Memory Error Exploits and Defenses




Example: Stack Smashing Attack
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Stack smashing defenses

¢ Canary stored before return value, checked before return
" |ssues
v Protecting RA vs Saved BP
v Random, XOR, null canaries
¥ How about data?
= \Weaknesses
v Brute-force canary, or rely on information leakage attacks
v Overwrite RA without overwriting canary (e.g., double pointer attacks)
v Overwrite other code pointers (e.g., function pointer, virtual table pointer, GOT)
¢ Storing RA in two places
v StackShield, Return address defender (RAD)
v Issues: compatibility with signals, exceptions, longjmp
¢ Propolice
= Canary before saved BP + protect local variables by reordering them

v Simple variables (integers, pointers) located at lower addresses, buffers at higher
addresses

— Buffer overflow cannot corrupt local variables, preventing double pointer attacks
* But underruns can corrupt these simple (non-buffer) variables

= Mainstream compilers (gcc, MS) include Propolice like protection
¥ Not included for functions with no arrays




Heap Overflows

¢*Overflow from one heap block to the next is possible -
but not easily exploited

®"Hard to ensure that critical data worth corrupting will be located
In the next block

*More easily exploitable: overflow that overwrites control
metadata stored adjacent to the buffer

¢One form of attack
"Free heap blocks maintained as doubly linked list

®"Heap management code that adds/deletes from this list “trusts”
the values of forward and backward links

= Example: delete blk from free list:
¥ blk->prev->next = blk->next

v If an overflow within blk allows the attacker to overwrite prev field
with “a” and next field with “b”, then the above code is equivalent to
“*(a+k) = b”, where “k” is the offset of the field “next” within the
struct.




Heap Overflows

*More generally, provides a primitive to write an
arbitrary 32-bit value at an arbitrary location

¢Possible targets

" Function pointers

¥ Return address on stack
—Canaries don't help, but second RA copy will detect attack

¥ Global Offset Table (GOT)
¥ Function pointers in static memory
=Data pointers

¥ Names of programs executed or files opened

¥ Application-specific data, e.g., “is_authenticated” flag in a
login-like program




Heap Overflow Defenses

¢Heap canaries
"“magic nhumbers” between data and header

¢ Separation of metadata from data
"|n general, separating control data from program data is a
good idea

¥ Helps prevent data corruption attacks from altering the control-
flow of programs

= Can be applied on the stack as well

v “Safe stack” holds control-data

—“safe” data (e.g., local integer-valued variables) can also be
located there as they cannot be involved in memory errors

v All other data moved to a second stack




Format-string Attacks

¢ Exploits code of the form
= Read variables from untrusted source
= printf(s)
¢ Printf usually reads memory, so how can it be used for
memory corruption?
= “Oon” primitive allows for a memory write
= Writes the number of characters printed so far (character count)

= Many implementations (Linux, Windows) allow just the least significant
byte of the number of character count

¥ you don’t have to print large number of characters to write
arbitrary 32-bit values --- just perform 4 separate writes of the LS
byte of character count

v Use field-width specifications to control character count

¢ Formatguard: pass in actual number of parameters so the
callee can only dereference that many parameters

=" Not adopted in practice due to compatibility issues




Integer Overflows

¢ There are multiple forms
= Assignment between variables of different width
v Assign 32-bit value to 16-bit variable
= Assignment between variables of different signs
¥ Assign an unsigned variable to a signed variable or vice-versa
= Arithmetic overflows
v i=j+k
Vi = 4%
¥ Note that i may become smaller than jevenifj>0
¢ Exploitation
= Allocate less memory than needed, leading to a heap overflow
¥ One of the common forms of file-format attacks
= “Escape” bounds checks
v If (i < sizeof(buf)) memcpy(buf, src, i);
¢ For more info:
= http://www.phrack.org/archives/60/p60-0x0a.txt




Memory Errors

¢ Although other attack types have emerged, memory errors
continue to be the dominant threat

= Behind most “critical updates” from Microsoft and other vendors
" Mechanism of choice in “mass-market” attacks, including worms

= Evolved to target client (web browsers, email-handlers, word-
processors, document/image viewers, media players, ...) rather than
server applications (e.g., web browsers)

¢ A memory error occurs when an object accessed using a
pointer expression is different from the one intended
= Spatial error

