
SECURING UNTRUSTED AND MALICIOUS SOFTWARE

INTRODUCTION

The first question that arises is “What do we mean by "security" and by "securing" software.”  
One way of defining the phrase "securing software" is enforcing a desired policy. This definition 
would then entail the capability of specifying the policy, which defines what this software can 
and cannot do.

Note that at the conceptual level, there is no difference between a policy for securing untrusted 
software from the ones studied earlier, say, MAC, DAC, Role-Based policies etc. However, when it 
comes to securing the untrusted software, there exists a need for finer granularity and deeper 
level of control than the standard operating system primitives.

Security policies can be enforced using the concept of reference monitor. The reference monitor 
should be protected from being compromised by untrusted code. 

One of the properties that’s required of the reference monitor is that of "complete mediation". 
The requirement basically says that the reference monitor should be able to intercept/examine 
every operation that is being made by the code under inspection. The idea is that if certain 
operations are missed out, then it would possibly result in a failure to enforce the security policy.

There are two basic types of reference monitors (RM)

Reference-Monitor

                               

         Inline External/Protected (non-inline)
  (Same address-space as monitored code)      (RM's address space protected from monitored 
code)

OS kernel        Separate Process

* Inline Reference Monitor (IRM) - IRM runs in the same address-space as the code on which 
the policy is to be enforced. The key issue here is that a mechanism is needed to protect 
the data and control flow used by the monitor from being compromised by monitored 
code.

* External/Protected Reference Monitor – In non-inline reference monitors, the reference 
monitor is in a protected address-space. That can be either within the OS Kernel or a 
separate address-space.

The main distinction is that in an external/Protected RM, the monitored code cannot affect 
the data and/or the control flow of the monitor. While in the IRM, the monitor and the 
monitored code are in the same address-space and an explicit mechanism is needed for 
protection of the integrity of RM.

However, do note there are advantages of IRM over non-inline Monitors:



* Performance. In case of non-inline monitors, a context-switch occurs each time a check 
needs to be performed. This leads to a loss of performance in External monitors

* In non-inline reference monitors, the monitored code needs to be stopped when its data is 
in consistent state so that the necessary checks can be performed. 

This is not an issue when the checks happen once in a while. However with finer 
granularity checks, (say) checks after execution of every single instruction of the 
monitored code, the context-switches can be quite expensive and performance suffers. 
(On a typical processor, a context-switch involves few-thousand instructions.)

* The main question then arises as to at what granularity should the checks be performed.

For example,  In StackGuard, every function call and return is monitored. Note that every 
function has only few tens to hundreds of instructions. Hence if we have context-switches 
at similar granularity, that is for function call and return, then performance would not be 
good (again because context-switches are far more expensive)

GRANULARITY W.R.T. EXTERNAL MONITORS:

MONITORING SYSTEM-CALL:

* Another feasible granularity level can be enforcing policy at system call level. 

* Monitoring at system-call is a "natural" way of enforcing policy using a non-inline 
monitor. Following are some of the reasons:

1. RIGHT GRANULARITY

* When a system call is performed, there is already a context-switch in progress. The 
control is being transferred to the kernel. Checks at this junction would thus prevent 
additional overheads.

2. System calls are designed in a way that allows policies to be expressed easily.

(a) In a well designed OS, the number of system-calls is relatively less, measured 
in few hundreds. 

For example: Linux has 319 system calls, FreeBSD has 330. Thus the number 
of operations that need to be monitored is reasonably small.

(b) System calls are designed to be orthogonal. There is just one system call for 
a specific purpose. Suppose, to the contrary, there are 10 different ways of 
doing the same thing. In such a case, if that thing is to be prevented, then 
the policy would have to examine all the 10 different methods 

    (c)        Since the system-calls incorporate the concept of user-space and kernel-
                           address-space, the issue of what data is relevant and what needs to be
                           monitored is reasonably well-defined. 

For instance, if a file is to be opened, the relevant data are the 
parameters to the system call. Hence there is no need to examine any other 
data in the monitored process's address-space. However, if process's data is 
monitored independently, we could have a TOCTTOU (Time of Check to Time 



of Use) issues. Especially in multi-threaded processes, where the check could 
ensure the correctness of data at a specific time, only to have the data 
changed by another thread by the time of use of that data.

