
Covert Channels and
Side-Channel Attacks

2

Covert Channels

 Confidential information may be leaked via
channels that may be missed easily

 Implicit flows in a program
 Timing channels
 Steganographic techniques

 Examples
 transmit info by file name or metadata (e.g., timestamp)

Information retrieved by checking file presence or stat
– No need to read the file (or have read permissions on the file)

 “Port-knocking”
Transmit info by probing network ports in a certain sequence

 tcp acks or retransmissions, packet fragmentation, …

3

Side-channel attacks

 Critical info may be leaked inadvertently
 Error messages, e.g., invalid username vs password
 Timing information

How long it took to verify a password
How long it took to encrypt a number
Virtualization overhead for computation vs I/O

 Power-monitoring attacks
Use thermal imaging of a chip to monitor which circuits are being used
and/or how much power is being used

Or simply monitor the power supply
 Differential fault analysis

Force a particular fault (e.g., make a data line to be a “1” always) and
examine how the program changes its behavior.

 Last two attacks motivate tamper-resistance in the context of building
secure devices

Military equipment used in the field
Other devices that carry secrets and may be lost

4

Emanations

 Electromagnetic emanations
 In old days, CRTs produced a lot of emanations that can

be used to figure out what someone is doing from a
distance

 Keyboard emanations
 Researchers have shown it is possible to steal

passwords using a microphone in a nearby office!

 Power-line emanations
 Correlates fluctuations in power use (or EM waves on

the powerline) with computations being performed

 Snooping using telescopes
 Not just on-screen images, but reflections on a cup etc.

5

Remanence

 malloc after free, or reuse of stack variables
 Exposes secrets that may be private to one program component to

another.

 Allocation of physical page for one process after it is
used by another process

 Exposes secrets across processes
 Can be avoided by immediately erasing confidential data

Beware: the compiler may eliminate this during optimization
Cache contents are flushed across process switch, so not a problem

 Retained memory contents after power off
 Residual effects on hard drives

 may be data is just unlinked, not even overwritten
 even after overwrite, it is often possible to recover old data

Network-Based Attacks

7

Historical ...

No powerful infrastructure for attackers to use
 Typically, single host with dial-up access

Needed to exploit vulnerabilities in protocol
implementations to carry out effective attacks

IP-layer
 Teardrop: overlapping IP fragments

ICMP
 Ping of death: Oversized ICMP ECHO packets
 Smurf: ICMP ECHO REPLY Flood

TCP
 SYN-flooding
 IP-spoofing

8

More Recent Attacks

Distributed Denial of Service (DDoS)
 Attacks carried out by a large number of “bots” that were previously

compromised by the attacker
 Bots run software (installed by attacker) that permit the attacker to

command them
 Bots initiate connections to avoid being noticed

 make use of common protocols such as IRC or WWW
 Bots don’t need to hide their identity

 but it does help, as it allows them to operate longer before
 being discovered and taken down

 Bots can carry out any attack, but most common are attacks that saturate a
victim’s network link

 The victim can do nothing to protect itself – it needs network help
Bots can be used for other things besides DDoS

 SPAM
Reflection attacks

 Bots send a query to well-known servers (e.g., DNS) all over the world with
the spoofed IP-address of the victim

9

Self-propagating Attacks

E-mail viruses
 Started with Melissa (1999)

 Cost of clean-up: $10 billion!

 Recently, email viruses used to establish backdoors
 These are later used to deploy more sinister malware

 Most email viruses exploit “social engineering”
 Solution to such attacks necessarily relies on user education

10

Self-propagating Attacks

Worms
 Morris – over 6000 hosts (1988)
 Code Red -- ~300K hosts (2001)
 Nimda -- ~200K (2001)
 Slammer -- ~75K hosts in 10 minutes! (2003)

11

Types of worms

Differences arise primarily due to scanning and
propagation techniques

 Random scanning
 Localized scanning
 Pregenerated hit lists
 Permutation scanning

 Combining hit lists with permutation scanning can produce
 Warhol worms that can spread within 15 minutes!

 Topologically-aware
 Flash worms (spreads in one minute or less!)

