
Securing Untrusted Code



Untrusted Code
 May be untrustworthy

 Intended to be benign, but may be full of vulnerabilities
 These vulnerabilities may be exploited by attackers (or other malicious 

processes) to run malicious code

 Or,  may directly be malicious: may use
 Obfuscation

 Code obfuscation
 Anti-analysis techniques
 Use of vulnerabilities to hide behavior

 (Behavioral) evasion
 Actively subvert enforcement mechanisms

 Security is still defined in terms of policies
 But enforcement mechanisms need to be stronger in order to defeat a 

strong adversary.



Reference Monitors

 Security policies can be enforced by reference 
monitors (RM)

 Key requirements
 Full mediation
 (If interaction with user is needed) Trusted path

 With benign code, we typically assume that it 
won’t bypass enforcement mechanisms

 We can possibly maintain security even if there are ways to 
subvert the checks made by the RM



Types of Reference Monitors

 External RM
 RM resides outside the address space of untrusted process
 Relies on memory protection

  Protect RM’s data from untrusted code
 Limit access to RM’s code

 Inline RM
 Policy enforcement code runs within the address space of 

the untrusted process
 Cannot rely on traditional hardware-based memory 

protection



System-call based RMs

 OSes already implement RMs to enforce OS 
security policies

 Most aspects of policy are configured (e.g., file 
permissions), while the RM mainly includes mechanisms to 
enforce these policies

 But these are typically not flexible enough or 
customizable

 More powerful and flexible policies may be 
realized using a customized RM

 System-calls provide a natural interface at which 
such a customized RM can reside and mediate 
requests.



Why monitor system calls?

 Complete mediation: All security-relevant actions of 
processes are administered through this interface

 Performance: Associated with a context-switch --- can be 
exploited to protect RM without extra overheads 

 Granularity
 Finer granularity than typical access control primitives
 But coarse enough to be tractable: a few hundred system calls

 Expressiveness
 Clearly defined, semantically meaningful, well-understood and well-

documented interface (except for some OSes like Windows)
 Orthogonal (each system call provides a function that is independent of 

other system calls --- functions that rarely, if ever, overlap)
 Can control operations for which OS access controls are ineffective, e.g., 

loading modules
 A large number of security-critical operations are traditionally lumped into 

“administrative privilege”

 Portability: System call policies can be easily ported 
across similar OSes, e.g., various flavors of UNIX



Some drawbacks of system calls

 Interface is designed for functionality
 Several syscalls may be equivalent for security purposes, but we a 
syscall policy needs to treat them separately

 Not all relevant operations are visible
 For instance, syscall policies cannot control name-to-file 
translations

 Race conditions
 Pathname based policies are prone to race conditions
 More generally, there may be TOCTTOU races relating to system 
call arguments

 Unless the argument data is first copied into RM, checked, and then this 
checked copy is used by the system call
– Adds more complexity

 The window for exploiting TOCTTOU attacks can be increased by 
using a large sequence of symbolic links in the name



Linux Security Module Framework

 Motivated by the drawbacks of syscall monitors
 Defines a number of “hooks” within Linux kernel

 Includes all points where security checks need to be done
 RMs can register to be invoked at these hooks
 SELinux, as well as Linux capabilities are implemented 

using such RMs
 Drawbacks

 The framework has significant complexity --- while it 
simplifies some things, the increased complexity makes 
other things hard.

 Requires a lot of effort to identify the things that need 
checking, and where all the hooks need to be placed

 Very closely tied to the implementation details of an OS --- 
not easily ported to other OSes.