¥ Examples
Out-of-bounds access due to pointer arithmetic errors
Access using a corrupted pointer
Uninitialized pointer access

= Temporal error: access to objects that have been freed (and possibly
reallocated)

¥ Example: dangling pointer errors
v applicable to stack and heap allocated data




Use of Memory Errors In Attacks

¢ Temporal errors

" Not as frequently targeted as spatial errors

¢ Spatial errors
= Pointer corruption is most popular
= Qut-of-bounds errors are most commonly used to corrupt pointers

¥ But some attacks rely on just reads without necessarily corrupting
existing data, e.g., heartbleed SSL vulnerability

¢ Typically, multiple memory errors (2 to 3) are used in an attack

= Stack-smashing relies on out-of-bounds write, plus the use of a
corrupted pointer as return address

= Heap overflow relies on out-of-bounds write, use of corrupted pointer as
target of write, and then the use of a corrupted pointer as branch target.




Memory Error Defenses

¢*Disrupt exploits
" |dentify mechanisms used for exploit, block them

¥ Disrupt mechanism used for corruption

— Protect attractive targets against common ways to corrupt them
(“guarding” solutions)

¥ Disrupt mechanism used for take-over
— Disrupt ways in which the victim program uses corrupted data
— Randomization-based defenses

v Disrupt payload delivery mechanism
—NX, CFI

¢*Block memory errors

=" Bounds-checking (mainly focused on spatial error)
¥ Bounds-checking C and CRED, Valgrind memcheck, ...

= Blocking all memory errors (including temporal)




A. Disrupting
Memory Error Exploits




Disrupting mechanisms used for corruption

¢ Stackguard and related solutions
= Protect RA and saved BP; with ProPolice, some local variables as well

*Magic cookies and safe linking on heaps

¢ Attacks on GOT

= GOT contains function pointers used to call library functions

v Compiler generates a stub for each library function in a code section
called PLT (program linkage table)

v Stub code for a function f performs an indirect jump using the address
stored in the GOT corresponding to f.

= Defense: hide GOT
¥ Not very effective: injected code can search and locate it!
*Problem: incomplete
= Not all targets can be protected

®"|ncomplete even for protected targets: some corruption techniques can
still succeed, e.g., corrupting RA without disturbing canary.




Disrupting payload delivery mechanisms

*Prevent control transfer to/execution of injected code

" Most OSes enforce W @ X (aka NX or DEP)
¥ prevents writable memory from being executable, so can’t execute injected code

= Attackers get around this by reusing existing code

¥ return-to-libc: return to the beginning of existing functions
—Instead of having injected code spawning a shell, simply “return” to the execle function in libc

—If it is a stack-smash, attacker controls the contents of the stack at this point, so they can control the
arguments to execle

¥ By constructing multiple frames on the stack, it is possible to chain together multiple
fragments of existing code
—ROP (return-oriented programming) takes this to the extreme
*Chains together many small fragments of existing code (“gadgets”)
*Each gadget can be thought of as an “instruction” for a “virtual machine”

*For sufficiently complex binaries, sufficient number and variety of gadgets are available to support
Turing-complete computation

—Most exploits today rely on ROP, due to widespread deployment of W & X
*Goal of ROP payload is to invoke mprotect system call to disable W & X.

= Control-flow integrity (CFl) is another (partial) defense that limits attacker’s freedom in
terms of control transfer target

v Can defeat most injected code and ROP attacks, but skilled attackers may be able to craft
attacks that operate despite CFlI




Disrupting take-over mechanism

¢ Key issue for an attacker:
= using attacker-controlled inputs, induce errors with predictable effects
¢ Approach: exploit software bugs to overwrite critical data,
and the behavior of existing code that uses this data

= Relative address attacks (RA)

v Example: copying data from input into a program buffer without
proper range checks
= Absolute address attacks (AA)

¥ Example: store input into an array element whose location is
calculated from input.

Even if the program performs an upper bound check, this may not
have the intended effect due to integer overflows

= RA+AA attacks: use RA attack to corrupt a pointer p, wait for
program to perform an operation using *p

v Stack-smashing, heap overflows, ...