Multi-vector (contagion worm)
 Spread from server to client, and then from client to server
 Nimda (email, IIS vulnerability, browser vulnerability, and other

vulnerabilities and backdoors)

For more details, see
 “How to 0wn the Internet in your spare time,” 2002 USENIX Security

Symposium

12

Classes of Attacks

Probing: Reconnaissance before attack
 Port sweeps
 OS/application finger printing

Denial of Service (DoS)
Privilege escalation

 Remote to user
 attacker without any access to the victim machine gains
 access as a normal user, e.g., userid nobody

 User to root
 attacker with access as normal user gains administrative
 privileges through an attack

 These two privilege escalation attacks may be chained
 Remote-to-user attacks typically exploit server applications (e.g.,

web server), while user-to-root attacks exploit other applications.
 They are rarely caused by OS errors or errors in network

protocol implementations

13

Techniques for protecting networks

Firewalls
 Expose only the most secure servers that need to be accessible from

outside
 Limit access to those users that need access
 Use VPN/NAT

Server configuration
 If possible, enable firewall capability on server
 Use service configuration tools (e.g., /etc/inetd.conf) to limit access to only

those servers that need to be accessible
 Never underestimate the importance of backups
 Key: Data integrity is often much more important than confidentiality in

commercial and educational enterprises
 Pay attention to file system permission settings
 patch server software
 Do not install non-essential software/services
 Virus detection
 File system integrity checks (detect Trojan software)

14

Techniques for protecting networks

Auditing
 Maintain careful logs of all accesses

 on firewalls, servers, desktops, …

Vulnerability analysis
 scan for network/software vulnerabilities

Intrusion detection
 The technique of last resort

Intrusion Detection

16

Intrusion Detection

Some attacks will get through in spite of every
protection measure. Intrusion detection is
targeted to detect such attacks.

Detection is a solution of last resort

Assumption: Behavior of a system changes
when it is subjected to attack

Approach: Detect these changes in behavior

17

Intrusion Detection Issues

Detection rate
 What fraction of attacks are detected

False alarm rate
 May be measured in multiple ways

 how many false alarms per day
 what fraction of normal behavior is flagged as attack
 what fraction of behavior reported as attack
 is not an attack

 Considerable disagreement on which measure to use
 but the third criteria is probably the best
 But IDS vendors (and may be researchers) don’t like it

– Will you buy a system will FA rate of 98%?
– But you may not mind 10 false alarms a day!

18

Intrusion Detection Techniques

Anomaly detection
 Use machine learning techniques to develop a profile of normal

behavior
 Detect deviations from this behavior
 Can detect unknown attacks, but have high FA rate

Misuse detection
 Codify patterns of misuse
 Attack behaviors usually captured using signatures
 Can provide lower false alarm rate, but ineffective for unknown

attacks

Behavior (or policy) based detection
 Specify allowable behavior, detect deviations from specifications
 Can detect new attacks with low FA, but policy selection is hard

19

Intrusion Detection Algorithms

Pattern-matching
 Most commonly used in misuse and behavior based

techniques

Machine-learning
 Statistical
 Algorithmic
 Neural networks and other techniques

20

Intrusion Detection Behaviors

Behaviors of
 Users
 Systems

 processes, kernel modules, hosts, networks, …

21

Intrusion Detection Observation Points

Network-based (Network intrusion detection systems)
 Benefits

 Unintrusive: plug a dedicated NIDS device on the network
 Centralized monitoring

 Problems
 Encryption
 Level of abstraction too low
 Difference between data observed by NIDS and victim app.

Host-based
 Strengths/weaknesses complementary to NIDS
 May be based on

 system-call interception
 audit logs and other log files
 file system integrity (TripWire)
 keystrokes, commands, etc.

