

Malware

Current Threats (Fourth generation)

Steal confidential information

- Credit-card/bank account #s, passwords, ...
- Trade secrets and other proprietary information
- Security-sensitive information
 - Useful for breaching physical world security
- Establish base for future operations
 - Conduit for future attacks
- Surveillance
 - Capture keystrokes, microphone or camera input
 - Reveal information about software installed
 - Snoop on web sites visited

Current Threats (Continued)

Driven by commercialization of Malware

- Thriving black-market for exploits
 - Zero-day exploits have arrived
- "Bot"-centric model for cyber crime
 - Relay spam (e-mail scam, phishing)
 - Extortion (using DDoS or targeted attacks)
 - Focus on desktop (rather than server) vulnerabilities
- Profit-driven adware and spyware
 - Customer-profiling, niche-marketing
 - IP protection (digital rights management)
 - aggressive installation, stealth (rootkits, spyware)
- Targeted attacks on high-value targets
 - Political activists
 - International adversaries
 - People with access to valuable information
 - •CEO/CFO with access to financial information on publicly traded companies
 - Researchers with access to proprietary formulas or other valuable IP

Modern Threats: A Glance

- Software
 - Viruses
 - Worms
 - DDoS and Botnet
 - Rootkits
 - Spyware
- Goal of software
 - Spam
 - Phishing
 - Online extortion

• . . .

Computer Virus

Properties

- Replicates itself
- Attaches to other non-malicious code
- Early versions spread via floppy disks, while recent viruses spread through the internet.

Examples

- Boot sector virus (difficult on OS with memory protection)
- Other OS level virus
- Virus that attaches to programs, scripts, libraries
- Macro virus
- Mail attachments

5

Disk-based Computer Viruses

• 1982, Elk Cloner

- First virus in the wild
- Targeting Apple II

• 1986, (c)Brain

- First virus for IBM PC
- A boot sector virus

1995, Concept virus

First Macro virus

• 1998, CIH

- One of the most harmful widely circulated viruses
- Overwrites both hard disks (data loss) and Flash BIOS (hardware damage)

Macro Virus

- Written in a macro language.
- Macros can perform operations that the software can do.
- Often, a simple solution: turning off the macro feature

CIH Virus

- Spreads via Portable Executable files under Windows 95/98/Me.
- Damages:
 - Overwriting the first 1024KB of the hard drive with zeroes →

Loss of data on the entire hard drive

- Overwriting the Flash BIOS with junk code →
 Computers cannot boot any more
- Activated in the public eye on April 26, 1999
- An untold number of computers worldwide were affected, much in Asia

Melissa

- Found on March 26, 1999
- Targetting Microsoft Word and Outlook-based systems, and creating considerable network traffic
- Shut down many Internal mail systems
 - That got clogged with infected e-mails propagating from the worm
- Inside a file called "List.DOC"
- Spread on Microsoft Word 97 and Word 2000.
- Can mass-mail itself from email client Microsoft Outlook 97 or Outlook 98.
- Attempts to mass mail itself once an infected Word document is opened.

ILOVEYOU

- First appeared on May 3, 2000
- Caused widespread e-mail outages, an estimated \$10 billion in economic damage
- Written in VBScript
- E-mail
 - Subject: "ILOVEYOU"
 - Attachment "LOVE-LETTER-FOR-YOU.TXT.vbs"
- Overwrote important files with a copy of itself
- Sent out itself to everyone in a user's contact list

Computer Worm

Replicates over the network (usually by itself)

First worm appeared at Xerox PARC in 1978

• What a worm can do?

- Replicates itself, and thus consumes network bandwidth
- Deletes files on a host system
- Sends documents via e-mail
- Carries other executables as a payload
 - Installs a backdoor in an infected computer (zombie computer)

Modern worms

- Large scale infection
- Fast spread rate
 - spread over the Internet within a second

Timeline of Notable Worms (1)

Nov 1988, Morris worm

- First well-known worm
- March 1999, Melissa (E-mail worm)
 - Targeting Microsoft Word & Outlook-based systems

• May 2000, VBS/Loveletter or ILOVEYOU (E-mail worm)

Caused an estimated \$10 billion in economic damage

• July 2001, Code Red (Exploited IIS bugs)

Considerably slowed down Internet traffic

• Jan 2003, SQL Slammer (Exploited MS SQL Server bugs)

- Very fast: infected most of its 75,000 victims within ten minutes
- Amazingly small, only 376 bytes

Timeline of Notable Worms (2)

• Aug 2003, Blaster, Welchia (Nachi), SoBig

- **Blaster** (Exploited DCOM RPC bugs)
 - Coded to start a SYN flood on Aug 15 against windowsupdate.com
- Welchia (Nachi)
 - A goodwill worm to remove Blaster and patch Windows
- SoBig (E-mail worm)
 - Infected millions of Windows computers in Aug 2003
 - Microsoft wanted information of the worm creator for \$250,000

• Apr 2004, Sasser (Exploited LSASS bugs)

Affected.