Disrupting take-over: Diversity Based Defenses

¢ Software bugs are difficult to detect or fix
= Question: Can we make them harder to exploit?
¢®Benign Diversity

®Preserve functional behavior

¥ On benign inputs, diversified program behaves exactly like the
original program
=" Randomize attack behavior

¥ On inputs that exercise a bug, diversified program behaves
differently from the original




Automated Introduction of Diversity

¢ Use transformations that preserve program semantics

¢ Challenge: how to capture intended program semantics?
¥ Relying on manual specifications isn’t practical

¢ Solution: Instead of focusing on program-specific semantics,
rely on programming language semantics

= Randomize aspects of program implementation that aren’t specified in the
programming language

v Benefit: programmers don’t have to specify any thing
= Examples
v Address Space Randomization (ASR)

— Randomize memory locations of code or data objects

— Invalid and out-of-bounds pointer dereferences access unpredictable objects
¥ Data Space Randomization (DSR)

— Randomize low-level representation of data objects

— Invalid copy or overwrite operations result in unpredictable data values

¥ Instruction Set Randomization (ISR)
— Randomize interpretation of low-level code
— W & X has essentially the same effect, so ISR is not that useful any more




How randomization disrupts take-over

¢ Without randomization, memory errors corrupt
process memory in a predictable way
= Attacker knows what data is corrupted, e.g., return address
on the stack
¥ Relative address randomization (RAR) takes away this
predictability

= Attacker knows the correct value to be used for corruption,
e.g., the location of injected code (in a buffer that contains
data read from attacker)

¥ Absolute address randomization (AAR) takes away this
predictability for pointer-valued data

¥ DSR takes away this predictability for all data
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First Generation ASR:
Absolute Address Randomization (ASLR)

¢ Discovered by PaX project and [Bhatkar et al]

¢ Randomizes base address of data (stack, heap, static
memory) and code (libraries and executable) regions

¢ Implemented on many flavors of UNIX & Windows

= UNIX implementations usually provide 20+ bits of randomness, 16
bits for Windows

¢ Finding its way into mainstream OS distributions
" Linux, OpenBSD, ...
= Vista (limited to 8 bits of randomness)

¢ Limitations
= Brute-force attacks

" Relative address attacks
¥ Non-pointer data attacks, partial pointer overwrites, integer overflows

" Information leakage attacks



Second Generation ASR:
Relative Address Randomization

¢*Randomize distances between individual data and
code objects

¢[Bhatkar et al] use code transformation to

"permute the relative order of objects in memory
v Static variables

v “Unsafe” local variables

Safe local variables moved to a “safe” stack (no overwrites
possible)

¥ Routines (functions)
"introduce gaps between objects
¥ Some gaps may be made inaccessible



Benefits of RAR

¢ Defeats the overwrite step, as well the step that uses
the overwritten pointer value

= Defeats format-string and integer overflow attacks
= Stack-smashing attacks fail deterministically

¢Higher entropy
=Up to 28 hits

= Knowing the location of one object does not tell you much
about the locations of other objects
v information leakage attacks become difficult

¥ heap overflows become more difficult since you need to make
two independent guesses
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Data Space Randomization




DSR Technique

¢ Basic idea: Randomize data representation
= Xor each data object with a distinct random mask
= Effect of data corruption becomes non-deterministic, e.g.,

¥ Use out-of-bounds access on array a to corrupt variable x with value v
— Actual value written: mask(a) & v
— When x is read, this value is interpreted as mask(x) & (mask(a) & v)

* Which is different from v as long as the masks for x and a differ.

¢ Benefits

= [arge entropy
v 32-bits of randomization for integers
¥ Masks for different variables can be independent

= Can address intra-structure overflows
¥ Not even addressed by full memory error detection technigues

= Natural generalization of PointGuard
¥ Protects all data, not just pointers
v Effective against relative address as well as absolute address attacks
v Different objects can use different masks (resists information leak attacks)




DSR Transformation Approach

¢ For each variable v, introduce another variable m v for
storing its mask

¢ Randomize values assigned to variables (LHS)
=" Example: x=5 :> X=5:x=x"m _x;
¢ Derandomize used variables (RHS)
"Example: (x+y) > ((x" m_x)+(y"m_y))
¢ Key problem: aliasing
"int *x = &y
= A value may be assigned to y and dereferenced using *x