System call interposition approaches

 User-level interception
 RM resides within a process

 Library interposition
– RM resides in the same address space
– Advantages

• high performance
• Potential for intercepting higher level (semantically richer) operations

– Drawbacks: RM is unprotected, so appropriate only for benign code
 Kernel-supported interposition, with RM residing in another process

– Advantages: Secure for untrusted code
– Drawback: High overheads due to context switches
– Example: ptrace interface on Linux

 Kernel interception
 The RM resides in the kernel
 Advantages: high performance, secure for untrusted code
 Drawbacks: 

 difficult to program
 requires root privilege
 Rootkit defense measures pose compatibility issues



Inline Reference Monitors (IRMs)

 Provide finer granularity
 “Variable x is always greater than y”
 Provides much more expressive power

 Very efficient
 Does not require a context switch

 Key challenge:
 Protecting IRM from hostile code



Securing RMs in the same address space

 Protect RM data that is used in enforcing policy
 Software-based fault isolation (SFI)

 Protect RM checks from being bypassed
 Control-flow integrity (CFI)

 Note
 For vulnerability defenses (e.g., Stackguard), we implement 

the checks using an IRM
 But we don’t worry about above properties since we are 

dealing with benign (and not malicious) code



Background

 Fault Isolation
 What is fault isolation?

when "something bad" happens, the negative consequences are 
limited in scope. 

 Why is it needed?
Untrusted plug-ins makes applications unreliable
Third-party modules make the OS unreliable

 Hardware based Fault Isolation
 Isolated Address Space
RPC interfaces for cross boundary communication



SFI [Wahbe et al 1994]

 Motivation
 Hardware-assisted context-switches are expensive

 TLB flushing; some caches may require flushing as well

 Key idea
 Insert inline checks to verify memory address bounds for

 Data accesses
 Indirect control-flow transfers (CFT)

– Direct CFTs can be statically checked

 Challenges
 Efficiency 

 each memory access has the overhead of checking

 Security
 Preventing circumvention or subversion of checks



 Even when running in the same virtual address space, limit some 
code components to access only a part of the address space

 This subspace is called a “fault domain”



Software Fault Isolation

 Virtual address segments
 Fault domain (guest) has two segments, one for code, the 

other for data.
 Each segment share a unique upper bits (segment 

identifier)
 Untrusted module can ONLY jump to or write to the same 

upper bit pattern (segment identifier) 

 Components of the technique
 Segment Matching

 Optimization: instead of checking, simply override the segment bits
– Originally, the term “sandboxing” referred to this overriding

 Data sharing
 Cross-domain Communication



Segment Matching

 Insert checking code before every unsafe 
instructions

 To prevent subversion of checks, use dedicated registers, 
and ensure that all jumps and stores use these registers

 Need only worry about indirect accesses
 Don’t forget that returns are indirect jumps too

 Checking code determines whether the unsafe 
instruction has the correct segment identifier

 Trap to a system error routine if checking fails – 
pinpoint the offending instruction



Segment Matching

5 instructions, Need 5 dedicated registers (segment value needs to be different 
for code and data) and it can pinpoint the source of faults. Can reduce the 
number of registers by hard-coding some values (e.g., number of shift bits).



Optimization 1: Address Sandboxing

 Reduce runtime overhead further compared to 
segment matching by not pinpointing the 
offending instruction

 Before each unsafe instruction, inserting codes 
can set the upper bits of the target address to the 
correct segment identifier



Address Sandboxing

3 instructions, Require 5 dedicated registers (since mask and segment 
registers will be different for code and data)

Correctness: Relies on the invariant that dedicated registers always contain 
valid values before any control transfer instruction.



Optimization 2: Guarding pages 
• A single instruction 

accesses multiple bytes of 
memory (4, 8, or may be 
more)

• Need to check whether all 
bytes are within the 
segment
• Require at least two 

checks!
• Optimization

• Sandboxing reg, ignore 
reg+offset

• Guard zones ensure 
that reg+offset will also 
be in bounds (or that 
there will be a 
hardware fault)



Data sharing

 Read-only sharing can be achieved in several ways:
 Option 1: Don’t restrict read acceses
 Option 2: Allow reads to access some segments other 

than that of untrusted code
 Option 3: Remap shared memory into the address 

space of both the untrusted and trusted domains

 Read-write sharing can use similar techniques.