- Jan 2007, Storm worm
 - Very stealthy, established botnets.
 - Used obfuscation and rootkit-techniques to hide its behavior as well as its presence

Code Red

- Released on July 13, 2001
- Considerably slowed down the Internet traffic
- Details:
 - Attacked computers running Microsoft's IIS web server
 - Defaced the affected web site
 - Tried to spread itself by looking for more IIS servers on the Internet
 - Waited 20-27 days after it was installed to launch DoS attacks on several fixed IP addresses, including White House.
- Exploited a buffer overflow vulnerability in IIS; Used illegal GET requests to trigger the vulnerability

SLAMMER

- January 2003
- Caused DoS on some Internet hosts and dramatically slowed down general Internet traffic
- Fast
 - Infect most of its 75,000 victims within ten minutes
- A buffer overflow based attack targeting Microsoft SQL Server
- Amazingly small, only 376 bytes
- Generate random IP addresses and send itself out to those addresses.
- If the selected address happens to belong to a host that is running an unpatched copy of Microsoft SQL Server, the host immediately becomes infected and begin spraying the Internet with more copies of the worm program.
- Only stays in memory.

Blaster

- Spread during August 2003 (first noticed on August 11, peaked on August 13)
- Programmed to start a SYN flood on August 15 against port 80 of windowsupdate.com.
- Exploited a buffer overflow in the DCOM RPC service on the affected Windows operating systems

Welchia (Nachi)

- Welchia (Nachi), a worm that tries to remove the Blaster worm and patch Windows
 - Discovered in August 18, 2003
- Not good
 - Create vast amount of network traffic, thereby slowing down the Internet
 - Make the system unstable (e.g. reboot after patching)
 - Without user's explicit consent

SoBig

Consequences:

- Infected millions of Microsoft Windows computers in August 2003
- Microsoft wanted information of the worm creator for \$250,000

• Details:

- Appear as an e-mail with one of the following subjects:
 - Re: Approved Re: Details Re: Thank you .
- Contain the text: "See the attached file for details" or the like
- Contain an attachment by one of the following names:
 - application.pif details.pif thank_you.pif
- Infection and spreading
 - Infect a host computer once the attachment is opened
 - Replicate by sending out the above-mentioned emails
 - E-mail addresses are gathered from files on the host computer

MyDoom

- First sighted on January 26, 2004.
- One of the fastest spreading e-mail worms
- Details
 - Primarily transmitted via e-mail, appearing as a transimission error
 - Subject lines including "Error", "Mail Delivery System", "Test" or "Mail Transaction Failed"
 - Contains a malicious attachment
- Infection and Spreading
 - Resend the worm to e-mail addresses found in local files once the attachment is opened.
 - Copies itself to the "shared folder" of KaZaA (a P2P file-sharing app)
- Backdoor
 - Installs a backdoor on port 3127/tcp to allow remote control of the subverted PC
 - A DoS attack against SCO Group, Microsoft, and antivirus sites

• First noticed in April 2004. Affected:

• Can spread without the help of the user.

- Exploit a buffer overflow in LSASS (Local Security Authority Subsystem Service)
- Scan different ranges of IP addresses and connect to victims' computers primarily through TCP port 445.
- Can be easily stopped by a properly configured firewall, or by downloading patches

Goals of Worms

- "bragging rights" in early days
 - infect as many sites as possible
 - be as noticeable as possible
 - values fast spread, DoS effect
- Detection techniques could hence be targeted at these features
- More recently, worms used to establish botnets
 - Need to remain stealthy
 - Spread slowly so as to evade detection
 - Attacks launched on demand, but infection itself should not cause any noticeable surge in network trafiic or other feature changes that can be easily spotted
 - So, we no longer hear about "high-profile" worms.

Distributed Denial-of-Service (DDoS)

• DoS

 An attack on a computer system or network that causes a loss of service to users

Methods

- Consumption of computational resources, such as bandwidth, disk space, or CPU time
- Disruption of configuration information, such as routing information
- Disruption of physical network components

• DDoS

• Use of multiple hosts (often through Botnet) in a DoS

Botnet

• What is a Botnet?