22

Network Intrusion Detection

Packet-based Vs Session-based

Signature-based Vs Anomaly detection

Example: SNORT (open source)
 Uses pattern-matching on individual packets

Some systems can block offending traffic
 This is often dangerous, as systems usually have high

false alarm rates

23

Host-based Intrusion detection

System-call based characterizations most
popular
Behavior-based

 System-call interposition plus wrappers
 Domain/Type Enforcement

 Certain application classes can access only certain files
 Can prevent many privilege escalation attacks
 Used in SELinux

Anomaly detection
 Sequences (finite-length strings) of system calls
 FSA and PDA models of behavior
 System call arguments

Automata Models for
Learning Program Behaviors

25

Background

Forrest et al showed that system call
sequences provide an accurate and
convenient way to capture security-relevant
program behaviors

 Subsequent research has further strengthened this
result

Key problem:
 What is a good way to represent/learn information

about system call sequences?
Issues: compactness, accuracy, performance, …

26

Early Research

Forrest et al [1999] compared several methods
for learning system call sequences

 Memorize subsequences of length N (N-grams)
 Markov models
 Data-mining (using RIPPER)

N-grams found to be most appropriate
 Markov models provided a slight increase in

accuracy, but incurred much higher overheads

27

Illustration of N-gram Method
1. S0;

2. while (..) {

3. S1;

4. if (...) S2;

5. else S3;

6. if (S4) ... ;

7. else S2;

8. S5;

9. }

10. S3;

11. S4;

3-grams learnt:
 S0 S1 S2
 S1 S2 S4
 S2 S4 S5
 S4 S5 S1
 S5 S1 S3
 S1 S3 S4
 S3 S4 S2
 S4 S2 S5
 S2 S5 S3
 S5 S3 S4

Sample execution:
•S0 S1 S2 S4 S5
 S1 S3 S4 S2 S5 S3 S4
•S0 S3 S4

•S0 S3 S4

28

Drawbacks of N-gram Method

Number of N-grams grows exponentially
 N must be small in practice (N=6 suggested)
 Implication: difficult to capture long-term correlations

S0 S3 S4 S2 never produced by program, but all of the 3-
grams in this sequence are

Remembers exact set of N-grams seen during
training --- no generalization

 necessitates long training periods, or a high rate of false
alarms

29

Models without Length Limitations

 Finite-state automata
 Even an infinite number of sequences of unbounded length can be

represented
 Naturally capture program structures such as loops, if-then-else, etc.

 Extended finite-state automata
 FSA + a finite number of state variables that can remember event

arguments
 Push-down automata

 By capturing call-return info:
 PDAs are more accurate than FSM
 Models are hierarchical and modular:

– Hierarchical nature facilitates presentation
– Smaller program models
– Reuse of models for libraries

 Extend PDAs to incorporate variables

30

Model extraction approaches

Static analysis [Wagner and Dean]
 Pros: conservative
 Cons:

 difficult to infer data values, e.g., file names
 difficult to deal with libraries, dynamic linking, etc.
 overly conservative

– for intrusion detection, can detect only attacks that are outside of
 the semantic model used for analysis
– specifically, buffer overflows, meta character attacks, etc

Machine learning by runtime monitoring
 Pros:

 can detect a much wider range of attacks
 can deal with libraries, dynamic linking
 inferring data values is easier

 Cons:
 False positives

31

Difficulty in Learning FSA from Strings
Strings do not provide any information about
internal states of an FSA

 given S1 S2 S3 S2, which of the following FSA
should we use?

S1 S2 S3 S2 S1
S2

S3

•what is the criteria for determining the “better” FSA?
•even if we can answer this, the answer will depend on
additional examples

• e.g., sequences S1 S2 and S1 S2 S3 S2 S3 S2 will
suggest that the second FSA is the right one

 Learning FSA from sequences is computationally intractable
 [Kearns & Valiant 89, Pitt & Warmuth 89]

32

Learning FSA Models: Graybox Techniques

Key insight:

For learning program behaviors, additional
information can be used to simplify the
problem:

 exploit program counter value to
 obtain state information

33

Learning FSA Models

 1: S0;

 2: while (…) {

 3: S1;

 4: if (…)

 5: S2;

 6: else

 7: S3;

 8: S4;

 9: }

10: S5;

0

S5

10S53S1

5
S2

7
S3

8

S4

S4

1S0

S1

A sample intercepted program behavior:

 (S0,1) (S1,3) (S2,5) (S4,8) (S1,3) (S3,7)
 (S4,8) (S5,10)

34

Approach Details

Interception of system calls using ptrace (Linux)
 same mechanism used by Forrest and other researchers

Examine process stack to obtain program counter
information

Shared libraries and ASLR pose a problem
 same function may be loaded at different locations during different

runs
 Solution: use program counter value corresponding to the code

calling the dynamically loaded library
 Side benefit: ignoring library behavior makes FSA more compact

35

Approach Details (Continued)

Fork: Parent and child monitored with same FSA,
but process contexts maintained

Exec: typically, a new FSA for the execve’d
program is used.

