
Securing Untrusted Code

Untrusted Code
 May be untrustworthy

 Intended to be benign, but may be full of vulnerabilities
 These vulnerabilities may be exploited by attackers (or other malicious

processes) to run malicious code

 Or, may directly be malicious: may use
 Obfuscation

 Code obfuscation
 Anti-analysis techniques
 Use of vulnerabilities to hide behavior

 (Behavioral) evasion
 Actively subvert enforcement mechanisms

 Security is still defined in terms of policies
 But enforcement mechanisms need to be stronger in order to defeat a

strong adversary.

Reference Monitors

 Security policies can be enforced by reference
monitors (RM)

 Key requirements
 Full mediation
 (If interaction with user is needed) Trusted path

 With benign code, we typically assume that it
won’t bypass enforcement mechanisms

 We can possibly maintain security even if there are ways to
subvert the checks made by the RM

Types of Reference Monitors

 External RM
 RM resides outside the address space of untrusted process
 Relies on memory protection

 Protect RM’s data from untrusted code
 Limit access to RM’s code

 Inline RM
 Policy enforcement code runs within the address space of

the untrusted process
 Cannot rely on traditional hardware-based memory

protection

System-call based RMs

 OSes already implement RMs to enforce OS
security policies

 Most aspects of policy are configured (e.g., file
permissions), while the RM mainly includes mechanisms to
enforce these policies

 But these are typically not flexible enough or
customizable

 More powerful and flexible policies may be
realized using a customized RM

 System-calls provide a natural interface at which
such a customized RM can reside and mediate
requests.

Why monitor system calls?

 Complete mediation: All security-relevant actions of
processes are administered through this interface

 Performance: Associated with a context-switch --- can be
exploited to protect RM without extra overheads

 Granularity
 Finer granularity than typical access control primitives
 But coarse enough to be tractable: a few hundred system calls

 Expressiveness
 Clearly defined, semantically meaningful, well-understood and well-

documented interface (except for some OSes like Windows)
 Orthogonal (each system call provides a function that is independent of

other system calls --- functions that rarely, if ever, overlap)
 Can control operations for which OS access controls are ineffective, e.g.,

loading modules
 A large number of security-critical operations are traditionally lumped into

“administrative privilege”

 Portability: System call policies can be easily ported
across similar OSes, e.g., various flavors of UNIX

Some drawbacks of system calls

 Interface is designed for functionality
 Several syscalls may be equivalent for security purposes, but we a
syscall policy needs to treat them separately

 Not all relevant operations are visible
 For instance, syscall policies cannot control name-to-file
translations

 Race conditions
 Pathname based policies are prone to race conditions
 More generally, there may be TOCTTOU races relating to system
call arguments

 Unless the argument data is first copied into RM, checked, and then this
checked copy is used by the system call
– Adds more complexity

 The window for exploiting TOCTTOU attacks can be increased by
using a large sequence of symbolic links in the name

Linux Security Module Framework

 Motivated by the drawbacks of syscall monitors
 Defines a number of “hooks” within Linux kernel

 Includes all points where security checks need to be done
 RMs can register to be invoked at these hooks
 SELinux, as well as Linux capabilities are implemented

using such RMs
 Drawbacks

 The framework has significant complexity --- while it
simplifies some things, the increased complexity makes
other things hard.

 Requires a lot of effort to identify the things that need
checking, and where all the hooks need to be placed

 Very closely tied to the implementation details of an OS ---
not easily ported to other OSes.

System call interposition approaches

 User-level interception
 RM resides within a process

 Library interposition
– RM resides in the same address space
– Advantages

• high performance
• Potential for intercepting higher level (semantically richer) operations

– Drawbacks: RM is unprotected, so appropriate only for benign code
 Kernel-supported interposition, with RM residing in another process

– Advantages: Secure for untrusted code
– Drawback: High overheads due to context switches
– Example: ptrace interface on Linux

 Kernel interception
 The RM resides in the kernel
 Advantages: high performance, secure for untrusted code
 Drawbacks:

 difficult to program
 requires root privilege
 Rootkit defense measures pose compatibility issues

Inline Reference Monitors (IRMs)