- A collection of compromised computers
- The computers are implanted with backdoor programs
 - Usually by worms, viruses
- The programs are under a common control infrastructure
- Botnet's originator can control the group remotely
 - Earlier botnets used means such as IRC
 - But modern botnets have begun to rely means that are harder to spot
 - •HTTP
 - P2P networks

Purpose

- DDoS
- SMTP mail relays for SPAM
- Theft of sensitive information
 - E.g. login IDs, credit card numbers, application serial numbers

Rootkit

Stealthy backdoor programs

Intended to maintain "invisibility" of intruders

- Intercepts data from terminals, network connections, and the keyboard
- Conceals logins, running processes, files, logs, or other system data

Origins of "rootkit"

 Originally referred to such kind of programs in Unix systems (root – the administrator)

Rootkits

Userlevel rootkits

- Early ones on UNIX used to replace many programs used to examine system state
 - Is, ps, netstat,...
- Drawback: if an administrator uses a custom C-program to examine system state, he can discover the presence of rootkit

Kernel rootkits

- System call interception based
 - All user level requests are intercepted and modified to hide the presence of rootkit
 - Problem: can be difficult to block all ways to learning about the presence of rootkit

More Advanced Rootkits

- May reside entirely within the kernel, with no user-level processes
- Hide themselves from system monitoring tools
 - e.g., put themselves on a scheduler queue, but not task queue
- In the most extreme case, avoid changing any data that is predictable or is read-only
 - Hide within kernel data structures that change all the time
- Rootkits that hide underneath the OS
 - Lift the OS into a VM!

SonyBMG DRM Rootkit (2005)

- Extended Copy Protection (XCP) DRM for CD copy protection
 - User is required to install XCP software contained in the CD to play XCP-protected CD on a Windows system.
 - XCP intercepts all accesses of the CD drive and only allows XCP-bundled media player to access music tracks on the CD
 - (Rootkit) XCP conceals itself from the user by installing a patch to the Windows operating system. This patch stops ordinary system tools from displaying processes, registry entries, or files who names begin with \$sys\$.
- About 4.7 million XCP-CDs shipped, 2.1 million sold [New York Times]

SonyBMG DRM Rootkit (2005)

A Controversial DRM mechanism

Weakened system security

- XCP rootkit could be used by other malware
 - The first one was discovered in November 2005
- XCP uninstaller, which was released later, left serious security holes on the system

• This episode set back DRM efforts for a while

- But ultimately, DRM forces won
 - Included in HTML 5 (March 2017)
 - Relies on protection offered by the platform (iOS, Adroid, Kindle)
 - or code obfuscation (e.g., SilverLight, Flash)
 - Obfuscation is security by obscurity, but pretty effective in practice because the effort (for defeating) is not often worth the cost.
 - Piracy is a more serious problem where cost is relatively high

Properties

- Intercept or take partial control of computer's operation
- Without the informed consent of that computer's legitimate user.
- Does not usually self-replicate.

Purpose

- Delivery of unsolicited pop-up advertisements
- Theft of personal information
- Monitoring of Web-browsing activity for marketing purposes
- Routing of HTTP request to advertising sites

Spam

Properties

- Sending of unsolicited (commercial) emails
- Sending nearly identical messages to thousands (or millions) of recipients
- Spamming in different media
 - E-mail spam, Messaging spam, Newsgroup spam and Forum spam, Mobile phone spam, Internet telephony spam, Blog, wiki, guestbook, and referrer spam, etc

Spam

- Spam volumes hold steady
 - After falling from a high of 6T to about 1T/month
- Expands to social networks
 - Facebook, Twitter, Instagram, ...

Phishing

• Uses social engineering techniques

- Masquerading as a trustworthy person or business in an apparently official electronic communication
- Attempts to fraudulently acquire sensitive information
 Such as passwords and credit card details

Spear-phishing

 Phishing attack that is narrowly targeted at a single individual or a group of individuals

Dear SouthTrust bank customer,

Technical services of the SouthTrust bank are carrying out a planned software upgrade. We earnestly ask you to visit the following link to start the procedure of confirmation of customers' data.

https://www.southtrust.com/st/PersonalBanking/custdetailsconfirmation

Please do not answer to this email - follow the instructions given above.

We present our apologies and thank you for co-operating.

Copyright @ 2005 SouthTrust. All Rights Reserved SouthTrust Bank, Member FDIC.

Phishing

- New types of phishing
 - Watering hole
 - Clone phishing
 - Tabnapping

Top 5 Activity for Malware Destination by Geography

Country	1 in
Netherlands	1 in 108
Luxembourg	1 in 144
United Kingdom	1 in 163
South Africa	1 in 178
Germany	1 in 196

Source: Internet Security Threat Report 2013, Symantec

Source: McAfee Threats Report: First Quarter 2013

Online DDoS Extortion

- Extortion: you pay us or you will be attacked
- [CMU and Information Week, 2004]
 - 17% of companies surveyed are victims of online extortion.
- [Alan Paller, SANS Institute, 2004]
 - 6 or 7 thousand organizations are paying extortion
 - Every online gambling site is paying extortion
- Currently, targets seem to be more selected
 - "Shady" businesses, e.g., Online gambling
Botnets & DDOS

Botnets now include mobile devices

Android botnets

http://mobile.slashdot.org/story/13/01/19/0735259/android-botnet-infects-1-million-plus-phones

DDoS used as a diversion

http://www.ic3.gov/media/2012/FraudAlertFinancialInstitutionEmployeeCredentialsTargeted.pdf

Web Vulnerabilities

Scanned Websites with Vulnerabilities

A critical vulnerability is one which, if exploited, may allow malicious code to be run without user interaction, potentially resulting in a data breach and further compromise of visitors to the affected websites.