Detection time
 mismatch may occur in terms of either the system call or

program location
 use leaky bucket algorithm for aggregation
 program counter helps resynchronize even after

observing behavior not seen during training

36

37

Training Convergence
FSA method converges faster than N-grams

 roughly speaking, FSA method can do with roughly an order of
magnitude less training period than N-gram method

38

False Positive Rate
FP results are similar to convergence

 for a given FP rate, FSA method requires an order of
magnitude less training than N-gram method

39

Extracting PDA models

Basic idea: Examine the entire call stack, not just the
most recent return address

 FSA technique already does this partially to discard library
behaviors

This enables call/returns to be identified
 Not all calls/returns captured, since our visibility is limited to system-

call invocation points

[Gao et al 2004] develops such a PDA technique

[Feng et al 2003] developed an alternative stack-based
model called VtPath

Giffin et al develop similar techniques, but based on
static analysis rather than runtime learning

40

PDA Vs FSA models

 FSA models don’t capture call-returns accurately
 They are both represented as “goto” transitions
 Resulting model admits behaviors where a function invoked from

one program location can return to any other call site
 “Impossible Path Problem”

 Inaccuracies due to libraries
 Libraries are essentially “inlined” at their call site

 All system calls become “self-loops” at call site, causing accuracy
loss

 Behavior of a library function has to be learnt independently at
each call site – impacts convergence

 Use of “wrapper” functions poses a problem for FSA
technique

41

Mimicry Attacks

Attacks crafted with knowledge of IDS
Execute only system call sequences that would be
permitted by the model
A mimicry attack can be developed from an attack
sequence by inserting “junk” system calls that make it
appear as if a legitimate sequence is generated

 Junk system calls made possible by using bad system call
arguments

Graybox IDS complicate mimicry attacks due to the need
to fake call site

 Control does not return to attack code after a call!

But can still be made to work
Known mimicry attacks based on memory
corruption+injected code

42

Learning System Call Arguments

Earlier methods focus on control-flows
 System call sequences (N-grams)
 Automata models of behavior

FSA or PDA, with transitions labeled with system calls
 System call arguments largely ignored

Detects usual control-hijack attacks

Don’t detect most attacks that modify resources access
by a system call

 Non-control data attacks
 Race condition attacks
 Mimicry attacks
 …

CSE 509
Course Summary

44

Cryptography Basics

 Algorithm Vs Key
 Symmetric key ciphers (DES, AES, …)

 Block vs stream ciphers
 Public key techniques (RSA, …)
 Hash functions (MD5, SHA, …)
 Random number generation
 Applications

 Encryption (Block vs Stream Ciphers)
 Key generation
 Authentication
 Digital signatures
 Certificates

45

OS Security: User Authentication

 Something you know (secret), have (badge,
smartcard) or are (biometrics)

 Password-based authentication
 Storing encrypted passwords, Offline/online Dictionary

attacks
 Ease of remembering Vs guessing
 Password theft and trusted path
 Variants and Improvements

Master password (ssh, browsers, …)
One-time passwords
Multi-factor authentication
Visual passwords

46

OS Security: Authentication: Biometrics

 Fraud, insult rates
 Techniques

Handwritten signatures
Fingerprint
Iris
Face
Voice
Speech

 Use in identification Vs authentication

47

OS Security: Access Control

 Discretionary Access Control
 Access control matrix
 ACLs

UNIX permission model
 Capabilities

Limited use in OSes

 Trojan Horse and Mandatory Access Control
 MLS: Bell-La Padula, Biba models

Benefits and drawbacks
 Domain and Type Enforcement

Benefits and drawbacks
SELinux

 Clark-Wilson policy
 Chinese wall policy

 Delegation and trust management

49

Principles of Secure System Design

 Least privilege
 Fail-safe defaults (default deny)
 Economy of mechanism (simplicity => assurance)
 Complete mediation (look out for ways in which an

access control mechanism may be bypassed)
 Open design (no security by obscurity)
 Separation of privilege (similar to separation of duty)
 Least common mechanism (avoid unnecessary sharing)
 Psychological acceptability (onerous security

requirements will be actively subverted by users)

