
Securing Untrusted Code

Untrusted Code
 May be untrustworthy

 Intended to be benign, but may be full of vulnerabilities
 These vulnerabilities may be exploited by attackers (or other malicious

processes) to run malicious code

 Or, may directly be malicious: may use
 Obfuscation

 Code obfuscation
 Anti-analysis techniques
 Use of vulnerabilities to hide behavior

 (Behavioral) evasion
 Actively subvert enforcement mechanisms

 Security is still defined in terms of policies
 But enforcement mechanisms need to be stronger in order to defeat a

strong adversary.

Reference Monitors

 Security policies can be enforced by reference
monitors (RM)

 Key requirements
 Full mediation
 (If interaction with user is needed) Trusted path

 With benign code, we typically assume that it
won’t bypass enforcement mechanisms

 We can possibly maintain security even if there are ways to
subvert the checks made by the RM

Types of Reference Monitors

 External RM
 RM resides outside the address space of untrusted process
 Relies on memory protection

 Protect RM’s data from untrusted code
 Limit access to RM’s code

 Inline RM
 Policy enforcement code runs within the address space of

the untrusted process
 Cannot rely on traditional hardware-based memory

protection

System-call based RMs

 OSes already implement RMs to enforce OS
security policies

 Most aspects of policy are configured (e.g., file
permissions), while the RM mainly includes mechanisms to
enforce these policies

 But these are typically not flexible enough or
customizable

 More powerful and flexible policies may be
realized using a customized RM

 System-calls provide a natural interface at which
such a customized RM can reside and mediate
requests.

Why monitor system calls?

 Complete mediation: All security-relevant actions of
processes are administered through this interface

 Performance: Associated with a context-switch --- can be
exploited to protect RM without extra overheads

 Granularity
 Finer granularity than typical access control primitives
 But coarse enough to be tractable: a few hundred system calls

 Expressiveness
 Clearly defined, semantically meaningful, well-understood and well-

documented interface (except for some OSes like Windows)
 Orthogonal (each system call provides a function that is independent of

other system calls --- functions that rarely, if ever, overlap)
 Can control operations for which OS access controls are ineffective, e.g.,

loading modules
 A large number of security-critical operations are traditionally lumped into

“administrative privilege”

 Portability: System call policies can be easily ported
across similar OSes, e.g., various flavors of UNIX

Some drawbacks of system calls

 Interface is designed for functionality
 Several syscalls may be equivalent for security purposes, but we a
syscall policy needs to treat them separately

 Not all relevant operations are visible
 For instance, syscall policies cannot control name-to-file
translations

 Race conditions
 Pathname based policies are prone to race conditions
 More generally, there may be TOCTTOU races relating to system
call arguments

 Unless the argument data is first copied into RM, checked, and then this
checked copy is used by the system call
– Adds more complexity

 The window for exploiting TOCTTOU attacks can be increased by
using a large sequence of symbolic links in the name

Linux Security Module Framework

 Motivated by the drawbacks of syscall monitors
 Defines a number of “hooks” within Linux kernel

 Includes all points where security checks need to be done
 RMs can register to be invoked at these hooks
 SELinux, as well as Linux capabilities are implemented

using such RMs
 Drawbacks

 The framework has significant complexity --- while it
simplifies some things, the increased complexity makes
other things hard.

 Requires a lot of effort to identify the things that need
checking, and where all the hooks need to be placed

 Very closely tied to the implementation details of an OS ---
not easily ported to other OSes.

System call interposition approaches

 User-level interception
 RM resides within a process

 Library interposition
– RM resides in the same address space
– Advantages

• high performance
• Potential for intercepting higher level (semantically richer) operations

– Drawbacks: RM is unprotected, so appropriate only for benign code
 Kernel-supported interposition, with RM residing in another process

– Advantages: Secure for untrusted code
– Drawback: High overheads due to context switches
– Example: ptrace interface on Linux

 Kernel interception
 The RM resides in the kernel
 Advantages: high performance, secure for untrusted code
 Drawbacks:

 difficult to program
 requires root privilege
 Rootkit defense measures pose compatibility issues

Inline Reference Monitors (IRMs)

