*)$? A: Hm. Well. Let's see.

```
 \mathcal{L}((a^*b^*)^*) = \{\epsilon\} 
 \cup \{\epsilon, \mathbf{a}, \mathbf{b}, \mathbf{aa}, \mathbf{ab}, \mathbf{bb}, \dots \} 
 \cup \{\epsilon, \mathbf{a}, \mathbf{b}, \mathbf{aa}, \mathbf{ab}, \mathbf{ba}, \mathbf{bb}, \dots \} 
 \cup \{\epsilon, \mathbf{a}, \mathbf{b}, \mathbf{aa}, \mathbf{ab}, \mathbf{ba}, \mathbf{bb}, \mathbf{aaa}, \mathbf{aab}, \mathbf{baa}, \mathbf{bab}, \mathbf{bba}, \mathbf{bbb}, \dots \} 
 \vdots 
 = ???
```

Lexical Analysis

- Regular Expressions and Definitions are used to specify the set of strings (lexemes) corresponding to a token.
- An automaton (DFA/NFA) is built from the above specifications.
- Each final state is associated with an action: emit the corresponding token.

Specifying Lexical Analysis

Consider a recognizer for integers (sequence of digits) and floats (sequence of digits separated by a decimal point).

Lex

Tool for building lexical analyzers. Input: lexical specifications (.1 file)

Output: C function (yylex) that returns a token on each invocation.

```
%%
[0-9]+ { return(INTEGER_CONSTANT); }
[0-9]+"."[0-9]+ { return(FLOAT_CONSTANT); }
```

Tokens are simply integers (#define's).

Lex Specifications

Regular Expressions in Lex

Adds "syntactic sugar" to regular expressions:

```
• Range: [0-7]: Integers from 0 through 7 (inclusive)
[a-nx-zA-Q]: Letters a thru n, x thru z and A thru Q.
```

- Exception: [^/]: Any character other than /.
- Definition: {digit}: Use the previously specified regular definition digit.
- Special characters: Connectives of regular expression, convenience features.
 e.g.: | * ^

Special Characters in Lex

```
    | * + ? ( ) Same as in regular expressions
    [ ] Enclose ranges and exceptions
    { } Enclose "names" of regular definitions
    Used to negate a specified range (in Exception)
    Match any single character except newline
    \ Escape the next character
    \n, \t
    Newline and Tab
```

For literal matching, enclose special characters in double quotes (") e.g.: "*" Or use \ to escape. e.g.: \"

Examples

for	Sequence of f, o, r	
" "	C-style OR operator (two vert. bars)	
.*	Sequence of non-newline characters	
[^*/]+	Sequence of characters except * and /	
\"[^"]*\"	Sequence of non-quote characters	
	beginning and ending with a quote	
({letter} "_")({letter} {digit} "_")*		
C-style identifiers		

A Complete Example

Actions

Actions are attached to final states.

- Distinguish the different final states.
- Used to return *tokens*.
- Can be used to set attribute values.
- Fragment of C code (blocks enclosed by '{' and '}').

Attributes

Additional information about a token's lexeme.

- Stored in variable yylval
- Type of attributes (usually a union) specified by YYSTYPE
- Additional variables:

```
yytext: Lexeme (Actual text string)
yyleng: length of string in yytext
yylineno: Current line number (number of '\n' seen thus far)
* enabled by %option yylineno
```

Priority of matching

What if an input string matches more than one pattern?

```
"if" { return(TOKEN_IF); } {letter}+ { return(TOKEN_ID); } 
"while" { return(TOKEN_WHILE); }
```

- A pattern that matches the longest string is chosen.
 - Example: if1 is matched with an identifier, not the keyword if.
- Of patterns that match strings of same length, the first (from the top of file) is chosen. Example: while is matched as an identifier, not the keyword while.