                 (d)         System calls are understood by a larger set of people than those that
                              understand kernel internals. This means that more people are likely to be able
                              to write system call policies, as opposed to policies based on deeper events 
                              within the OS kernel. For instance, the Linux Security Module (LSM) on Linux
                              defines several security related events within the OS. This need for expertise
                              makes it more difficult to write policies. (It should be noted, though, that if 
one
                              has the expertise, then LSM can avoid several pitfalls associated with system
                              call policies.)

MORE ABOUT THE RIGHT ABSTRACTIONS (Side discussion)

To clarify this point, consider the following example:

Example: 

In SELinux, these monitoring operations have been moved deeper inside the 
operating system. 

The basic goal of SELinux is the same. That is, enforcement of the security policy on 
user-level processes. In a way, this is a better approach, because it’s closer to the 
resources.

Moreover, on the system-call level, when a policy needs to be specified, there arise 
certain issues: 

For example:  name to object translation in the operating system. We might want to 
specify that a certain file should not be modifiable. At times we need to protect the 
name of the object, at other times we need to protect the object itself without any 
regard for the name. 

This distinction is hard to express at the system-call level. Certain system-calls use 
file-name while others use file-descriptors. However when within the kernel, we can 
be more specific about the operation intended.

However the key point is that there are also disadvantages to such an approach.

DISADVANTAGES OF SELINUX APPROACH:

* There are a lot more operations inside the kernel and thus specifying a policy 
becomes more complicated.

* The policy (specified using SELinux) is very closely coupled to the operating 
system. 

SELinux uses a Linux Security Module which identifies the places within the 
kernel where the security checks should be performed and provides a 
framework/programming-environment to develop a reference monitor. Thus 



each time a security sensitive operation is to be performed; the reference 
monitor is called with all the relevant parameters. 

Thus when writing the reference monitor, we would need to know the points 
in the kernel where the security policy has to be enforced and understand 
what each interception point means.

As compared to this, then system call level granularity has the following 
advantages:

ADVANTAGE OF SYS-CALL GRANULARITY:

In comparison to the above, while writing policies at the system call layer, although 
some level of system knowledge is required (for example, file-manipulation in 
windows is different from unix), the system call interface generally tends to be the 
same across Unix-flavors of operating-systems. 

Thus sys-call based policies are easier to write as compared utilizing hooks with 
operating system to enforce policy.

3. CAN BE DONE WITH EXISTING OS'ES

Another important point is that this technique can be implemented on existing 
operating systems. 

System calls are basically a software interrupts that get dispatched to appropriate 
kernel routines. Thus, in principle, there exists a dispatch table to guide these 
system-calls. By replacing this table with another table of choice, we could 
effectively intercept all systems calls.

Thus there exists a backward compatibility in implemented a system-call level 
reference monitor

* For all these reasons, system-call interception, that is having system-call level granularity, 
is quite popular and a lot of research has focused on the use of this technique. On Linux, 
LSM is very popular as well; but on Windows, security tools rely much more commonly on 
system call interception.

MECHANISMS FOR SYSTEM CALL INTERCEPTION:

* The following is a classification for mechanisms for implementing system-call interception.

MECHANISMS FOR SYSTEM-CALL INTERCEPTION

In-kernel User-Level

-  Hard to Program

+ Secure

+ Good Performance



Library-Interception Kernel Supported Interception

+ Easy to Program + Easy to program

- Not Secure + Secure

+ Good Performance - Bad performance 

I KERNEL-LEVEL SYSTEM-CALL INTERCEPTION:

* This method involved doing call interception in the kernel, say,  by replacing the 
system-call dispatch table with one that routes the system call via the monitoring 
code for every system call. In fact, a number of security tools including anti-virus 
and application firewall products operate by doing system call interception at some 
level. 

ADVANTAGE:

* Good performance. Since there is no context switch and just the data is being 
routed through another method in the kernel.

DISADVANTAGES:

* Kernel coding is much more difficult as opposed to user-level code.

* Operating Systems may not support replacing system call tables because this 
capability can be exploited by malicious code. 

For example: Rootkits. The objective of a rootkit is to hide its presence from typical 
system monitoring tools, and to carry out their malicious activities while remaining hidden. 
Rootkits may be used to hide the presence of spyware or bot software on a system. 

A popular way of implementing rootkits is to intercept system calls made by any 
process. So for example if any directory is being listed, the rootkit would intercept 
the data returned by the system call (used for directory listing) and remove any 
root-kit related files from the result. A similar strategy can be used to hide the 
presence of rootkit processes from process monitoring utilities. 