¥ Both expressions should yield the same value

Need to ensure that possibly aliased objects should use the same
randomization mask

¢ Note
" |n X =y, it IS not necessary to assign same mask to x and y




Pointer Analysis & Mask Assignment

int x, y; [ m e

int *pl, *p2, *p3;

int **ppl, **pp2;

*ppl => *(*(ppl A m1l) A m3) A m5

¢ Steensgaard’s pointer analysis
* Flow and context insensitive

= Efficient (linear time complexity)




Implementation

¢Uses source-to-source transformation

¢*For performance reasons, applies DSR to buffers and
pointers only

" Non-buffer data is still protected against buffer overflows

¢ Attempts to ensure that adjacent buffers won’t have
the same mask

= Makes it possible to detect all buffer overflows
¢Limitations
= Does not yet support field sensitive points-to analysis

= Requires identification of external functions that aren’t
transformed
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Limitations of ASR/DSR

¢*Interoperability between diversified code and code
that is not diversified

®Some randomizations need source code

¥ e.g., RAR relies on source-code transformations to reorder
static variables, functions, etc.

¢Performance
" |ncreased VM usage (insignificant)

" |ncreased physical memory usage (insignificant)
=" Runtime overhead (negligible for AAR, small for RAR, DSR)

¢Making debuggers randomization-aware

¢*Biggest security challenge:

" Protecting randomization key(s), or in other words, resilience
In the face of information leak attacks




Summary of Automated Diversity

¢ Transformations that respect programming language
semantics are good candidates for automated diversity

= But they are typically good for addressing only low-level implementation
errors. (We have discussed them only in the context of a specific low-
level error, namely, memory corruption.)

¢ Automated diversity has been particularly successful in
the area of memory error exploit prevention

= First generation of randomization-based defenses focused on absolute
address based attacks

v Absolute-address randomization

¥ Practical technique with low impact on systems, and hence begun to
be deployed widely

= Second generation defenses provide protection from relative-address
dependent attacks

¥ Relative address randomization and data-space randomization




State of Exploit defenses and New attacks

¢ Most OSes now implement
= ProPolice like defenses, plus SEH protection (Microsoft)
= ASLR
= DEP/NX (prevent injected code execution)

¢+ Recent attacks
= Exploit incomplete defenses, or use Heapspray for control-flow hijack
¥ No ASLR on most executables on Linux, some EXE, DLLs on MS
v Some libraries don’t enable stack protection, or it is incomplete

¥ Heapspray: brute-force attack in the space domain
— Exploits untrusted code in safe languages (Javascript, Java, Flash,...)
— Code allocates almost all of memory, fills with exploit code
—Jump to random location: with high probability, it will contain exploit code
= Return-oriented programming (ROP) to overcome DEP

= Rely increasingly on information leak attacks to overcome uncertainty due
to ASLR, frequent software updates, and so on

v Just-in-time-ROP: use information leak vulnerability to scan code at
runtime to identify ROP gadgets




B. Preventing
Memory Errors




Memory Errors in C

¢ Spatial errors: out-of-bounds subscript or pointer
=char *p = malloc(10); *(p+15);

¢ Temporal errors: pointer target no longer valid
= Unintialized pointer
= Dangling pointer
v free(p); g = malloc(..); *p;
¥ Note: target may be reallocated!
¢ Hard to debug, especially temporal errors
= Unpredictable delay, unpredictable effect
¥ Reallocated pointer errors are the worst kind
= “Defensive programming” leads to memory leaks
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Issues and Constraints

¢Backward compatibility with existing C-code
= Casts, unions, address arithmetic
= Conversion between integers and pointers
¢ Compatibility with previously compiled libraries
= Can’t expect to rebuild the entire system
®Source code access can be problematic for some libs
¢*Temporal Vs Spatial Errors
" Detecting reallocated storage

" |mportant, since such errors get detected very late, and it is
extremely hard to track them down

¢Use of garbage collection




Why Not Garbage Collection?