Constructing Scanners using (f)lex

• Scanner specifications: specifications.1

• Generated scanner in lex.yy.c

$$\begin{array}{ccc} & \text{(g)cc} \\ \text{lex.yy.c} & \xrightarrow{} & executable \end{array}$$

- yywrap(): hook for signalling end of file.
- Use -lfl (flex) or -ll (lex) flags at link time to include default function yywrap() that always returns 1.

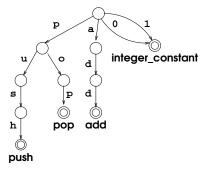
Recognizers

Construct automata that recognize strings belonging to a language.

- Finite State Automata \Rightarrow Regular Languages
 - ${\,\vartriangleright\,}$ Finite State \to cannot maintain arbitrary counts.
- Push Down Automata \Rightarrow Context-free Languages
 - ▷ Stack is used to maintain counter, but only one counter can go arbitrarily high.

Recognizing Finite Sets of Strings

Identifying words from a small, finite, fixed vocabulary is straightforward. For instance, consider a stack machine with push, pop, and add operations with two constants: 0 and 1. We can use the *automaton*:



Finite State Automata

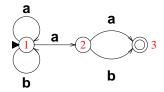
Represented by a labeled directed graph.

- A finite set of *states* (vertices).
- *Transitions* between states (edges)
- *Labels* on transitions are drawn from $\Sigma \cup \{\epsilon\}$.
- One distinguished *start* state.
- One or more distinguished *final* states.

Finite State Automata: An Example

```
Consider the Regular Expression (a \mid b)*a(a \mid b). \mathcal{L}((a \mid b)*a(a \mid b)) = \{aa, ab, aaa, aab, baa, bab, aaaa, aaab, abaa, abab, baaa, ...\}.
```

The following automaton determines whether an input string belongs to $\mathcal{L}((a \mid b)^*a(a \mid b))$:



Using States in Lex

- Some regular languages are more easily expressed as FSA
 - Set of all strings representing binary numbers divisible by 3
- Lex allows you to use FSA concepts using start states

```
%x MOD1 MOD2
"0" { }
"1" {BEGIN MOD1}
<MOD1> "0" {BEGIN MOD2}
<MOD1> "1" {BEGIN 0}
```

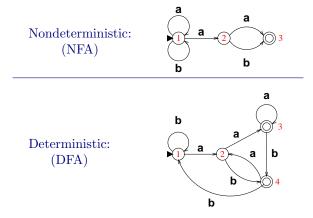
Other Special Directives

- ECHO causes Lex to echo current lexeme
- REJECT causes abandonment of current match in favor of the next.
- Example

```
a|
ab|
abc|
abcd {ECHO; REJECT;}
.|\n {/* eat up the character */}
```

Deterministic Vs Nondeterministic FSA

$(a \mid b)^*a(a \mid b)$:



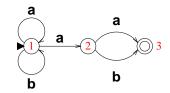
Acceptance Criterion

A finite state automaton (NFA or DFA) accepts an input string x

- ... if beginning from the start state
- ... we can trace some path through the automaton
- \dots such that the sequence of edge labels spells x
- ... and end in a final state.

Recognition with an NFA

Is $\underline{abab} \in \mathcal{L}((a \mid b)^*a(a \mid b))$?



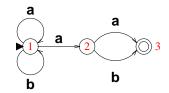
Input: a b

Path 1: Path 2: Path 3:

Accept

Recognition with an NFA

Is $\underline{abab} \in \mathcal{L}((a \mid b)^*a(a \mid b))$?



Input: a b a b

Path 1: 1 1

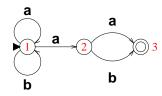
Path 2:

Path 3:

Accept

Recognition with an NFA

Is $\underline{abab} \in \mathcal{L}((a \mid b)^*a(a \mid b))$?



Input: a b a b

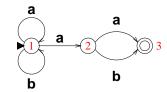
Path 1: 1 1 1

Path 2:

Path 3:

Recognition with an NFA

Is $\underline{abab} \in \mathcal{L}((a \mid b)^*a(a \mid b))$?