50

Software Vulnerabilities: Memory Errors

 Memory corruption
exploits

 Stack-smashing
 Heap overflows
 Format-string bugs
 Integer overflows

 Exploit defenses
 Canaries
 Separating control data from

other data
 Randomization

Address-space (absolute or
relative address)

Data-space
Instruction-space

 Preventing memory
errors

 Definition of memory error
 Spatial vs Temporal Errors
 Spatial error defenses

“Smart” pointers
Out-of-band metadata
Jones/Kelly
CRED

 Temporal errors
Can be addressed using
garbage collection (where
feasible)

51

 Example attacks
 SQL injection
 Command injection
 XSS
 Path traversal
 Format string bugs
 Memory corruption/code injection attacks

 Defenses
 Static taint analysis
 Runtime fine-grained taint-tracking
 Taint-aware policy enforcement

Injection Vulnerabilities

52

More Software Vulnerabilities …

 Browser attacks
 XSS
 CSRF

 CWE-25
 File-name based attacks

 Symlink attacks
 TOCTTOU attacks

How to succeed in races …

53

Program Transformations for Security

 General idea
 Maintain additional metadata, check policies using this

 Source-to-source transformations
 Guarding techniques
 Absolute and Relative-address randomization
 Full memory error detection
 Fine-grained taint-tracking

54

Program Transformation on Binaries

 Key challenges compared to source code
 Static rewriting

 disassembly techniques and challenges
 rewriting challenges

 Dynamic translation
 Dynamo Rio, Valgrind, Qemu, Pin, …
 How it achieves speed

 Applications
 Program shepherding
 Taint-tracking

 Issues and limitations

55

Static Analysis for Vulnerability Detection

 Techniques to identify potential bugs and
vulnerabilities

 Requires a model of what is good behavior, or
bad behavior

 “Good behaviors” are typically application specific, and
hard to come by

 “Bad behaviors” can be somewhat more generic
 Common software vulnerabilities

– Buffer overflow, SQL injection, …
Inconsistencies

–Access check or locking on some program paths, but not others

56

Static Analysis

 Usually require source code
 Binary code analysis will be quite limited due to absence

of type and bounds information, as well as higher level
control structures

 Most program properties are undecidable
 Static analysis has to approximate in order to terminate.

Approximation means that analysis can be sound or
complete, but not both.

 Sound: Guaranteed to find all vulnerabilities
 Complete: No false positives

57

Static Analysis

 Techniques
 Data-flow analysis
 Abstract interpretation
 Type infererence
 Model-checking

 Key challenges
 False positives and negatives
 Range of properties
 Scalability

How long does it take? How much memory does it need?
State-space explosion

58

Dynamic Analysis

 Manual testing
 Random testing (“fuzz testing”)

 Vulnerabilities often arise due to insufficient testing and optimistic
assumptions about input

 This means that incorrect inputs will cause unexpected behaviors
 Random input will typically cause crashes

Using a debugger or other means, hackers can find additional information to turn
the crash into an exploit

 Coverage-guided fuzzing
 Manually assisted fuzz testing

 In many cases, random inputs don't work, as they get discarded very
early

Most of the code is not exercised

 Better to ensure that some parts of input are valid, so as to traverse
more program paths

Remaining parts of input can be fuzzed

59

Directed Random Testing

 “Intelligent” approach that chooses inputs to
ensure more coverage

 Often based on some form of symbolic execution
Variables left unbound
As conditions are tested, constraints on unbound inputs are gathered,
depending on whether “then” or “else” clause is taken

When multiple conditions are present on the value of a variables, use
a constraint solving procedure to narrow down the range

 Key challenges
Range of constraints that can be handled
state-space explosion
Many approaches choose to bind variables to concrete values when
faced with these problems

 Penetration testing
 Just another name for dynamic vulnerability testing

60

Malicious Code

 Current threat environment: Profit-driven crime
 Types

 Viruses
 Worms
 Spam
 Phishing
 Botnets
 Rootkits
 Spyware
 DDoS
 Extortion
 Cyberwar

