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 Memory Error Exploits and Defenses
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Example: Stack Smashing Attack

void
f(const int *A, int n) {
  int buf[100];
  int i = 0;
  while (i < n) {
    buf[i] = A[i++];
  }
  ...
}
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Stack smashing defenses
 Canary stored before return value, checked before return

 Issues
 Protecting RA vs Saved BP
 Random, XOR, null canaries
 How about data?

 Weaknesses
 Brute-force canary, or rely on information leakage attacks
 Overwrite RA without overwriting canary (e.g., double pointer attacks)
 Overwrite other code pointers (e.g., function pointer, virtual table pointer, GOT)

 Storing RA in two places
 StackShield, Return address defender (RAD)
 Issues: compatibility with signals, exceptions, longjmp

 Propolice
 Canary before saved BP + protect local variables by reordering them

 Simple variables  (integers, pointers) located at lower addresses, buffers at higher 
addresses

– Buffer overflow cannot corrupt local variables, preventing double pointer attacks

• But underruns can corrupt these simple (non-buffer) variables
 Mainstream compilers (gcc, MS) include Propolice like protection

 Not included for functions with no arrays
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Heap Overflows
Overflow from one heap block to the next is possible – 

but not easily exploited
 Hard to ensure that critical data worth corrupting will be located 
in the next block

More easily exploitable: overflow that overwrites control 
metadata stored adjacent to the buffer

One form of attack
 Free heap blocks maintained as doubly linked list
 Heap management code that adds/deletes from this list “trusts” 
the values of forward and backward links

 Example: delete blk from free list:
 blk->prev->next = blk->next
 If an overflow within blk allows the attacker to overwrite prev field 

with “a” and next field with “b”, then the above code is equivalent to  
“*(a+k) = b”, where “k” is the offset of the field “next” within the 
struct.
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Heap Overflows
More generally, provides a primitive to write an 

arbitrary 32-bit value at an arbitrary location
Possible targets

 Function pointers
 Return address on stack

– Canaries don’t help, but second RA copy will detect attack

 Global Offset Table (GOT)
 Function pointers in static memory

 Data pointers
 Names of programs executed or files opened
 Application-specific data, e.g., “is_authenticated” flag in a 

login-like program
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Heap Overflow Defenses
Heap canaries

 “magic numbers” between data and header

Separation of metadata from data
 In general, separating control data from program data is a 
good idea

 Helps prevent data corruption attacks from altering the control-
flow of programs

 Can be applied on the stack as well
 “Safe stack” holds control-data

– “safe” data (e.g., local integer-valued variables) can also be 
located there as they cannot be involved in memory errors

 All other data moved to a second stack
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Format-string Attacks
 Exploits code of the form

 Read variables from untrusted source
 printf(s)

 Printf usually reads memory, so how can it be used for 
memory corruption?

 “%n” primitive allows for a memory write
 Writes the number of characters printed so far (character count)
 Many implementations (Linux, Windows) allow just the least significant 

byte of the number of character count
 you don’t have to print large number of characters to write 

arbitrary 32-bit values --- just perform 4 separate writes of the LS 
byte of character count

 Use field-width specifications to control character count
 Formatguard: pass in actual number of parameters so the 

callee can only dereference that many parameters
 Not adopted in practice due to compatibility issues
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Integer Overflows

 There are multiple forms 
 Assignment between variables of different width

 Assign 32-bit value to 16-bit variable
 Assignment between variables of different signs

 Assign an unsigned variable to a signed variable or vice-versa
 Arithmetic overflows

 i = j+k
 i = 4*j
 Note that i may become smaller than j even if j > 0

 Exploitation 
 Allocate less memory than needed, leading to a heap overflow

 One of the common forms of file-format attacks
 “Escape” bounds checks

 If (i < sizeof(buf)) memcpy(buf, src, i);

 For more info: 
 http://www.phrack.org/archives/60/p60-0x0a.txt



    

Memory Errors
 Although other attack types have emerged, memory errors 

continue to be the dominant threat
 Behind most “critical updates” from Microsoft and other vendors
 Mechanism of choice in “mass-market” attacks, including worms
 Evolved to target client (web browsers, email-handlers, word-

processors, document/image viewers, media players, …) rather than 
server applications (e.g., web browsers)

 A memory error occurs when an object  accessed using a 
pointer expression is different from the one intended