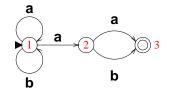
Input: a b a b Path 1: 1 1 1 1 1 1

Path 2: Path 3:

Accept

Recognition with an NFA

Is $\underline{abab} \in \mathcal{L}((a \mid b)^*a(a \mid b))$?



Input: a b a b Path 1: 1 1 1 1 1 1

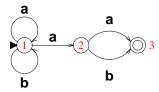
Path 2: 1 1 1 2 3 Accept

Path 3:

Accept

Recognition with an NFA

Is $\underline{abab} \in \mathcal{L}((a \mid b)^*a(a \mid b))$?

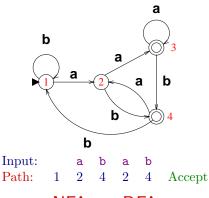


Input: b Path 1: 1 1 1 Path 2: 1 1 1 2 3 Accept 2 3 \perp Path 3: 1 \perp

Accept

Recognition with a DFA

Is $\underline{abab} \in \mathcal{L}((a \mid b)^*a(a \mid b))$?



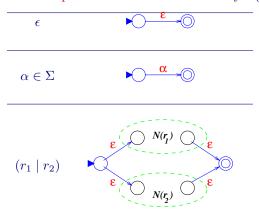
NFA vs. DFA

For every NFA, there is a DFA that accepts the same set of strings.

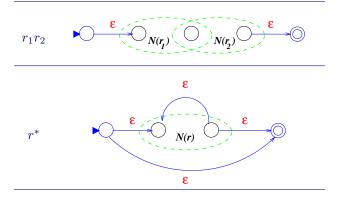
- NFA may have transitions labeled by ϵ . (Spontaneous transitions)
- All transition labels in a DFA belong to Σ .
- For some string x, there may be many accepting paths in an NFA.
- For all strings x, there is *one unique* accepting path in a DFA.
- Usually, an input string can be recognized *faster* with a DFA.
- NFAs are typically *smaller* than the corresponding DFAs.

Regular Expressions to NFA

Thompson's Construction: For every regular expression r, derive an NFA N(r) with unique start and final states.

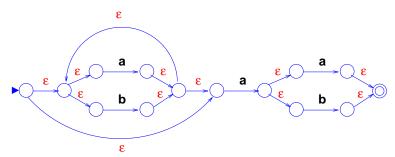


Regular Expressions to NFA (contd.)



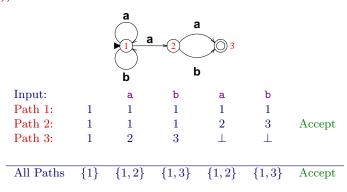
Example

 $(a \mid b)^*a(a \mid b)$:



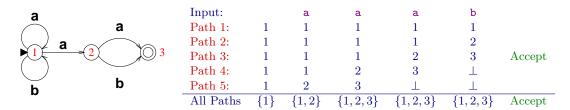
Recognition with an NFA

Is $\underline{abab} \in \mathcal{L}((a \mid b)^*a(a \mid b))$?



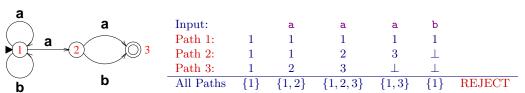
Recognition with an NFA (contd.)

Is $\underline{\text{aaab}} \in \mathcal{L}((a \mid b)^*a(a \mid b))$?



Recognition with an NFA (contd.)

Is $\underline{\mathtt{aabb}} \in \mathcal{L}((a \mid b)^*a(a \mid b))$?



Converting NFA to DFA

Subset construction

Given a set S of NFA states,

• compute $S_{\epsilon} = \epsilon$ -closure(S): S_{ϵ} is the set of all NFA states reachable by zero or more ϵ -transitions from S.