 Provide finer granularity
 “Variable x is always greater than y”
 Provides much more expressive power

 Very efficient
 Does not require a context switch

 Key challenge:
 Protecting IRM from hostile code

Securing RMs in the same address space

 Protect RM data that is used in enforcing policy
 Software-based fault isolation (SFI)

 Protect RM checks from being bypassed
 Control-flow integrity (CFI)

 Note
 For vulnerability defenses (e.g., Stackguard), we implement

the checks using an IRM
 But we don’t worry about above properties since we are

dealing with benign (and not malicious) code

Background

 Fault Isolation
 What is fault isolation?

when "something bad" happens, the negative consequences are
limited in scope.

 Why is it needed?
Untrusted plug-ins makes applications unreliable
Third-party modules make the OS unreliable

 Hardware based Fault Isolation
 Isolated Address Space
RPC interfaces for cross boundary communication

SFI [Wahbe et al 1994]

 Motivation
 Hardware-assisted context-switches are expensive

 TLB flushing; some caches may require flushing as well

 Key idea
 Insert inline checks to verify memory address bounds for

 Data accesses
 Indirect control-flow transfers (CFT)

– Direct CFTs can be statically checked

 Challenges
 Efficiency

 each memory access has the overhead of checking

 Security
 Preventing circumvention or subversion of checks

 Even when running in the same virtual address space, limit some
code components to access only a part of the address space

 This subspace is called a “fault domain”

Software Fault Isolation

 Virtual address segments
 Fault domain (guest) has two segments, one for code, the

other for data.
 Each segment share a unique upper bits (segment

identifier)
 Untrusted module can ONLY jump to or write to the same

upper bit pattern (segment identifier)

 Components of the technique
 Segment Matching

 Optimization: instead of checking, simply override the segment bits
– Originally, the term “sandboxing” referred to this overriding

 Data sharing
 Cross-domain Communication

Segment Matching

 Insert checking code before every unsafe
instructions

 To prevent subversion of checks, use dedicated registers,
and ensure that all jumps and stores use these registers

 Need only worry about indirect accesses
 Don’t forget that returns are indirect jumps too

 Checking code determines whether the unsafe
instruction has the correct segment identifier

 Trap to a system error routine if checking fails –
pinpoint the offending instruction

Segment Matching

5 instructions, Need 5 dedicated registers (segment value needs to be different
for code and data) and it can pinpoint the source of faults. Can reduce the
number of registers by hard-coding some values (e.g., number of shift bits).

Optimization 1: Address Sandboxing

 Reduce runtime overhead further compared to
segment matching by not pinpointing the
offending instruction

 Before each unsafe instruction, inserting codes
can set the upper bits of the target address to the
correct segment identifier

Address Sandboxing

3 instructions, Require 5 dedicated registers (since mask and segment
registers will be different for code and data)

Correctness: Relies on the invariant that dedicated registers always contain
valid values before any control transfer instruction.

Optimization 2: Guarding pages
• A single instruction

accesses multiple bytes of
memory (4, 8, or may be
more)

• Need to check whether all
bytes are within the
segment
• Require at least two

checks!
• Optimization

• Sandboxing reg, ignore
reg+offset

• Guard zones ensure
that reg+offset will also
be in bounds (or that
there will be a
hardware fault)

Data sharing

 Read-only sharing can be achieved in several ways:
 Option 1: Don’t restrict read acceses
 Option 2: Allow reads to access some segments other

than that of untrusted code
 Option 3: Remap shared memory into the address

space of both the untrusted and trusted domains

 Read-write sharing can use similar techniques.

SFI details (continued)
 Need compiler assistance

 To set aside dedicated registers
 But we cannot trust the compiler

 Programs may be distributed as binaries, and we can’t trust the compiler used
to compile that untrusted binary

 Need a verifier
 Verification is quite simple

 Dedicated registers should be loaded only after address-sandboxing operations
 All direct memory accesses and direct jumps should stay within untrusted

domain. Implementation operates on binary code

– Note that SFI checks all indirect accesses and control-transfers at runtime
 Was implemented on RISC architectures

 Precursor to proof-carrying code [Necula et al]
 Code producer provides the proof, consumer needs to check it.