 Spatial error
 Examples

– Out-of-bounds access due to pointer arithmetic errors
– Access using a corrupted pointer
– Uninitialized pointer access

 Temporal error: access to objects that have been freed (and possibly 
reallocated)

 Example: dangling pointer errors
 applicable to stack and heap allocated data



    

Use of Memory Errors in Attacks
 Temporal errors

 Not as frequently targeted as spatial errors

 Spatial errors
 Pointer corruption is most popular
 Out-of-bounds errors are most commonly used to corrupt pointers

 But some attacks rely on just reads without necessarily corrupting 
existing data, e.g., heartbleed SSL vulnerability

 Typically, multiple memory errors (2 to 3) are used in an attack
 Stack-smashing relies on out-of-bounds write, plus the use of a 

corrupted pointer as return address
 Heap overflow relies on out-of-bounds write, use of corrupted pointer as 

target of write, and then the use of a corrupted pointer as branch target.
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Memory Error Defenses
Disrupt exploits

 Identify mechanisms used for exploit, block them
 Disrupt mechanism used for corruption

– Protect attractive targets against common ways to corrupt them 
(“guarding” solutions)

 Disrupt mechanism used for take-over
– Disrupt ways in which the victim program uses corrupted data

– Randomization-based defenses

 Disrupt payload delivery mechanism
– NX, CFI

Block memory errors
 Bounds-checking (mainly focused on spatial error)

 Bounds-checking C and CRED, Valgrind memcheck, ...

 Blocking all memory errors (including temporal)
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 A. Disrupting 
Memory Error Exploits
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Disrupting mechanisms used for corruption
Stackguard and related solutions 

 Protect RA and saved BP; with ProPolice, some local variables as well

Magic cookies and safe linking on heaps
Attacks on GOT

 GOT contains function pointers used to call library functions
 Compiler generates a stub for each library function in a code section 

called PLT (program linkage table)
 Stub code for a function f performs an indirect jump using the address 

stored in the GOT corresponding to f.

 Defense: hide GOT
 Not very effective: injected code can search and locate it!

Problem: incomplete
 Not all targets can be protected
 Incomplete even for protected targets: some corruption techniques can 
still succeed, e.g., corrupting RA without disturbing canary. 
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Disrupting payload delivery mechanisms
Prevent control transfer to/execution of injected code

 Most OSes enforce W ⊕ X (aka NX or DEP) 
 prevents writable memory from being executable, so can’t execute injected code

  Attackers get around this by reusing existing code
 return-to-libc: return to the beginning of existing functions

– Instead of having injected code spawning a shell, simply “return” to the execle function in libc

– If it is a stack-smash, attacker controls the contents of the stack at this point, so they can control the 
arguments to execle

 By constructing multiple frames on the stack, it is possible to chain together multiple 
fragments of existing code
– ROP (return-oriented programming) takes this to the extreme

•Chains together many small fragments of existing code (“gadgets”)

•Each gadget can be thought of as an “instruction” for a “virtual machine”

•For sufficiently complex binaries, sufficient number and variety of gadgets are available to support 
Turing-complete computation

– Most exploits today rely on ROP, due to widespread deployment of W ⊕ X

•Goal of ROP payload is to invoke mprotect system call to disable W ⊕ X.

 Control-flow integrity (CFI) is another (partial) defense that limits attacker’s freedom  in 
terms of control transfer target

 Can defeat most injected code and ROP attacks, but skilled attackers may be able to craft 
attacks that operate despite CFI



    

Disrupting take-over mechanism
 Key issue for an attacker:

 using attacker-controlled inputs, induce errors with predictable effects

 Approach: exploit software bugs to overwrite critical data, 
and the behavior of existing code that uses this data

 Relative address attacks (RA) 
 Example: copying data from input into a program buffer without 

proper range checks
 Absolute address attacks (AA)

 Example: store input into an array element whose location is 
calculated from input. 
– Even if the program performs an upper bound check, this may not 

have the intended effect due to integer overflows
 RA+AA attacks: use RA attack to corrupt a pointer p, wait for 

program to perform an operation using *p
 Stack-smashing, heap overflows, …
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Disrupting take-over: Diversity Based Defenses

Software bugs are difficult to detect or fix
 Question: Can we make them harder to exploit?

Benign Diversity
 Preserve functional behavior

 On benign inputs, diversified program behaves exactly like the 
original program

 Randomize attack behavior
 On inputs that exercise a bug, diversified program behaves 

differently from the original
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Automated Introduction of Diversity
 Use transformations that preserve program semantics
 Challenge: how to capture intended program semantics?