Thus on Linux, the symbol that denotes this system-call table is not visible. Thus 
within the kernel, we cannot refer to this table by name. (But we can search for the 
table based on some kind of pattern matching on its contents.) On Vista too, the 
dispatch table was supposed to be protected, but this was relaxed later on since AV 
vendors complained. 

II USER-LEVEL SYSTEM CALL INTERCEPTION:

1. Library-Interception:

* This method implies intercepting system calls by intercepting calls to the user-level 
library that makes the system call. This is because in a typical operating system, 
programs do not directly make system calls. Making a system call usually involves 
setting up the appropriate registers and executing the software interrupt 



instruction. Hence it is easier to place this code in a library and for the user 
programs to call these library functions.  

In Linux, this library is "libc". In Windows, similar role is played by "ntdll.dll". 

* The basic idea is that while searching libraries, the OS searches for a specified set 
of directories. In Linux, the environment variable "LD_LIBRARY_PATH" stores the 
path of the directories to be searched for libraries. Thus by placing the 
instrumented library (which will intercept system calls and invoke the reference 
monitor on each call) earlier in the path, calls to libc can be intercepted.

NOTE:

Just as an aside, on Windows, the system call interface is not public and it not 
documented by Microsoft. Parts of the interface have been reverse-engineered and 
documented by third parties, but not the complete interface. Even for those 
operations that are documented, not all parameters are documented. The 
documented library is the Win32 library (kernel32.dll). As a result, there are many 
tools on Windows that rely on library interception of calls to this API.

ADVANTAGES/DISADVANTAGES of library interception:

* Performance. Since there is no context-switch involved, performance is adequate.

* Since this is at user-space, coding is relatively easier as compared to Kernel-level 
coding.

DISADVANTAGES:

* The main disadvantage is that this is not a secure mechanism. That is an untrusted 
code cannot be relied on to use this library. It could directly make system calls on 
its own. (On UNIX, such direct system calls are the most common means used by 
exploit code. On Windows, the use of Windows API is more common.)

* Even if the instrumented library is used, the checker is still running in the untrusted 
code's address-space and thus the code could again easily compromise the checks.

* As a result, this mechanism is inappropriate for use with untrusted code, or trusted 
code that contains an arbitrary code injection vulnerability.  But it can be used on 
benign applications (which are trusted not to be malicious) that do not suffer from 
code injection vulnerabilities, or have been protected against injected code attacks.

Consider a program written in Java or PHP, there do not exist binary code-injection 
vulnerabilities. However these might have injection of script-code. These are fine 
because launching of such scripts still requires benign code to make a system call 
or a function call. These operations can still be monitored --- since the benign code 
has not been compromised in any way before this call, it is reasonable to assume 
that it will not attempt to defeat library interception mechanisms.

As a concrete example, consider an information flow policy that dictates that 
untrusted data should not be read or executed by a benign program. This means 
that there is no mechanism to exploit any vulnerabilities in this program to 
circumvent a reference monitor that enforces this policy using library interception.



EXAMPLE (OF LIBRARY-INTERCEPTION TECHNIQUE):

* In Windows, at times security tools including anti-virus tools use library interception 
method. Since the system-call interface is undocumented it becomes difficult to 
decide what should be allowed and what should not be allowed. Hence there is fair 
amount of usage of library-call interception method as a protection even against 
malicious/untrusted code, simply because having some protection is better than 
having no protection at all.

Of course, the flip-side is that having a false sense of security brought about by 
such a protection mechanism may cause more harm than good. 

2. Kernel supported Interception user-level:

* Many UNIX-based operating systems provide kernel support for performing system 
call interception at the user-level.

* For example: In Solaris, there is a “proc” mechanism, which helps with system call 
interception. In Linux, we have the "ptrace" mechnism.

Ptrace is available in all Unix-based operating systems and had been originally 
provided for the purposes of debugging. This facility in Linux has been expanded to 
provide a way to intercept system calls as well.

* The basic idea is to have a "debugger" process examine the memory/state of the 
"debugged" process. Typical operations are "peek" (examining memory contents) 
and "poke" (modifying the state of the debugged process). Examining the registers 
of the process and single-stepping are other capabilities.

• The debugger can set "break-point" at desired points in the process under observation. 
This breakpoint can be set by writing (say) an invalid instruction at the desired 
breakpoint location. When the debugged process runs, when the breakpoint 
instruction is executed, a UNIX signal will be generated. Ptrace allows the 
debugger process to intercept this signal. At this point, it can examine memory 
interactively as desired by the user.