 Proof-checking is much easier than proof generation
 Especially in an automated verification setting:

– producer needs to navigate a humongous search space to construct a proof tree
– consumer needs to just verify that the particular tree provided is valid

SFI for CISC Architectures (x86)

 Difficulties of bringing SFI to CISC
Problem 1: Variable-length instructions

What happens if code jumps to the middle of an
instruction

Problem 2: Insufficient registers
SFI requires 5 dedicated registers for segment matching
SFI requires 5 dedicated registers for address

sandboxing
x86 has very few general-purpose registers available

– eax, ebx, ecx, edx, esi, edi
PittsSFIeld: uses ebx as a dedicated register AND treats

esp and ebp as sandboxed registers (adds needed
checks)

Solution to Problem 1

Code segment

Data segment

Zero tag region
0x00000000

0x10000000

0x20000000

unmapped

Solution to Problem 2
 Hardcode segments

 Avoids need for segment
registers etc.

 Make code and data segments adjacent,
and differ by only one bit in their addresses

 Sandboxing now achieved using a single instruction
 and 0x20ffffff, %ebx
 Store using ebx

 For indirect jumps, use:
 and 0x10fffff0, %ebx
 Jump using ebx

 Alternative approach
 Use x86 segment (CS, DS, ES) registers!

 Very efficient but not available on x86_64

Control-flow Integrity (CFI) [Abadi et al]

 Unrestricted control-flow transfers (CFTs) can
subvert the IRM

 Simply jump past checks, or
 Jump into IRM code that updates critical IRM data

 Approaches
 Compute a control-flow graph using static analysis, enforce

it at runtime
 Benefits: With accurate static analysis, can closely constrain CFTs.
 Drawback: Requires reasoning about targets of indirect CFTs (hard!)

 Enforce coarse-grained CFI properties
 All calls should go to beginning of functions
 All returns should go to instructions following calls
 No control flow transfers can target instructions belonging to IRM

CFI (Continued)
 Coarse-grained version is sufficient to protect IRM

 Like SFI, CFI is self-protecting
 CFI checks the targets of jump, so it can prevent unsafe CFTs that attempt to jump just

beyond CFI checks
 In PittSFIeld, this was achieved by ensuring that the check and access operations were within

the same bundle

– Jumps can only go to the beginning of a bundle, so you can’t jump between check and use

 Because of this, SFI and CFI provide a foundation for securing untrusted code using
inline checks.

 CFI can also be applied to protect against control-flow hijack attacks
 Jump to injected code (easy)
 Return to libc (most obvious cases are easy)
 Return-oriented programming (requires considerable effort to devise ROP attacks that can

defeat CFI)

 In addition:
 IRM code should not assume that untrusted code will follow ABI conventions on

register use
 IRM code should use a separate stack

 To prevent return-to-libc style attacks within IRM code

CFI Implementation Strategies

 Approach 1 (proposed in the original CFI paper)
 Associate a constant index with each CFT target
 Verify this index before each CFT

 Ideal for fine-grained approach, where static analysis has computed
all potential targets of each indirect CFT instruction

 Issues
 If locations L1 and L2 can be targets of an indirect CFT, then both

locations should be given the same index
 If another CFT can go to either L2 or L3, then all three must have

same index
 A particular problem when you consider returns

– Accuracy can be improved by using a stack, but then you run into the
same compatibility issues as stacksmashing defenses that store a second
copy of return address

CFI Instrumentation

•Method (a): unsafe, since ID is embedded in callsite (could be used by attacker)
•Method (b): safe, but pollute the data cache

CFI Implementation

 CFG construction is conservative
 Each computed call instruction may go to ANY function

whose address is taken (too coarse)
 Discover those functions by checking relocation entries.

 Won’t work on stripped code

CFI Assumption

 UNQ: Unique IDs.
 choose longer ID to prevent ensure the uniqueness
 Otherwise: jump in the middle of a instruction or arbitrary

place (in data or code)
 NWC: Non-Writable Code.

 Code could not be modified. Otherwise, verifier is
meaningless, thus all the work is meaningless……

 NXD: Non-Executable Data
 Otherwise, attacker can execute data that begins with a

correct ID.