 Relying on manual specifications isn’t practical
 Solution: Instead of focusing on program-specific semantics, 

rely on programming language semantics
 Randomize aspects of program implementation that aren’t specified in the 

programming language
 Benefit: programmers don’t have to specify any thing 

 Examples
 Address Space Randomization (ASR)

– Randomize memory locations of code or data objects
– Invalid and out-of-bounds pointer dereferences access unpredictable objects 

 Data Space Randomization (DSR)
– Randomize low-level representation of data objects
– Invalid copy or overwrite operations result in unpredictable data values

 Instruction Set Randomization (ISR)

– Randomize interpretation of low-level code

– W ⊕ X has essentially the same effect, so ISR is not that useful any more
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How randomization disrupts take-over

Without randomization, memory errors corrupt 
process memory in a predictable way

 Attacker knows what data is corrupted, e.g., return address 
on the stack

 Relative address randomization (RAR) takes away this 
predictability

 Attacker knows the correct value to be used for corruption, 
e.g., the location of injected code (in a buffer that contains 
data read from attacker)

 Absolute address randomization (AAR) takes away this 
predictability for pointer-valued data

 DSR takes away this predictability for all data
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First Generation ASR: 
Absolute Address Randomization (ASLR)

 Discovered by PaX project and [Bhatkar et al]
 Randomizes base address of data (stack, heap, static 

memory) and code (libraries and executable) regions
 Implemented on many flavors of UNIX & Windows

 UNIX implementations usually provide 20+ bits of randomness, 16 
bits for Windows

 Finding its way into mainstream OS distributions
 Linux, OpenBSD, …
 Vista (limited to 8 bits of randomness)

 Limitations
 Brute-force attacks
 Relative address attacks

 Non-pointer data attacks, partial pointer overwrites, integer overflows
 Information leakage attacks



Second Generation ASR: 
Relative Address Randomization

Randomize distances between individual data and 
code objects

[Bhatkar et al] use code transformation to
 permute the relative order of objects in memory

 Static variables
 “Unsafe” local variables

– Safe local variables moved to a “safe” stack (no overwrites 
possible)

 Routines (functions)

 introduce gaps between objects 
 Some gaps may be made inaccessible
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Benefits of RAR

Defeats the overwrite step, as well the step that uses 
the overwritten pointer value

 Defeats format-string and integer overflow attacks
 Stack-smashing attacks fail deterministically

Higher entropy
 Up to 28 bits
 Knowing the location of one object does not tell you much 
about the locations of other objects

 information leakage attacks become difficult
 heap overflows become more difficult since you need to make 

two independent guesses
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Execution Time Overheads

Average: 11%
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Data Space Randomization



25    

DSR Technique
 Basic idea: Randomize data representation

 Xor each data object with a distinct random mask
 Effect of data corruption becomes non-deterministic, e.g.,

 Use out-of-bounds access on array a to corrupt variable x with value v
– Actual value written: mask(a)  v
– When x  is read, this value is interpreted as mask(x)  (mask(a)  v)

• Which is different from v as long as the masks for x and a differ.

 Benefits
 Large entropy

 32-bits of randomization for integers
 Masks for different variables can be independent

 Can address intra-structure overflows
 Not even addressed by full memory error detection techniques

 Natural generalization of PointGuard
 Protects all data, not just pointers
 Effective against relative address as well as absolute address attacks
 Different objects can use different masks (resists information leak attacks)
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DSR Transformation Approach
 For each variable v, introduce another variable m_v for 

storing its mask

 Randomize values assigned to variables (LHS)
 Example:   x = 5                     x = 5; x = x ^ m_x;

 Derandomize used variables (RHS)
 Example:  (x + y)                   ((x ^ m_x) + (y ^ m_y))

 Key problem: aliasing
 int *x = &y
 A value may be assigned to y and dereferenced using *x