SFI details (continued)
 Need compiler assistance

 To set aside dedicated registers
 But we cannot trust the compiler

 Programs may be distributed as binaries, and we can’t trust the compiler used 
to compile that untrusted binary

 Need a verifier
 Verification is quite simple

 Dedicated registers should be loaded only after address-sandboxing operations
 All direct memory accesses and direct jumps should stay within untrusted 

domain. Implementation operates on binary code

– Note that SFI checks all indirect accesses and control-transfers at runtime
 Was implemented on RISC architectures

 Precursor to proof-carrying code [Necula et al]
 Code producer provides the proof, consumer needs to check it.

 Proof-checking is much easier than proof generation
 Especially in an automated verification setting: 

– producer needs to navigate a humongous search space to construct a proof tree
– consumer needs to just verify that the particular tree provided is valid



SFI for CISC Architectures (x86)

 Difficulties of bringing SFI to CISC
Problem 1: Variable-length instructions

What happens if code jumps to the middle of an 
instruction

Problem 2: Insufficient registers
SFI requires 5 dedicated registers for segment matching
SFI requires 5 dedicated registers for address 

sandboxing
x86 has very few general-purpose registers available

– eax, ebx, ecx, edx, esi, edi 
PittsSFIeld: uses ebx as a dedicated register AND treats 

esp and ebp as sandboxed registers (adds needed 
checks)



Solution to Problem 1



Code segment

Data segment

Zero tag region
0x00000000

0x10000000

0x20000000

unmapped

Solution to Problem 2
 Hardcode segments

 Avoids need for segment
registers etc.

 Make code and data segments adjacent,
and differ by only one bit in their addresses

 Sandboxing now achieved using a single instruction
 and 0x20ffffff, %ebx
 Store using ebx

 For indirect jumps, use:
 and 0x10fffff0, %ebx
 Jump using ebx

 Alternative approach
 Use x86 segment (CS, DS, ES) registers!

 Very efficient but not available on x86_64



Control-flow Integrity (CFI) [Abadi et al]

 Unrestricted control-flow transfers (CFTs) can 
subvert the IRM

 Simply jump past checks, or
 Jump into IRM code that updates critical IRM data

 Approaches
 Compute a control-flow graph using static analysis, enforce 

it at runtime
 Benefits: With accurate static analysis, can closely constrain CFTs.
 Drawback: Requires reasoning about targets of indirect CFTs (hard!)

 Enforce coarse-grained CFI properties
 All calls should go to beginning of functions
 All returns should go to instructions following calls
 No control flow transfers can target instructions belonging to IRM



CFI (Continued)
 Coarse-grained version is sufficient to protect IRM

 Like SFI, CFI is self-protecting
 CFI checks the targets of jump, so it can prevent unsafe CFTs that attempt to jump just 

beyond CFI checks
 In PittSFIeld, this was achieved by ensuring that the check and access operations were within 

the same bundle

– Jumps can only go to the beginning of a bundle, so you can’t jump between check and use 

 Because of this, SFI and CFI provide a foundation for securing untrusted code using 
inline checks. 

 CFI can also be applied to protect against control-flow hijack attacks
 Jump to injected code (easy)
 Return to libc (most obvious cases are easy)
 Return-oriented programming (requires considerable effort to devise ROP attacks that can 

defeat CFI)

 In addition:
 IRM code should not assume that untrusted code will follow ABI conventions on 

register use
 IRM code should use a separate stack

 To prevent return-to-libc style attacks within IRM code



CFI Implementation Strategies

 Approach 1 (proposed in the original CFI paper)
 Associate a constant index with each CFT target
 Verify this index before each CFT

 Ideal for fine-grained approach, where static analysis has computed 
all potential targets of each indirect CFT instruction

 Issues
 If locations L1 and L2 can be targets of an indirect CFT, then both 

locations should be given the same index
 If another CFT can go to either L2 or L3, then all three must have 

same index
 A particular problem when you consider returns

– Accuracy can be improved by using a stack, but then you run into the 
same compatibility issues as stacksmashing defenses that store a second 
copy of return address



CFI Instrumentation

•Method (a): unsafe, since ID is embedded in callsite (could be used by attacker)
•Method (b): safe,  but pollute the data cache



CFI Implementation

 CFG construction is conservative
 Each computed call instruction may go to ANY function 

whose address is taken (too coarse)
 Discover those functions by checking relocation entries.

