
Covert Channels and
Side-Channel Attacks

2

Covert Channels

 Confidential information may be leaked via
channels that may be missed easily

 Implicit flows in a program
 Timing channels
 Steganographic techniques

 Examples
 transmit info by file name or metadata (e.g., timestamp)

Information retrieved by checking file presence or stat
– No need to read the file (or have read permissions on the file)

 “Port-knocking”
Transmit info by probing network ports in a certain sequence

 tcp acks or retransmissions, packet fragmentation, …

3

Side-channel attacks

 Critical info may be leaked inadvertently
 Error messages, e.g., invalid username vs password
 Timing information

How long it took to verify a password
How long it took to encrypt a number
Virtualization overhead for computation vs I/O

 Power-monitoring attacks
Use thermal imaging of a chip to monitor which circuits are being used
and/or how much power is being used

Or simply monitor the power supply
 Differential fault analysis

Force a particular fault (e.g., make a data line to be a “1” always) and
examine how the program changes its behavior.

 Last two attacks motivate tamper-resistance in the context of building
secure devices

Military equipment used in the field
Other devices that carry secrets and may be lost

4

Emanations

 Electromagnetic emanations
 In old days, CRTs produced a lot of emanations that can

be used to figure out what someone is doing from a
distance

 Keyboard emanations
 Researchers have shown it is possible to steal

passwords using a microphone in a nearby office!

 Power-line emanations
 Correlates fluctuations in power use (or EM waves on

the powerline) with computations being performed

 Snooping using telescopes
 Not just on-screen images, but reflections on a cup etc.

5

Remanence

 malloc after free, or reuse of stack variables
 Exposes secrets that may be private to one program component to

another.

 Allocation of physical page for one process after it is
used by another process

 Exposes secrets across processes
 Can be avoided by immediately erasing confidential data

Beware: the compiler may eliminate this during optimization
Cache contents are flushed across process switch, so not a problem

 Retained memory contents after power off
 Residual effects on hard drives

 may be data is just unlinked, not even overwritten
 even after overwrite, it is often possible to recover old data

Network-Based Attacks

7

Historical ...

No powerful infrastructure for attackers to use
 Typically, single host with dial-up access

Needed to exploit vulnerabilities in protocol
implementations to carry out effective attacks

IP-layer
 Teardrop: overlapping IP fragments

ICMP
 Ping of death: Oversized ICMP ECHO packets
 Smurf: ICMP ECHO REPLY Flood

TCP
 SYN-flooding
 IP-spoofing

8

More Recent Attacks

Distributed Denial of Service (DDoS)
 Attacks carried out by a large number of “bots” that were previously

compromised by the attacker
 Bots run software (installed by attacker) that permit the attacker to

command them
 Bots initiate connections to avoid being noticed

 make use of common protocols such as IRC or WWW
 Bots don’t need to hide their identity

 but it does help, as it allows them to operate longer before
 being discovered and taken down

 Bots can carry out any attack, but most common are attacks that saturate a
victim’s network link

 The victim can do nothing to protect itself – it needs network help
Bots can be used for other things besides DDoS

 SPAM
Reflection attacks

 Bots send a query to well-known servers (e.g., DNS) all over the world with
the spoofed IP-address of the victim

9

Self-propagating Attacks

E-mail viruses
 Started with Melissa (1999)

 Cost of clean-up: $10 billion!

 Recently, email viruses used to establish backdoors
 These are later used to deploy more sinister malware

 Most email viruses exploit “social engineering”
 Solution to such attacks necessarily relies on user education

10

Self-propagating Attacks

Worms
 Morris – over 6000 hosts (1988)
 Code Red -- ~300K hosts (2001)
 Nimda -- ~200K (2001)
 Slammer -- ~75K hosts in 10 minutes! (2003)

11

Types of worms

Differences arise primarily due to scanning and
propagation techniques

 Random scanning
 Localized scanning
 Pregenerated hit lists
 Permutation scanning

 Combining hit lists with permutation scanning can produce
 Warhol worms that can spread within 15 minutes!

 Topologically-aware
 Flash worms (spreads in one minute or less!)