61

Malicious code: Stealth Techniques

 Stealth and Obfuscation
 Behavioral obfuscation

Anti-virtualization and anti-analysis techniques
Trigger-driven

 Code obfuscation
Control-flow obfuscation
Data obfuscation
Encryption and packing
Polymorphism
Metamorphism

62

Untrusted code defense

 Untrusted code implies
strong adversary,
requires correspondingly
strong defenses

 Mechanisms
System-call interception

–Techniques and trade-offs

Inline-reference monitors
–Issues, challenges
–Software-based fault-isolation

• RISC and CISC
–Control-flow integrity

 Defenses
 Sandboxing (confinement

policies)
Policies are hard to write!
Indirect attacks!
Example: Native Client

 Isolation
Virtual machines

–VMware, Xen, KVM, Qemu

One-way isolation
–With copy-on-write

Complete isolation
–Smart phones

 Information flow mediation
Vista (one-way)
MLS (two-way)

63

Isolating untrusted code: Virtual machines

 Process Vs Namespace Vs System
virtualization

 Type I and Type II VMMs
 Paravirtualization Vs full virtualization
 Implementation techniques

 Binary translation, paravirtualization, hardware-assisted
virtualization

 Memory virtualization
 Security applications

 Honeypots, sandboxes, malware analysis, high-
assurance Vms

 Protection from compromised OS

64

Untrusted code: Java, Javascript and Browser Security

 Safe languages
 Java
 Type safety, byte-code verification, loader checks
 Sandbox model, stack inspection, doPrivileged
 Javascript
 Type safe language, better integration with browser, security based

on removing OS access

 Browser security
 HTTP protocol (GET/POST), cookies, authentication
 HTML forms, parameters, server-side processing
 Same origin policy, application to scripts, frames, network reads; Ajax

and XmlHttpRequests
 Reflected and persistent XSS; XSS vectors and defenses
 Other injections (HTTP headers, ...)
 CSRF and defenses

65

Side-channel attacks and physical security

 Covert channels
 Intentionally embedded
 Implicit flows, timing, steganographic techniques, ...

 Side channel attacks
 Timing analysis, power monitoring
 Differential fault analysis
 Emanations (keyboard, power,

screen/camera/microphone, shock sensor)
 Remanence

 Physical layer attacks and tamper resistance
 Trusted platform, software attestation

66

Side-channel attacks and physical security

 Covert channels
– Timing, implicit flows, DNS requests, ...

 Side-channels
– Execution time

67

Intrusion Detection

 Network intrusions
 Protocol attacks (Teardrop, Synflood, Smurf, …)
 DDoS
 Botnets
 Reflection attacks
 Worms

 Attack stages
 Probing
 DoS
 Privilege escalation

68

Intrusion Detection

 False positives and negatives
 Observation points:

 Host-based Vs Network intrusion detection
Benefits and drawbacks

 Techniques
 Anomaly detection
 Misuse detection
 Specification-based detection

 Algorithms
 Pattern-matching
 Machine learning

69

Host-based Intrusion Detection

 Models
 Strings, finite state automata, PDA, …
 FSA based technique (using system calls)

 Evasion: Mimicry attacks
 Dataflow Vs Controlflow models

	Network-Based Attacks
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Historical ...
	More Recent Attacks
	Self-propagating Attacks
	Slide 10
	Types of worms
	Classes of Attacks
	Techniques for protecting networks
	Slide 14
	Intrusion Detection
	Slide 16
	Intrusion Detection Issues
	Intrusion Detection Techniques
	Intrusion Detection Algorithms
	Intrusion Detection Behaviors
	Intrusion Detection Observation Points
	Network Intrusion Detection
	Host-based Intrusion detection
	Slide 24
	Background
	Early Research
	Illustration of N-gram Method
	Drawbacks of N-gram Method
	Models without Length Limitations
	Model extraction approaches
	Difficulty in Learning FSA from Strings
	Learning FSA Models: Graybox Techniques
	Learning FSA Models
	Approach Details
	Approach Details (Continued)
	Slide 36
	Training Convergence
	False Positive Rate
	Extracting PDA models
	PDA Vs FSA models
	Mimicry Attacks
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