 Won’t work on stripped code



CFI Assumption

 UNQ: Unique IDs.  
 choose longer ID to prevent ensure the uniqueness
 Otherwise: jump in the middle of a instruction or arbitrary 

place (in data or code)
 NWC: Non-Writable Code. 

 Code could not be modified. Otherwise, verifier is 
meaningless, thus all the work is meaningless……

 NXD: Non-Executable Data
 Otherwise, attacker can execute data that begins with a 

correct ID.

All the assumptions should hold. Otherwise, this 
CFI implementation can be defeated.



CFI Implementation Strategies

 Approach 2
 Use an array V indexed by address, and holding the 

following values
 Function_begin, Valid_return, Valid_target, Invalid

 A call to target X is permitted if V[X] == Function_begin
 A return to target X is permitted if V[X] == Valid_return
 A jump to target X is permitted if V[X] != Invalid
 Otherwise, CFT is not permitted

 Note that CFI implementations need only check indirect CFTs



SFI, CFI and Follow-ups
 SFI originally implemented for RISC instruction set, later 

extended to x86
 Efficient implementation on x86, x86-64 and ARM architectures have 

been the focus of recent works

 CFI originally implemented using Microsoft’s Phoenix 
compiler framework

 Binary instrumentation requires a lot of information unavailable in 
normal binaries, and hence reliance on specific compiler

 But the concept has had broad impact

 Google’s Native Client (NaCl) project is the most visible 
application of SFI and CFI techniques

 Supports untrusted native code in browsers
 Part of recent WebAssembly standard

 Included in Firefox 52 and later

https://en.wikipedia.org/wiki/WebAssembly


Motivation

 Browsers already allow Javascript code from 
arbitrary sites, but its performance is inadequate  
for some applications

 Games
 Fluid dynamics (physics simulation)

 Permitting native code from arbitrary sites is too 
dangerous! 



Native Client

 Sandboxed environment for execution of native 
code. Two parts:

 SFI using x86 segment as inner sandbox
 Runtime for allowing safe operations from outer sandbox

 Good runtime facilities
 Multi-threading support
 IPC: PPAPI
 Performance:  5% overhead on average



Service Runtime

System Architecture

Guest
data

Guest
Code

Browser Process

PPAPI
IMC

JavaScript
Native 
Client 
Module

Native 
Client 
Process

Native 
Client 
Plug-in

untrusted



Design

 Inner Sandbox
 Static verification to ensure all security properties hold for 

the untrusted code
 32-byte instruction bundles to ensure CFI
 Trampoline/springboard to allow safe control transfer from 

untrusted to trusted and vice versa
 Runtime Facilities

 Safe execution of possible “unsafe” operations
 Inter module communication: PPAPI & IMC



Binary Constraints & Properties

 Constraints
 No self modifying code
 Static linked with a fix start address of text segment 
 All indirect control transfer use nacljmp instruction
 The binary is padded up to the nearest page with hlt
 No instructions overlap 32-byte boundary
 All instructions are reachable by fall-through disassembly from 

starting address
 All direct control transfers target valid instructions



Control Flow Integrity

 All control transfers must target an instruction 
identified during disassembly

 Direct control flow
 Target should be one of reachable instructions

 Indirect Control flow
 Segmented support (works because a fix start address)
 No returns
 Limit target to 32 byte boundary (nacljmp on the right)

jmp eax -> and eax,0xffffffe0
     jmp eax

 Nacljmp is atomic



Data Integrity

 Segmented memory support

 Limited instruction set (no assignment to 
segment register)

 i.e. move ds, ax is forbidden
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