Multi-vector (contagion worm)
 Spread from server to client, and then from client to server
 Nimda (email, IIS vulnerability, browser vulnerability, and other

vulnerabilities and backdoors)

For more details, see
 “How to 0wn the Internet in your spare time,” 2002 USENIX Security

Symposium

12

Classes of Attacks

Probing: Reconnaissance before attack
 Port sweeps
 OS/application finger printing

Denial of Service (DoS)
Privilege escalation

 Remote to user
 attacker without any access to the victim machine gains
 access as a normal user, e.g., userid nobody

 User to root
 attacker with access as normal user gains administrative
 privileges through an attack

 These two privilege escalation attacks may be chained
 Remote-to-user attacks typically exploit server applications (e.g.,

web server), while user-to-root attacks exploit other applications.
 They are rarely caused by OS errors or errors in network

protocol implementations

13

Techniques for protecting networks

Firewalls
 Expose only the most secure servers that need to be accessible from

outside
 Limit access to those users that need access
 Use VPN/NAT

Server configuration
 If possible, enable firewall capability on server
 Use service configuration tools (e.g., /etc/inetd.conf) to limit access to only

those servers that need to be accessible
 Never underestimate the importance of backups
 Key: Data integrity is often much more important than confidentiality in

commercial and educational enterprises
 Pay attention to file system permission settings
 patch server software
 Do not install non-essential software/services
 Virus detection
 File system integrity checks (detect Trojan software)

14

Techniques for protecting networks

Auditing
 Maintain careful logs of all accesses

 on firewalls, servers, desktops, …

Vulnerability analysis
 scan for network/software vulnerabilities

Intrusion detection
 The technique of last resort

Intrusion Detection

16

Intrusion Detection

Some attacks will get through in spite of every
protection measure. Intrusion detection is
targeted to detect such attacks.

Detection is a solution of last resort

Assumption: Behavior of a system changes
when it is subjected to attack

Approach: Detect these changes in behavior

17

Intrusion Detection Issues

Detection rate
 What fraction of attacks are detected

False alarm rate
 May be measured in multiple ways

 how many false alarms per day
 what fraction of normal behavior is flagged as attack
 what fraction of behavior reported as attack
 is not an attack

 Considerable disagreement on which measure to use
 but the third criteria is probably the best
 But IDS vendors (and may be researchers) don’t like it

– Will you buy a system will FA rate of 98%?
– But you may not mind 10 false alarms a day!

18

Intrusion Detection Techniques

Anomaly detection
 Use machine learning techniques to develop a profile of normal

behavior
 Detect deviations from this behavior
 Can detect unknown attacks, but have high FA rate

Misuse detection
 Codify patterns of misuse
 Attack behaviors usually captured using signatures
 Can provide lower false alarm rate, but ineffective for unknown

attacks

Behavior (or policy) based detection
 Specify allowable behavior, detect deviations from specifications
 Can detect new attacks with low FA, but policy selection is hard

19

Intrusion Detection Algorithms

Pattern-matching
 Most commonly used in misuse and behavior based

techniques

Machine-learning
 Statistical
 Algorithmic
 Neural networks and other techniques

20

Intrusion Detection Behaviors

Behaviors of
 Users
 Systems

 processes, kernel modules, hosts, networks, …

21

Intrusion Detection Observation Points

Network-based (Network intrusion detection systems)
 Benefits

 Unintrusive: plug a dedicated NIDS device on the network
 Centralized monitoring

 Problems
 Encryption
 Level of abstraction too low
 Difference between data observed by NIDS and victim app.

Host-based
 Strengths/weaknesses complementary to NIDS
 May be based on

 system-call interception
 audit logs and other log files
 file system integrity (TripWire)
 keystrokes, commands, etc.