 Provide finer granularity
 “Variable x is always greater than y”
 Provides much more expressive power

 Very efficient
 Does not require a context switch

 Key challenge:
 Protecting IRM from hostile code

Securing RMs in the same address space

 Protect RM data that is used in enforcing policy
 Software-based fault isolation (SFI)

 Protect RM checks from being bypassed
 Control-flow integrity (CFI)

 Note
 For vulnerability defenses (e.g., Stackguard), we implement

the checks using an IRM
 But we don’t worry about above properties since we are

dealing with benign (and not malicious) code

Background

 Fault Isolation
 What is fault isolation?

when "something bad" happens, the negative consequences are
limited in scope.

 Why is it needed?
Untrusted plug-ins makes applications unreliable
Third-party modules make the OS unreliable

 Hardware based Fault Isolation
 Isolated Address Space
RPC interfaces for cross boundary communication

SFI [Wahbe et al 1994]

 Motivation
 Hardware-assisted context-switches are expensive

 TLB flushing; some caches may require flushing as well

 Key idea
 Insert inline checks to verify memory address bounds for

 Data accesses
 Indirect control-flow transfers (CFT)

– Direct CFTs can be statically checked

 Challenges
 Efficiency

 each memory access has the overhead of checking

 Security
 Preventing circumvention or subversion of checks

 Even when running in the same virtual address space, limit some
code components to access only a part of the address space

 This subspace is called a “fault domain”

Software Fault Isolation

 Virtual address segments
 Fault domain (guest) has two segments, one for code, the

other for data.
 Each segment share a unique upper bits (segment

identifier)
 Untrusted module can ONLY jump to or write to the same

upper bit pattern (segment identifier)

 Components of the technique
 Segment Matching

 Optimization: instead of checking, simply override the segment bits
– Originally, the term “sandboxing” referred to this overriding

 Data sharing
 Cross-domain Communication

Segment Matching

 Insert checking code before every unsafe
instructions

 To prevent subversion of checks, use dedicated registers,
and ensure that all jumps and stores use these registers

 Need only worry about indirect accesses
 Don’t forget that returns are indirect jumps too

 Checking code determines whether the unsafe
instruction has the correct segment identifier

 Trap to a system error routine if checking fails –
pinpoint the offending instruction

Segment Matching

5 instructions, Need 5 dedicated registers (segment value needs to be different
for code and data) and it can pinpoint the source of faults. Can reduce the
number of registers by hard-coding some values (e.g., number of shift bits).

Optimization 1: Address Sandboxing

 Reduce runtime overhead further compared to
segment matching by not pinpointing the
offending instruction

 Before each unsafe instruction, inserting codes
can set the upper bits of the target address to the
correct segment identifier

Address Sandboxing

3 instructions, Require 5 dedicated registers (since mask and segment
registers will be different for code and data)

Correctness: Relies on the invariant that dedicated registers always contain
valid values before any control transfer instruction.

Optimization 2: Guarding pages
• A single instruction

accesses multiple bytes of
memory (4, 8, or may be
more)

• Need to check whether all
bytes are within the
segment
• Require at least two

checks!
• Optimization

• Sandboxing reg, ignore
reg+offset

• Guard zones ensure
that reg+offset will also
be in bounds (or that
there will be a
hardware fault)

Data sharing

 Read-only sharing can be achieved in several ways:
 Option 1: Don’t restrict read acceses
 Option 2: Allow reads to access some segments other

than that of untrusted code
 Option 3: Remap shared memory into the address

space of both the untrusted and trusted domains

 Read-write sharing can use similar techniques.

SFI details (continued)
 Need compiler assistance

 To set aside dedicated registers
 But we cannot trust the compiler

 Programs may be distributed as binaries, and we can’t trust the compiler used
to compile that untrusted binary

 Need a verifier
 Verification is quite simple

 Dedicated registers should be loaded only after address-sandboxing operations
 All direct memory accesses and direct jumps should stay within untrusted

domain. Implementation operates on binary code

– Note that SFI checks all indirect accesses and control-transfers at runtime
 Was implemented on RISC architectures

 Precursor to proof-carrying code [Necula et al]
 Code producer provides the proof, consumer needs to check it.