User-space

           
Entry                        System-call entry System-call exit

                and Exit notifications

Kernel-space

DIAGRAM FOR THE PTRACE OPERATIONS

       Monitoring Process        Monitored Process



* The ptrace interface has a couple of instructions which instruct/allow the monitored 
process to run until it makes a system call. When the process makes a system call, 
the control is handed over to the debugger/monitoring process.

 The monitor can then examine the system call being invoked, the parameters 
being passed to the system call and can even modify the register values and thus 
the parameters if it so wishes.

* Once the system-call is executed, the monitor is again notified of the result. Thus 
the monitor can again examine the results and also modify them if need be. 

DISADVANTAGES of kernel-assisted user-level interception:

* The disadvantage of this method is the extra context-switches. For every system 
call there are two additional context switches (as compared to a purely in-kernel 
approach). Thus for processes that make a lot of system calls, the slowdown factor 
can be significant, sometimes more than 100%.

ADVANTAGES:

* The monitoring code is running at user-level and thus is relatively easy to 
implement.

* The mechanism is secure, and can be used with untrusted code.

III HYBRID TECHNIQUES:

* The basic idea of hybrid techniques is to improve performance by cutting down on 
the number of context-switches. Thus if the number of context-switches (in the 
ptrace mechanism) could be reduced by (say) a factor of 10, then performance 
would not be an issue.

* Thus if we can ensure that the most frequent operations are checked in the kernel 
and the rest of the operations are monitored at the user-level, we can achieve best 
of both worlds. 

* Thus for example, we could have a policy that dictates that reads and writes are not 
security sensitive, and that only file open operations need to be checked. Thus 
reads-writes need not be sent to the user-level at all. On the other hand file-open 
operations can be sent to a user-level monitor.

If reads-writes comprise 70-80% of the system-calls and only 20-30 % operations 
are file opens, then the improvement in performance is considerable.

INLINE REFERENCE MONITORS

ADVANTAGES

* Finer granularity
* Good Performance
* Much Better visibility: 



The basic concept is that if we are running in the same address space then its much 
easier to understand and interpret memory contents, as opposed to running in a 
different address space. 

DISADVANTAGES:

* Separate mechanism to protect reference monitor's data/logic. Note that the 
traditional solution to this problem, protecting data and code of process, called for 
each process to have an address-space of its own.

* Many years ago a technique called SOFTWARE-BASED FAULT-ISOLATION was
                    developed. 

In operating systems, in addition to security, there is another reason for having 
separate address-spaces. And that is fault-isolation. For example if one process 
corrupts its memory state, with separate address-spaces for kernel and other 
processes, those remain uncorrupted.

For example: Windows-95 did not have separate address spaces for kernel and
                     processes. This contributed to system instability.  

Hence the term "fault-isolation" is used synonymously with memory-protection

* The basic idea of this technique is that software-based techniques are used to 
enforce memory protection. 

*  The technique involved two components as follows:

SOFTWARE-BASED FAULT-ISOLATION

 Compiler  Verifier

* Generate code that checks                   Needed because the code is 
compiled

the target of each memory reference     at a different site; the site running 
the
                                                                                               code may not trust the compiler.

The compiler would generate code such that before the monitored process performs any 
memory access, (say) a write, checks would be performed to ensure that the location of the write 
was permissible, (say) was not within a certain range (that is used to store IRM's data and/or 
code). 

Another important point to note is that code could still evade the all the memory checks (say) by 
jumping over the memory checks and thus skipping the checks. Hence another important point  
is for the verifier to ensure that the code should not evade the checks by jumping over them.

The above requirement is a pretty difficult one. The software-based fault isolation technique was 
originally developed for RISC instruction sets where problems are generally simpler including the 
disassembly of binary code.  The way the above technique was implemented in the original work 
was that a register was dedicated for all memory accesses. This register was always guaranteed 



to contain a valid address before any control-flow transfer instruction. Hence, even if jumps 
attempted to jump to a location after the check, it is OK since the register contents are 
guaranteed at the point of jump, i.e., it points to memory allowed to be accessed by the code. 

An alternative approach is to statically analyze all control flow transfers and ensure that there 
are no jumps that bypass the memory checks. But this is hard to do --- there are indirect jumps, 
calls and returns, and their targets cannot be statically checked easily. (In the next lecture, we 
will talk about a technique called “control-flow integrity” that attempts to do this.)