22

Network Intrusion Detection

Packet-based Vs Session-based

Signature-based Vs Anomaly detection

Example: SNORT (open source)
 Uses pattern-matching on individual packets

Some systems can block offending traffic
 This is often dangerous, as systems usually have high

false alarm rates

23

Host-based Intrusion detection

System-call based characterizations most
popular
Behavior-based

 System-call interposition plus wrappers
 Domain/Type Enforcement

 Certain application classes can access only certain files
 Can prevent many privilege escalation attacks
 Used in SELinux

Anomaly detection
 Sequences (finite-length strings) of system calls
 FSA and PDA models of behavior
 System call arguments

Automata Models for
Learning Program Behaviors

25

Background

Forrest et al showed that system call
sequences provide an accurate and
convenient way to capture security-relevant
program behaviors

 Subsequent research has further strengthened this
result

Key problem:
 What is a good way to represent/learn information

about system call sequences?
Issues: compactness, accuracy, performance, …

26

Early Research

Forrest et al [1999] compared several methods
for learning system call sequences

 Memorize subsequences of length N (N-grams)
 Markov models
 Data-mining (using RIPPER)

N-grams found to be most appropriate
 Markov models provided a slight increase in

accuracy, but incurred much higher overheads

27

Illustration of N-gram Method
1. S0;

2. while (..) {

3. S1;

4. if (...) S2;

5. else S3;

6. if (S4) ... ;

7. else S2;

8. S5;

9. }

10. S3;

11. S4;

3-grams learnt:
 S0 S1 S2
 S1 S2 S4
 S2 S4 S5
 S4 S5 S1
 S5 S1 S3
 S1 S3 S4
 S3 S4 S2
 S4 S2 S5
 S2 S5 S3
 S5 S3 S4

Sample execution:
•S0 S1 S2 S4 S5
 S1 S3 S4 S2 S5 S3 S4
•S0 S3 S4

•S0 S3 S4

28

Drawbacks of N-gram Method

Number of N-grams grows exponentially
 N must be small in practice (N=6 suggested)
 Implication: difficult to capture long-term correlations

S0 S3 S4 S2 never produced by program, but all of the 3-
grams in this sequence are

Remembers exact set of N-grams seen during
training --- no generalization

 necessitates long training periods, or a high rate of false
alarms

29

Models without Length Limitations

 Finite-state automata
 Even an infinite number of sequences of unbounded length can be

represented
 Naturally capture program structures such as loops, if-then-else, etc.

 Extended finite-state automata
 FSA + a finite number of state variables that can remember event

arguments
 Push-down automata

 By capturing call-return info:
 PDAs are more accurate than FSM
 Models are hierarchical and modular:

– Hierarchical nature facilitates presentation
– Smaller program models
– Reuse of models for libraries

 Extend PDAs to incorporate variables

30

Model extraction approaches

Static analysis [Wagner and Dean]
 Pros: conservative
 Cons:

 difficult to infer data values, e.g., file names
 difficult to deal with libraries, dynamic linking, etc.
 overly conservative

– for intrusion detection, can detect only attacks that are outside of
 the semantic model used for analysis
– specifically, buffer overflows, meta character attacks, etc

Machine learning by runtime monitoring
 Pros:

 can detect a much wider range of attacks
 can deal with libraries, dynamic linking
 inferring data values is easier

 Cons:
 False positives

31

Difficulty in Learning FSA from Strings
Strings do not provide any information about
internal states of an FSA

 given S1 S2 S3 S2, which of the following FSA
should we use?

S1 S2 S3 S2 S1
S2

S3

•what is the criteria for determining the “better” FSA?
•even if we can answer this, the answer will depend on
additional examples

• e.g., sequences S1 S2 and S1 S2 S3 S2 S3 S2 will
suggest that the second FSA is the right one

 Learning FSA from sequences is computationally intractable
 [Kearns & Valiant 89, Pitt & Warmuth 89]

32

Learning FSA Models: Graybox Techniques

Key insight:

For learning program behaviors, additional
information can be used to simplify the
problem:

 exploit program counter value to
 obtain state information

33

Learning FSA Models

 1: S0;

 2: while (…) {

 3: S1;

 4: if (…)

 5: S2;

 6: else

 7: S3;

 8: S4;

 9: }

10: S5;

0

S5

10S53S1

5
S2

7
S3

8

S4

S4

1S0

S1

A sample intercepted program behavior:

 (S0,1) (S1,3) (S2,5) (S4,8) (S1,3) (S3,7)
 (S4,8) (S5,10)

34

Approach Details

Interception of system calls using ptrace (Linux)
 same mechanism used by Forrest and other researchers

Examine process stack to obtain program counter
information

Shared libraries and ASLR pose a problem
 same function may be loaded at different locations during different

runs
 Solution: use program counter value corresponding to the code

calling the dynamically loaded library
 Side benefit: ignoring library behavior makes FSA more compact

35

Approach Details (Continued)

Fork: Parent and child monitored with same FSA,
but process contexts maintained

Exec: typically, a new FSA for the execve’d
program is used.