All the assumptions should hold. Otherwise, this
CFI implementation can be defeated.

CFI Implementation Strategies

 Approach 2
 Use an array V indexed by address, and holding the

following values
 Function_begin, Valid_return, Valid_target, Invalid

 A call to target X is permitted if V[X] == Function_begin
 A return to target X is permitted if V[X] == Valid_return
 A jump to target X is permitted if V[X] != Invalid
 Otherwise, CFT is not permitted

 Note that CFI implementations need only check indirect CFTs

SFI, CFI and Follow-ups
 SFI originally implemented for RISC instruction set, later

extended to x86
 Efficient implementation on x86, x86-64 and ARM architectures have

been the focus of recent works

 CFI originally implemented using Microsoft’s Phoenix
compiler framework

 Binary instrumentation requires a lot of information unavailable in
normal binaries, and hence reliance on specific compiler

 But the concept has had broad impact

 Google’s Native Client (NaCl) project is the most visible
application of SFI and CFI techniques

 Supports untrusted native code in browsers
 Part of recent WebAssembly standard

 Included in Firefox 52 and later

https://en.wikipedia.org/wiki/WebAssembly

Motivation

 Browsers already allow Javascript code from
arbitrary sites, but its performance is inadequate
for some applications

 Games
 Fluid dynamics (physics simulation)

 Permitting native code from arbitrary sites is too
dangerous!

Native Client

 Sandboxed environment for execution of native
code. Two parts:

 SFI using x86 segment as inner sandbox
 Runtime for allowing safe operations from outer sandbox

 Good runtime facilities
 Multi-threading support
 IPC: PPAPI
 Performance: 5% overhead on average

Service Runtime

System Architecture

Guest
data

Guest
Code

Browser Process

PPAPI
IMC

JavaScript
Native
Client
Module

Native
Client
Process

Native
Client
Plug-in

untrusted

Design

 Inner Sandbox
 Static verification to ensure all security properties hold for

the untrusted code
 32-byte instruction bundles to ensure CFI
 Trampoline/springboard to allow safe control transfer from

untrusted to trusted and vice versa
 Runtime Facilities

 Safe execution of possible “unsafe” operations
 Inter module communication: PPAPI & IMC

Binary Constraints & Properties

 Constraints
 No self modifying code
 Static linked with a fix start address of text segment
 All indirect control transfer use nacljmp instruction
 The binary is padded up to the nearest page with hlt
 No instructions overlap 32-byte boundary
 All instructions are reachable by fall-through disassembly from

starting address
 All direct control transfers target valid instructions

Control Flow Integrity

 All control transfers must target an instruction
identified during disassembly

 Direct control flow
 Target should be one of reachable instructions

 Indirect Control flow
 Segmented support (works because a fix start address)
 No returns
 Limit target to 32 byte boundary (nacljmp on the right)

jmp eax -> and eax,0xffffffe0
 jmp eax

 Nacljmp is atomic

Data Integrity

 Segmented memory support

 Limited instruction set (no assignment to
segment register)

 i.e. move ds, ax is forbidden

	Securing Untrusted Code
	Untrusted Code
	Reference Monitors
	Types of Reference Monitors
	System-call based RMs
	Why monitor system calls?
	Some drawbacks of system calls
	Linux Security Module Framework
	System call interposition approaches
	Inline Reference Monitors (IRMs)
	Securing RMs in the same address space
	Background
	SFI [Wahbe et al 1994]
	Slide 14
	Software Fault Isolation
	Segment Matching
	Slide 17
	Optimization 1: Address Sandboxing
	Address Sandboxing
	Optimization 2: Guarding pages
	Data sharing
	Slide 22
	SFI details (continued)
	SFI for CISC Architectures (x86)
	Slide 25
	Solution to Problem 2
	Control-flow Integrity (CFI) [Ligatti et al]
	CFI (Continued)
	CFI Implementation Strategies
	CFI Instrumentation
	CFI Implementation
	CFI Assumption
	Slide 33
	SFI, CFI and Follow-ups
	Motivation
	Native Client
	System Architecture
	Design
	Binary Constraints & Properties
	Control Flow Integrity
	Data Integrity