Percentage of Vulnerabilities Which Were Critical

Zero Day Exploits ...

Ransomware ...

Data Leaks ...

≫ 2/9/2009

Underlying Causes

- Untrusted software
 - Malware, including viruses, worms, bots, …
- Configuration errors
 - Default passwords, permissive firewall rules, ...
- Human element
 - Insider threats, operator mistakes, social engineering
- Vulnerabilities in trusted software
 - These may be the result of errors in
 - Threat modeling
 - Design/logic
 - Implementation
 - Testing

Stealth and Obfuscation

- Malware wants to remain stealthy
 - So that it can be used in cyber crime (or to achieve other goals of attacker) without being detected
 - Protect "intellectual property"
- Intellectual property protection for legitimate code
 - Make it difficult to reverse-engineer code
 - Introduce watermarks
 - Prevent unauthorized copy of content
- Result
 - Obfuscation techniques

Types of obfuscation

- To thwart static analysis (code obfuscation):
 - Low-level code obfuscations
 - Insert data in the middle of code
 - Violate typical ABI conventions, e.g., call/return, stack use, jumping to the middle of code, dynamic generation or modification code, etc.
 - Code encryption and transformation
 - Higher level code obfuscation
 - Rename functions and variables
 - Control-flow obfuscation
 - Data obfuscation

• To thwart dynamic analysis (behavior obfuscation):

- Evasion: Carefully match behavior with that of benign software, or employ code/behaviors that do not trigger suspicion
- Anti-analysis techniques
 - Detect execution within VM, emulator, or a sandbox and alter behavior
- Combine benign and malicious behaviors, complicating detection

Polymorphic viruses and encryption

- Historically, virus detection relied on "signatures" that captured byte sequences in code that were unique to the virus
- Polymorphism
 - Encrypt virus code so that it can change from one instance to another
 - Basically, change the encryption key from one generation to the next, causing massive changes to byte sequences

Defense

- Focus on invariant parts used to pack/unpack
- Capture unpack/launch behavior (runtime detection)
- Run virus scanner after unpack

Obfuscation/Metamorphic Viruses

- Metamorphic viruses rewrite their entire code from one generation to next
- No "fixed" part in their code
 - Need not have any code encryption/decryption, so behavior based techniques can be defeated as well

Metamorphic techniques

- Use alternative instruction sequences to achieve the same effect
- More general program obfuscation techniques

Control-flow Obfuscation

- Split or aggregate
 - Basic blocks
 - Loops
 - e.g., one loop becomes two loops or vice-versa
 - Procedures
 - Replace one procedure by two or merge two procedures
 - Inline a procedure, or outline (i.e., create new procedure)
- Reorder
- Insert dead-code (i.e., unreachable code)
 - Obfuscate using conditions
- Replace instruction sequences w/ alternate ones
- Insert conditional jumps using "opaque" predicates
- Insert indirect jumps
- Exploit aliasing and memory errors

Data Obfuscation

- Rename variables
- Split or aggregate variables
 - Split structures into individual variables or vice-versa
- Split individual variables
 - E.g., A = B C instead of A, use B and C
 - Clone a variable
- Pad arrays (and possibly structures) with junk elements
- "Encrypt" data values
- Introduce extra levels of indirection
 - Instead of a simple variable, declare a pointer
- Introduce aliasing
- Introduce memory errors
- Introduce additional (or remove) function parameters

Key Issues in Malware Defense

- Plenty of motivation for attackers to remain stealthy
 - Many techniques are available to achieve this
 - Anti-virtualization, anti-analysis, obfuscation, ...
- Adaptive
 - Will employ evasion techniques specifically designed to defeat commonly deployed defenses

Need to assume a strong adversary model

- Rely on self-protecting defense techniques
 - Ensure defense mechanisms are not compromised by malware
- Complete mediation
- Robustness against multi-step attacks ("stepping stones")

The Human Element

- Growing system complexity contributes to more operator errors
 - misconfigured systems
 - especially problematic in settings where many components interact
- Insider attacks
- Social engineering attacks

Intentionally introduced vulnerabilities

- Infiltration into key software or open-source teams
- Hardware Trojans