Detection time
 mismatch may occur in terms of either the system call or

program location
 use leaky bucket algorithm for aggregation
 program counter helps resynchronize even after

observing behavior not seen during training

36

37

Training Convergence
FSA method converges faster than N-grams

 roughly speaking, FSA method can do with roughly an order of
magnitude less training period than N-gram method

38

False Positive Rate
FP results are similar to convergence

 for a given FP rate, FSA method requires an order of
magnitude less training than N-gram method

39

Extracting PDA models

Basic idea: Examine the entire call stack, not just the
most recent return address

 FSA technique already does this partially to discard library
behaviors

This enables call/returns to be identified
 Not all calls/returns captured, since our visibility is limited to system-

call invocation points

[Gao et al 2004] develops such a PDA technique

[Feng et al 2003] developed an alternative stack-based
model called VtPath

Giffin et al develop similar techniques, but based on
static analysis rather than runtime learning

40

PDA Vs FSA models

 FSA models don’t capture call-returns accurately
 They are both represented as “goto” transitions
 Resulting model admits behaviors where a function invoked from

one program location can return to any other call site
 “Impossible Path Problem”

 Inaccuracies due to libraries
 Libraries are essentially “inlined” at their call site

 All system calls become “self-loops” at call site, causing accuracy
loss

 Behavior of a library function has to be learnt independently at
each call site – impacts convergence

 Use of “wrapper” functions poses a problem for FSA
technique

41

Mimicry Attacks

Attacks crafted with knowledge of IDS
Execute only system call sequences that would be
permitted by the model
A mimicry attack can be developed from an attack
sequence by inserting “junk” system calls that make it
appear as if a legitimate sequence is generated

 Junk system calls made possible by using bad system call
arguments

Graybox IDS complicate mimicry attacks due to the need
to fake call site

 Control does not return to attack code after a call!

But can still be made to work
Known mimicry attacks based on memory
corruption+injected code

42

Learning System Call Arguments

Earlier methods focus on control-flows
 System call sequences (N-grams)
 Automata models of behavior

FSA or PDA, with transitions labeled with system calls
 System call arguments largely ignored

Detects usual control-hijack attacks

Don’t detect most attacks that modify resources access
by a system call

 Non-control data attacks
 Race condition attacks
 Mimicry attacks
 …

CSE 509
Course Summary

44

Cryptography Basics

 Algorithm Vs Key
 Symmetric key ciphers (DES, AES, …)

 Block vs stream ciphers
 Public key techniques (RSA, …)
 Hash functions (MD5, SHA, …)
 Random number generation
 Applications

 Encryption (Block vs Stream Ciphers)
 Key generation
 Authentication
 Digital signatures
 Certificates

45

OS Security: User Authentication

 Something you know (secret), have (badge,
smartcard) or are (biometrics)

 Password-based authentication
 Storing encrypted passwords, Offline/online Dictionary

attacks
 Ease of remembering Vs guessing
 Password theft and trusted path
 Variants and Improvements

Master password (ssh, browsers, …)
One-time passwords
Multi-factor authentication
Visual passwords

46

OS Security: Authentication: Biometrics

 Fraud, insult rates
 Techniques

Handwritten signatures
Fingerprint
Iris
Face
Voice
Speech

 Use in identification Vs authentication

47

OS Security: Access Control

 Discretionary Access Control
 Access control matrix
 ACLs

UNIX permission model
 Capabilities

Limited use in OSes

 Trojan Horse and Mandatory Access Control
 MLS: Bell-La Padula, Biba models

Benefits and drawbacks
 Domain and Type Enforcement

Benefits and drawbacks
SELinux

 Clark-Wilson policy
 Chinese wall policy

 Delegation and trust management

49

Principles of Secure System Design

 Least privilege
 Fail-safe defaults (default deny)
 Economy of mechanism (simplicity => assurance)
 Complete mediation (look out for ways in which an

access control mechanism may be bypassed)
 Open design (no security by obscurity)
 Separation of privilege (similar to separation of duty)
 Least common mechanism (avoid unnecessary sharing)
 Psychological acceptability (onerous security

requirements will be actively subverted by users)