 Both expressions should yield the same value
– Need to ensure that possibly aliased objects should use the same 

randomization mask

 Note
 In x = y, it is not necessary to assign same mask to x and y
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Pointer Analysis & Mask Assignment
 int x, y;
 int *p1,*p2, *p3;

 int **pp1, **pp2;

 pp1 = &p1; …

 pp1 = &p2; …

 pp2 = &p3; …

 p1 = &x; …

 p2 = &y; …

 p3 = &y; …

x

pp1

y

pp2

p
3*pp1

p1      p2

**pp1 
*p1  
*p2

 Steensgaard’s pointer analysis
 Flow and context insensitive
 Efficient (linear time complexity)

m2m1

m3 m4

m5

 **pp1 =>  *(*(pp1 ^ m1) ^ m3) ^ m5
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Implementation
Uses source-to-source transformation
For performance reasons, applies DSR to buffers and 

pointers only
 Non-buffer data is still protected against buffer overflows

Attempts to ensure that adjacent buffers won’t have 
the same mask

 Makes it possible to detect all buffer overflows

Limitations
 Does not yet support field sensitive points-to analysis
 Requires identification of external functions that aren’t 
transformed
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Execution Time Overheads

Average: 15%
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Limitations of ASR/DSR
Interoperability between diversified code and code 

that is not diversified
 Some randomizations need source code

 e.g., RAR relies on source-code transformations to reorder 
static variables, functions, etc.

Performance
 Increased VM usage (insignificant)
 Increased physical memory usage (insignificant)
 Runtime overhead (negligible for AAR, small for RAR, DSR)

Making debuggers randomization-aware
Biggest security challenge:

 Protecting randomization key(s), or in other words, resilience 
in the face of information leak attacks
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Summary of Automated Diversity
 Transformations that respect programming language 

semantics are good candidates for automated diversity
 But they are typically good for addressing only low-level implementation 

errors. (We have discussed them only in the context of a specific low-
level error, namely, memory corruption.)

 Automated diversity has been particularly successful in 
the area of memory error exploit prevention

 First generation of randomization-based defenses focused on absolute 
address based attacks

 Absolute-address randomization
 Practical technique with low impact on systems, and hence begun to 

be deployed widely
 Second generation defenses provide protection from relative-address 

dependent attacks
 Relative address randomization and data-space randomization
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State of Exploit defenses and New attacks
 Most OSes now implement 

 ProPolice like defenses, plus SEH protection (Microsoft)
 ASLR
 DEP/NX (prevent injected code execution)

 Recent attacks
 Exploit incomplete defenses, or use Heapspray for control-flow hijack

 No ASLR on most executables on Linux, some EXE, DLLs on MS
 Some libraries don’t enable stack protection, or it is incomplete
 Heapspray: brute-force attack in the space domain

– Exploits untrusted code in safe languages (Javascript, Java, Flash,…)
– Code allocates almost all of memory, fills with exploit code
– Jump to random location: with high probability, it will contain exploit code

 Return-oriented programming (ROP) to overcome DEP
 Rely increasingly on information leak attacks to overcome uncertainty due 

to ASLR, frequent software updates, and so on
 Just-in-time-ROP: use information leak vulnerability to scan code at 

runtime  to identify ROP gadgets
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 B. Preventing 
Memory Errors
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Memory Errors in C

 Spatial errors: out-of-bounds subscript or pointer
 char *p = malloc(10); *(p+15);

 Temporal errors: pointer target no longer valid
 Unintialized pointer
 Dangling pointer

 free(p); q = malloc(…); *p;

 Note: target may be reallocated!

 Hard to debug, especially temporal errors
 Unpredictable delay, unpredictable effect

 Reallocated pointer errors are the worst kind
 “Defensive programming” leads to memory leaks
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Memory Errors in C

 Spatial errors: out-of-bounds subscript or pointer
 char *p = malloc(10); *(p+15);

 Temporal errors: pointer target no longer valid
 Unintialized pointer
 Dangling pointer

 free(p); q = malloc(…); *p;

 Note: target may be reallocated!

 Hard to debug, especially temporal errors
 Unpredictable delay, unpredictable effect

 Reallocated pointer errors are the worst kind
 “Defensive programming” leads to memory leaks
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Issues and Constraints
Backward compatibility with existing C-code

 Casts, unions, address arithmetic
 Conversion between integers and pointers

Compatibility with previously compiled libraries
 Can’t expect to rebuild the entire system
 Source code access can be problematic for some libs

Temporal Vs Spatial Errors
 Detecting reallocated storage
 Important, since such errors get detected very late, and it is 
extremely hard to track them down

Use of garbage collection



37    

Why Not Garbage Collection?
Masks temporal errors

 Problematic if the intent is to use memory error-checking 
only during the testing phase

Unpredictable overheads
 Problematic for systems with real-time or stringent 
performance constraints