 Proof-checking is much easier than proof generation
 Especially in an automated verification setting:

– producer needs to navigate a humongous search space to construct a proof tree
– consumer needs to just verify that the particular tree provided is valid

SFI for CISC Architectures (x86)

 Difficulties of bringing SFI to CISC
Problem 1: Variable-length instructions

What happens if code jumps to the middle of an
instruction

Problem 2: Insufficient registers
SFI requires 5 dedicated registers for segment matching
SFI requires 5 dedicated registers for address

sandboxing
x86 has very few general-purpose registers available

– eax, ebx, ecx, edx, esi, edi
PittsSFIeld: uses ebx as a dedicated register AND treats

esp and ebp as sandboxed registers (adds needed
checks)

Solution to Problem 1

Code segment

Data segment

Zero tag region
0x00000000

0x10000000

0x20000000

unmapped

Solution to Problem 2
 Hardcode segments

 Avoids need for segment
registers etc.

 Make code and data segments adjacent,
and differ by only one bit in their addresses

 Sandboxing now achieved using a single instruction
 and 0x20ffffff, %ebx
 Store using ebx

 For indirect jumps, use:
 and 0x10fffff0, %ebx
 Jump using ebx

 Alternative approach
 Use x86 segment (CS, DS, ES) registers!

 Very efficient but not available on x86_64

Control-flow Integrity (CFI) [Abadi et al]

 Unrestricted control-flow transfers (CFTs) can
subvert the IRM

 Simply jump past checks, or
 Jump into IRM code that updates critical IRM data

 Approaches
 Compute a control-flow graph using static analysis, enforce

it at runtime
 Benefits: With accurate static analysis, can closely constrain CFTs.
 Drawback: Requires reasoning about targets of indirect CFTs (hard!)

 Enforce coarse-grained CFI properties
 All calls should go to beginning of functions
 All returns should go to instructions following calls
 No control flow transfers can target instructions belonging to IRM

CFI (Continued)
 Coarse-grained version is sufficient to protect IRM

 Like SFI, CFI is self-protecting
 CFI checks the targets of jump, so it can prevent unsafe CFTs that attempt to jump just

beyond CFI checks
 In PittSFIeld, this was achieved by ensuring that the check and access operations were within

the same bundle

– Jumps can only go to the beginning of a bundle, so you can’t jump between check and use

 Because of this, SFI and CFI provide a foundation for securing untrusted code using
inline checks.

 CFI can also be applied to protect against control-flow hijack attacks
 Jump to injected code (easy)
 Return to libc (most obvious cases are easy)
 Return-oriented programming (requires considerable effort to devise ROP attacks that can

defeat CFI)

 In addition:
 IRM code should not assume that untrusted code will follow ABI conventions on

register use
 IRM code should use a separate stack

 To prevent return-to-libc style attacks within IRM code

CFI Implementation Strategies

 Approach 1 (proposed in the original CFI paper)
 Associate a constant index with each CFT target
 Verify this index before each CFT

 Ideal for fine-grained approach, where static analysis has computed
all potential targets of each indirect CFT instruction

 Issues
 If locations L1 and L2 can be targets of an indirect CFT, then both

locations should be given the same index
 If another CFT can go to either L2 or L3, then all three must have

same index
 A particular problem when you consider returns

– Accuracy can be improved by using a stack, but then you run into the
same compatibility issues as stacksmashing defenses that store a second
copy of return address

CFI Instrumentation

•Method (a): unsafe, since ID is embedded in callsite (could be used by attacker)
•Method (b): safe, but pollute the data cache

CFI Implementation

 CFG construction is conservative
 Each computed call instruction may go to ANY function

whose address is taken (too coarse)
 Discover those functions by checking relocation entries.

 Won’t work on stripped code

CFI Assumption

 UNQ: Unique IDs.
 choose longer ID to prevent ensure the uniqueness
 Otherwise: jump in the middle of a instruction or arbitrary

place (in data or code)
 NWC: Non-Writable Code.

 Code could not be modified. Otherwise, verifier is
meaningless, thus all the work is meaningless……

 NXD: Non-Executable Data
 Otherwise, attacker can execute data that begins with a

correct ID.