50

Software Vulnerabilities: Memory Errors

 Memory corruption
exploits

 Stack-smashing
 Heap overflows
 Format-string bugs
 Integer overflows

 Exploit defenses
 Canaries
 Separating control data from

other data
 Randomization

Address-space (absolute or
relative address)

Data-space
Instruction-space

 Preventing memory
errors

 Definition of memory error
 Spatial vs Temporal Errors
 Spatial error defenses

“Smart” pointers
Out-of-band metadata
Jones/Kelly
CRED

 Temporal errors
Can be addressed using
garbage collection (where
feasible)

51

 Example attacks
 SQL injection
 Command injection
 XSS
 Path traversal
 Format string bugs
 Memory corruption/code injection attacks

 Defenses
 Static taint analysis
 Runtime fine-grained taint-tracking
 Taint-aware policy enforcement

Injection Vulnerabilities

52

More Software Vulnerabilities …

 Browser attacks
 XSS
 CSRF

 CWE-25
 File-name based attacks

 Symlink attacks
 TOCTTOU attacks

How to succeed in races …

53

Program Transformations for Security

 General idea
 Maintain additional metadata, check policies using this

 Source-to-source transformations
 Guarding techniques
 Absolute and Relative-address randomization
 Full memory error detection
 Fine-grained taint-tracking

54

Program Transformation on Binaries

 Key challenges compared to source code
 Static rewriting

 disassembly techniques and challenges
 rewriting challenges

 Dynamic translation
 Dynamo Rio, Valgrind, Qemu, Pin, …
 How it achieves speed

 Applications
 Program shepherding
 Taint-tracking

 Issues and limitations

55

Static Analysis for Vulnerability Detection

 Techniques to identify potential bugs and
vulnerabilities

 Requires a model of what is good behavior, or
bad behavior

 “Good behaviors” are typically application specific, and
hard to come by

 “Bad behaviors” can be somewhat more generic
 Common software vulnerabilities

– Buffer overflow, SQL injection, …
Inconsistencies

–Access check or locking on some program paths, but not others

56

Static Analysis

 Usually require source code
 Binary code analysis will be quite limited due to absence

of type and bounds information, as well as higher level
control structures

 Most program properties are undecidable
 Static analysis has to approximate in order to terminate.

Approximation means that analysis can be sound or
complete, but not both.

 Sound: Guaranteed to find all vulnerabilities
 Complete: No false positives

57

Static Analysis

 Techniques
 Data-flow analysis
 Abstract interpretation
 Type infererence
 Model-checking

 Key challenges
 False positives and negatives
 Range of properties
 Scalability

How long does it take? How much memory does it need?
State-space explosion

58

Dynamic Analysis

 Manual testing
 Random testing (“fuzz testing”)

 Vulnerabilities often arise due to insufficient testing and optimistic
assumptions about input

 This means that incorrect inputs will cause unexpected behaviors
 Random input will typically cause crashes

Using a debugger or other means, hackers can find additional information to turn
the crash into an exploit

 Coverage-guided fuzzing
 Manually assisted fuzz testing

 In many cases, random inputs don't work, as they get discarded very
early

Most of the code is not exercised

 Better to ensure that some parts of input are valid, so as to traverse
more program paths

Remaining parts of input can be fuzzed

59

Directed Random Testing

 “Intelligent” approach that chooses inputs to
ensure more coverage

 Often based on some form of symbolic execution
Variables left unbound
As conditions are tested, constraints on unbound inputs are gathered,
depending on whether “then” or “else” clause is taken

When multiple conditions are present on the value of a variables, use
a constraint solving procedure to narrow down the range

 Key challenges
Range of constraints that can be handled
state-space explosion
Many approaches choose to bind variables to concrete values when
faced with these problems

 Penetration testing
 Just another name for dynamic vulnerability testing

60

Malicious Code

 Current threat environment: Profit-driven crime
 Types

 Viruses
 Worms
 Spam
 Phishing
 Botnets
 Rootkits
 Spyware
 DDoS
 Extortion
 Cyberwar