¢Masks temporal errors

" Problematic if the intent is to use memory error-checking
only during the testing phase

¢Unpredictable overheads

=" Problematic for systems with real-time or stringent
performance constraints

¢ GCs can make mistakes due to free conversion
between integers and pointers

= Fail to collect inaccessible memory
= Collect memory that should not be collected

" Problematic for code that relies heavily on such conversions,
e.g, OS Kernel




Approaches for Preventing Memory Errors

¢ Introduce inter-object gaps, detect access to them (Red zones)

" Detect subclass of spatial errors that involve accessing buffers just past
their end

¥ Purify, Light-weight bounds checking [Hasabnis et al], Address
Sanitizer [Serebryany et al]

¢ Detect crossing of object boundaries due to pointer arithmetic
= Detects spatial errors

= Backwards-compatible bounds checker [Jones and Kelly 97]
= Further compatibility improvements achieved by CRED [Ruwase et al]
= Speed improvements: Baggy [Akritidis et al], Paricheck [Younan et al]

¢ Runtime metadata maintenance techniques
= Temporal errors: pool-based allocation [Dhurjati et al], Cling [Akritidis et al]
® Spatial and temporal errors: CMemSatfe [Xu et al]
¥ Further compatibility improvements: SoftBounds [Nagarakatte et al]

" Targeted approaches: Code pointer integrity [Kuznetsov et al], protects subset
of pointers needed to guarantee the integrity of all code pointers.




Red Zone: LBC Approach

—

P
((*p == guard zone value && slowcheck (p)) ?
flag error() : *p

Zero metadata operations in most common case saves

significant runtime overheads




Slowcheck

Simple version: guardmapl[p] ==

Occupies 1/8th of the address space, even for a program that uses a
few bytes of memory — leads to inefficiencies

Better version: two-level map

Use 3-level map for 64-bit address space

Address sanitizer uses a similar approach,

Divide 32-bits of p into two parts, x (17 bits) and y (15 bits)

* Check: map[x] == NULL || map[x][y] ==

Map uses just 0.5MB for programs
with small memory use

but without a fast check

31 0
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Backwards Compatible Bounds-Checking

¢ Enforces object allocation boundaries

¢ All allocations are entered into an efficient data
structure for intervals (splay tree)

¢ Checks pointer arithmetic, not dereferences

*If p is derived through address arithmetic on g, then
requires that p and g refer to the same object

"|f not, p Is set to an invalid value (e.g., -1) that will cause
memory exception on dereference

¢ CRED: improves compatibility in cases where out-of-
bounds pointer is created but is not dereferenced
before being brought back in bounds

= Uses a special data structure to keep track of OOB pointers




CMemSafe: Detecting Spatial Errors Using Metadata

Spatial Check:
(p >= p_info.base &&
p < p_info.base+p_info.size)?

char * p;

p = malloc(8);
p += 2;

*p; /* OK */
p += 14,

*p; /* error */

Heap

p_info

base

size

0x80004000
0x80004002

0x80004008

0x80004010

¢ base, size: base address and allocated size of the block
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CmemSafe: Detecting Temporal Errors

Temporal Check:

(*g_info.cap_ptr

VALID)?

char * p, *q;

p = malloc(8);
q = p;

*q; /* 0K */
free(p);

*q; /* error */
p = malloc(16);

*q; /* error */

p_info
base —

Capability Store

-———

-
-
e e e ———

g_info

cap_ptr

0x80004000

0x80004008

0x80004010

¢ cap_ptr: pointer to unique capability associated with block

¢ Detect erroneous accesses to freed or reallocated memory




Summary of Memory Error Defenses

¢ Static analysis (False positives and false negatives)
® Produce false positives (underlying problems are undecidable)
= Aimed at programmers, who need to investigate reported errors
= Not very practical because of FPs and FNs, so we did not discuss these
¢ Runtime detection of errors (Typically, no FPs)
= Exploit detection
v ASR, canatries, ....
= Error detection (some incompatibility with legacy code)
¥ Metadata for allocations, but no per-pointer metadata
— Compatible with untransformed libraries
— Can’t detect pointer corruptions or temporal errors
— Examples: red zones, bounds-checking, CRED
v Per-pointer metadata
— Detect pointer arithmetic errors as well as corruption errors, plus temporal errors
— Compatibility issues: serious with “fat” pointers, significant even otherwise.

¢ Hybrid approaches
= CCured: static analysis classifies pointers, avoid metadata for most pointers
= Pool-based allocation: map temporal error effects into those of spatial errors
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