All the assumptions should hold. Otherwise, this
CFI implementation can be defeated.

CFI Implementation Strategies

 Approach 2
 Use an array V indexed by address, and holding the

following values
 Function_begin, Valid_return, Valid_target, Invalid

 A call to target X is permitted if V[X] == Function_begin
 A return to target X is permitted if V[X] == Valid_return
 A jump to target X is permitted if V[X] != Invalid
 Otherwise, CFT is not permitted

 Note that CFI implementations need only check indirect CFTs

SFI, CFI and Follow-ups
 SFI originally implemented for RISC instruction set, later

extended to x86
 Efficient implementation on x86, x86-64 and ARM architectures have

been the focus of recent works

 CFI originally implemented using Microsoft’s Phoenix
compiler framework

 Binary instrumentation requires a lot of information unavailable in
normal binaries, and hence reliance on specific compiler

 But the concept has had broad impact

 Google’s Native Client (NaCl) project is the most visible
application of SFI and CFI techniques

 Supports untrusted native code in browsers
 Part of recent WebAssembly standard

 Included in Firefox 52 and later

https://en.wikipedia.org/wiki/WebAssembly

Motivation

 Browsers already allow Javascript code from
arbitrary sites, but its performance is inadequate
for some applications

 Games
 Fluid dynamics (physics simulation)

 Permitting native code from arbitrary sites is too
dangerous!

Native Client

 Sandboxed environment for execution of native
code. Two parts:

 SFI using x86 segment as inner sandbox
 Runtime for allowing safe operations from outer sandbox

 Good runtime facilities
 Multi-threading support
 IPC: PPAPI
 Performance: 5% overhead on average

Service Runtime

System Architecture

Guest
data

Guest
Code

Browser Process

PPAPI
IMC

JavaScript
Native
Client
Module

Native
Client
Process

Native
Client
Plug-in

untrusted

Design

 Inner Sandbox
 Static verification to ensure all security properties hold for

the untrusted code
 32-byte instruction bundles to ensure CFI
 Trampoline/springboard to allow safe control transfer from

untrusted to trusted and vice versa
 Runtime Facilities

 Safe execution of possible “unsafe” operations
 Inter module communication: PPAPI & IMC

Binary Constraints & Properties

 Constraints
 No self modifying code
 Static linked with a fix start address of text segment
 All indirect control transfer use nacljmp instruction
 The binary is padded up to the nearest page with hlt
 No instructions overlap 32-byte boundary
 All instructions are reachable by fall-through disassembly from

starting address
 All direct control transfers target valid instructions

Control Flow Integrity

 All control transfers must target an instruction
identified during disassembly

 Direct control flow
 Target should be one of reachable instructions

 Indirect Control flow
 Segmented support (works because a fix start address)
 No returns
 Limit target to 32 byte boundary (nacljmp on the right)

jmp eax -> and eax,0xffffffe0
 jmp eax

 Nacljmp is atomic

Data Integrity

 Segmented memory support

 Limited instruction set (no assignment to
segment register)

 i.e. move ds, ax is forbidden

	Securing Untrusted Code
	Untrusted Code
	Reference Monitors
	Types of Reference Monitors
	System-call based RMs
	Why monitor system calls?
	Some drawbacks of system calls
	Linux Security Module Framework
	System call interposition approaches
	Inline Reference Monitors (IRMs)
	Securing RMs in the same address space
	Background
	SFI [Wahbe et al 1994]
	Slide 14
	Software Fault Isolation
	Segment Matching
	Slide 17
	Optimization 1: Address Sandboxing
	Address Sandboxing
	Optimization 2: Guarding pages
	Data sharing
	Slide 22
	SFI details (continued)
	SFI for CISC Architectures (x86)
	Slide 25
	Solution to Problem 2
	Control-flow Integrity (CFI) [Ligatti et al]
	CFI (Continued)
	CFI Implementation Strategies
	CFI Instrumentation
	CFI Implementation
	CFI Assumption
	Slide 33
	SFI, CFI and Follow-ups
	Motivation
	Native Client
	System Architecture
	Design
	Binary Constraints & Properties
	Control Flow Integrity
	Data Integrity