61

Malicious code: Stealth Techniques

 Stealth and Obfuscation
 Behavioral obfuscation

Anti-virtualization and anti-analysis techniques
Trigger-driven

 Code obfuscation
Control-flow obfuscation
Data obfuscation
Encryption and packing
Polymorphism
Metamorphism

62

Untrusted code defense

 Untrusted code implies
strong adversary,
requires correspondingly
strong defenses

 Mechanisms
System-call interception

–Techniques and trade-offs

Inline-reference monitors
–Issues, challenges
–Software-based fault-isolation

• RISC and CISC
–Control-flow integrity

 Defenses
 Sandboxing (confinement

policies)
Policies are hard to write!
Indirect attacks!
Example: Native Client

 Isolation
Virtual machines

–VMware, Xen, KVM, Qemu

One-way isolation
–With copy-on-write

Complete isolation
–Smart phones

 Information flow mediation
Vista (one-way)
MLS (two-way)

63

Isolating untrusted code: Virtual machines

 Process Vs Namespace Vs System
virtualization

 Type I and Type II VMMs
 Paravirtualization Vs full virtualization
 Implementation techniques

 Binary translation, paravirtualization, hardware-assisted
virtualization

 Memory virtualization
 Security applications

 Honeypots, sandboxes, malware analysis, high-
assurance Vms

 Protection from compromised OS

64

Untrusted code: Java, Javascript and Browser Security

 Safe languages
 Java
 Type safety, byte-code verification, loader checks
 Sandbox model, stack inspection, doPrivileged
 Javascript
 Type safe language, better integration with browser, security based

on removing OS access

 Browser security
 HTTP protocol (GET/POST), cookies, authentication
 HTML forms, parameters, server-side processing
 Same origin policy, application to scripts, frames, network reads; Ajax

and XmlHttpRequests
 Reflected and persistent XSS; XSS vectors and defenses
 Other injections (HTTP headers, ...)
 CSRF and defenses

65

Side-channel attacks and physical security

 Covert channels
 Intentionally embedded
 Implicit flows, timing, steganographic techniques, ...

 Side channel attacks
 Timing analysis, power monitoring
 Differential fault analysis
 Emanations (keyboard, power,

screen/camera/microphone, shock sensor)
 Remanence

 Physical layer attacks and tamper resistance
 Trusted platform, software attestation

66

Side-channel attacks and physical security

 Covert channels
– Timing, implicit flows, DNS requests, ...

 Side-channels
– Execution time

67

Intrusion Detection

 Network intrusions
 Protocol attacks (Teardrop, Synflood, Smurf, …)
 DDoS
 Botnets
 Reflection attacks
 Worms

 Attack stages
 Probing
 DoS
 Privilege escalation

68

Intrusion Detection

 False positives and negatives
 Observation points:

 Host-based Vs Network intrusion detection
Benefits and drawbacks

 Techniques
 Anomaly detection
 Misuse detection
 Specification-based detection

 Algorithms
 Pattern-matching
 Machine learning

69

Host-based Intrusion Detection

 Models
 Strings, finite state automata, PDA, …
 FSA based technique (using system calls)

 Evasion: Mimicry attacks
 Dataflow Vs Controlflow models

	Network-Based Attacks
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Historical ...
	More Recent Attacks
	Self-propagating Attacks
	Slide 10
	Types of worms
	Classes of Attacks
	Techniques for protecting networks
	Slide 14
	Intrusion Detection
	Slide 16
	Intrusion Detection Issues
	Intrusion Detection Techniques
	Intrusion Detection Algorithms
	Intrusion Detection Behaviors
	Intrusion Detection Observation Points
	Network Intrusion Detection
	Host-based Intrusion detection
	Slide 24
	Background
	Early Research
	Illustration of N-gram Method
	Drawbacks of N-gram Method
	Models without Length Limitations
	Model extraction approaches
	Difficulty in Learning FSA from Strings
	Learning FSA Models: Graybox Techniques
	Learning FSA Models
	Approach Details
	Approach Details (Continued)
	Slide 36
	Training Convergence
	False Positive Rate
	Extracting PDA models
	PDA Vs FSA models
	Mimicry Attacks
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