GCs can make mistakes due to free conversion 
between integers and pointers

 Fail to collect inaccessible memory
 Collect memory that should not be collected
 Problematic for code that relies heavily on such conversions, 
e.g, OS Kernel 
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Approaches for Preventing Memory Errors
 Introduce inter-object gaps, detect access to them (Red zones)

 Detect subclass of spatial errors that involve accessing buffers just past 
their end

 Purify, Light-weight bounds checking [Hasabnis et al], Address 
Sanitizer [Serebryany et al] 

 Detect crossing of object boundaries due to pointer arithmetic
 Detects spatial errors

 Backwards-compatible bounds checker [Jones and Kelly 97]
 Further compatibility improvements achieved by CRED [Ruwase et al]
 Speed improvements: Baggy [Akritidis et al], Paricheck [Younan et al]

 Runtime metadata maintenance techniques
 Temporal errors: pool-based allocation [Dhurjati et al], Cling [Akritidis et al]
 Spatial and temporal errors: CMemSafe [Xu et al]

 Further compatibility improvements: SoftBounds [Nagarakatte et al]
 Targeted approaches: Code pointer integrity [Kuznetsov et al], protects subset 

of pointers needed to guarantee the integrity of all code pointers.



Red Zone: LBC Approach

Object

p

 ((*p == guard_zone_value && slowcheck (p)) ?
    flag_error() : *p

Zero metadata operations in most common case saves 
significant runtime overheads
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● Simple version: guardmap[p] == 1

– Occupies 1/8th of the address space, even for a program that uses a 
few bytes of memory –- leads to inefficiencies

● Better version: two-level map

– Divide 32-bits of p into two parts, x (17 bits) and y (15 bits) 

● Check: map[x] == NULL || map[x][y] == 1

– Map uses just 0.5MB for programs
with small memory use 

● Use 3-level map for 64-bit address space

● Address sanitizer uses a similar approach,
but without a fast check
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Backwards Compatible Bounds-Checking
Enforces object allocation boundaries
All allocations are entered into an efficient data 

structure for intervals (splay tree)
Checks pointer arithmetic, not dereferences
If p is derived through address arithmetic on q, then 

requires that p and q refer to the same object
 If not, p is set to an invalid value (e.g., -1) that will cause 
memory exception on dereference

CRED: improves compatibility in cases where out-of-
bounds pointer is created but is not dereferenced 
before being brought back in bounds

 Uses a special data structure to keep track of OOB pointers
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Spatial Check:
(p >= p_info.base &&
 p < p_info.base+p_info.size)?

size=8

CMemSafe: Detecting Spatial Errors Using Metadata

char * p;

p = malloc(8);

p += 14;

p += 2;  

*p;

p

p_info
base

 base, size: base address and allocated size of the block

size

0x80004000

0x80004008

0x80004010

0x80004002

Heap

*p;  /* OK */

/* error */
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size=16size=8

size=8

INVALIDVALID

Temporal Check:
(*q_info.cap_ptr == VALID)?

CmemSafe: Detecting Temporal Errors

char * p, *q;

p = malloc(8);

q = p;

free(p);

*q;  

p

p_info
base

p = malloc(16);

 cap_ptr: pointer to unique capability associated with block

size

cap_ptr

q

q_info
base

size

cap_ptr

VALID

Capability Store
0x80004000

0x80004008

0x80004010

Heap

*q;  /* OK */

/* error */

*q;  /* error */

 Detect erroneous accesses to freed or reallocated memory
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Summary of Memory Error Defenses
 Static analysis (False positives and false negatives)

 Produce false positives (underlying problems are undecidable)
 Aimed at programmers, who need to investigate reported errors
 Not very practical because of FPs and FNs, so we did not discuss these

 Runtime detection of errors (Typically, no FPs)
 Exploit detection

 ASR, canaries, ….
 Error detection (some incompatibility with legacy code)

 Metadata for allocations, but no per-pointer metadata 
– Compatible with untransformed libraries

– Can’t detect pointer corruptions or temporal errors

– Examples: red zones, bounds-checking, CRED
 Per-pointer metadata

– Detect pointer arithmetic errors as well as corruption errors, plus temporal errors

– Compatibility issues: serious with “fat” pointers, significant even otherwise.

 Hybrid approaches
 CCured: static analysis classifies pointers, avoid metadata for most pointers
 Pool-based allocation: map temporal error effects into those of spatial errors
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