- compute $S_{\alpha} = \text{goto}(S, \alpha)$:
 - -S' is the set of all NFA states reachable from S by taking a transition labeled α .
 - $-S_{\alpha} = \epsilon$ -closure(S').

Converting NFA to DFA (contd).

Each state in DFA corresponds to a $set\ of\ states$ in NFA.

Start state of DFA = ϵ -closure(start state of NFA).

From a state s in DFA that corresponds to a set of states S in NFA:

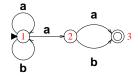
add a transition labeled α to state s' that corresponds to a non-empty S' in NFA,

such that $S' = goto(S, \alpha)$.

s is a state in DFA such that the corresponding set of states S in NFA contains a final state of NFA,

 $\Leftarrow s$ is a final state of DFA

NFA \rightarrow DFA: An Example



```
\begin{array}{llll} \epsilon\text{-closure}(\{1\}) & = & \{1\} \\ \gcd(\{1\}, \mathbf{a}) & = & \{1, 2\} \\ \gcd(\{1\}, \mathbf{b}) & = & \{1\} \\ \gcd(\{1, 2\}, \mathbf{a}) & = & \{1, 2, 3\} \\ \gcd(\{1, 2\}, \mathbf{b}) & = & \{1, 3\} \\ \gcd(\{1, 2, 3\}, \mathbf{a}) & = & \{1, 2, 3\} \\ \vdots & & & \vdots \end{array}
```

$NFA \rightarrow DFA$: An Example (contd.)

 ϵ -closure({1}) {1} $\{1, 2\}$ $goto(\{1\}, a)$ $goto(\{1\}, b)$ {1} $\{1, 2, 3\}$ $goto(\{1,2\},a)$ $goto(\{1, 2\}, b)$ $\{1, 3\}$ $goto({1,2,3},a)$ $\{1, 2, 3\}$ $goto(\{1, 2, 3\}, b)$ {1} $goto(\{1,3\},a)$ $\{1, 2\}$ $goto(\{1,3\},b)$ {1}

NFA \rightarrow DFA: An Example (contd.)

```
goto(\{1\}, \mathbf{a})
                             \{1, 2\}
goto(\{1\}, b)
                              {1}
goto(\{1,2\},a)
                              \{1, 2, 3\}
goto(\{1,2\},b)
                              \{1, 3\}
goto(\{1, 2, 3\}, a)
                             \{1, 2, 3\}
                             а
 b
                                   {1,2,3}
                               b
                         а
                                 {1,3}
            b
```

NFA vs. DFA

R =Size of Regular Expression N =Length of Input String

	NFA	DFA
Size of Automaton	O(R)	$O(2^R)$
Recognition time per input string	$O(N \times R)$	O(N)

Implementing a Scanner

```
 \begin{aligned} & \text{ algorithm } scanner() \; \{ \\ & \quad current\_state = start \; state; \\ & \quad \text{ while } (1) \; \{ \\ & \quad c = getc(); \; / \text{* on end of file, ... */} \\ & \quad \text{if } defined(transition(current\_state, c)) \\ & \quad current\_state = transition(current\_state, c); \\ & \quad \text{else} \\ & \quad \text{return } s; \\ & \quad \} \\ & \quad \} \end{aligned}
```

Implementing a Scanner (contd.)

Implementing the *transition* function:

- Simplest: 2-D array. Space inefficient.
- Traditionally compressed using row/colum equivalence. (default on (f)lex) Good space-time tradeoff.
- Further table compression using various techniques:

Example: RDM (Row Displacement Method):
 Store rows in overlapping manner using 2 1-D arrays.

Smaller tables, but longer access times.

Lexical Analysis: A Summary

Convert a stream of characters into a stream of tokens.

- Make rest of compiler independent of character set
- Strip off comments
- Recognize line numbers
- Ignore white space characters
- Process macros (definitions and uses)
- Interface with **symbol** (name) **table**.