Symlink attacks
¢ Do not assume that symlinks are trustworthy:

s Example 1

vApplication A creates a file for writing in /tmp. It assumes that
since the file name is unusual, or because it encodes A's name or
pid, there is no need to check if the file is already present

vAttacker creates a symlink with same name that points to an
important file F. When root runs A, F will be overwritten.
s Example 2

vUser A runs an application that creates a file in /tmp/x and then
later updates it.

vUser B attacks this application by removing /tmp/x and then
creating a symlink named /tmp/x that points to an important file F.
+ Hard links and file/directory renames can also be used
to carry out some of these attacks, but they are difficult
because there are more restrictions on them.



Race conditions

¢ Time-of-check-to-time-of-use (TOCTTOU) attacks

s Often arise when an application tries to protect itself
against name-based attacks

+ Example

= A setuid application permits a non-root user to specify the
name of an output file, say, for logging

m It checks if the real user has permission to write this file,
usually using the access system call

» Attacker modifies the file between access and open
vChecks OK, but the attack succeeds!



Race condition examples

¢ access/open
¢ chmod/chown

¢ Directory renames
= Root invokes rm -r on /tmp/* to clean up /tmp

= Attacker creates a directory /tmp/a and then another
directory /tmp/a/b

= rm may (1) cd into /tmp/a/b, remove all files in it, (2) cd

into “..", (3) continue to remove files in /tmp/a, (4) cd “..”
and (5) continue to remove files in /tmp

m Attacker moves /tmp/a/b to /tmp between (1) and (3),
causing files in / to be removed in step (5).



Succeeding in Races ...

+ It may seem that it would be hard for the
attacker to succeed, but he can mount
“algorithmic complexity attacks”

= Make a normally fast operation take very long

s Example: Instead of creating a file /tmp/a, make it point
to a symlink which in turn points to a symlink and so on.
Access operation, which needs to resolve this sequence of
symlinks will take very long. Can further slow it down by
creating deep directory trees.

= As a result, races can succeed with near 100% probability!



Common Software Vulnerabilities

¢+ CWE (Common Weakness Enumeration) is an
excellent source on currently prevalent software
vulnerabilities

¢ CWE Top-25 is a good point to start

m You are expected to be familiar with the vulnerabilities in
this list — read the list and understand what each
vulnerability means



Common Software Weaknesses

+ Input validation

= Injection vulnerabilities

vCross-site scripting, SQL/command injection, code/script injection,
format-string, path-traversal, open redirect, ...

= Buffer overflows
vinteger overflows, incorrect buffer size or bounds calculation

s Many other application-specific effects of untrusted input

+ Failure to recognize or enforce trust boundaries
= Calling function that trust their inputs with untrusted data
= Including code without understanding its dependencies
= Relying on form data or cookies in a web application

¢ Missing security operation
= Authentication: missing, weak, or using hard-coded credentials

= Authorization: missing checks
vCross-site request forgery

= Failure to encrypt, hash, use salt, ...



Common Software Weaknesses

¢+ Use of weak security primitives
s Weak random numbers, encryption, hash algorithms, ...

+ Information leakage

= Error messages that reveal too much information

vSoftware version, source code fragments, database table names
or errors, ...

vTiming channels

+ Execution with unnecessary privileges
s Executing code with admin privileges
= Incorrect (or missing) permission settings

+ Error/exception-handling code
= Failure to check error codes, e.g., open, malloc, ...
= Failure to test error/exception-handling code

¢ Race conditions



CWE -1000: Research View of CWEs

+ Top 25 is useful to understand current trends,
but the descriptions can often be uninformative

+ CWE-1000 organization has a much better
structure and organization

¢ You don’t necessarily get a sense of
completeness from these, but reading them will
still significantly broaden your understanding of
software vulnerabilities and more secure coding

practices.



Secure Coding Practices

+ The goal of this course is to expose you to a
range of vulnerabilities and exploits, so you can
learn how to build secure systems and develop
secure code

+ But we don’t necessarily provide a “cook book”

= The hope is that you will learn more from understanding
the examples in depth than reading a long laundry list

¢ Nevertheless, several good sources are available
on the Internet that discuss secure coding
practices
s CERT top 10 secure coding practices
s CERT Secure coding standards for C, C++, and Java
s OWASP Secure coding principles




Vulnerabilities Vs Malicious Code

+ These two pose very different threats

= With vulnerable code, you have a relatively weak
adversary: one that is constrained to exploiting an
existing vulnerability, but has no way of
controlling it.

= SO, relatively weak defenses such as
randomization can work.

= With malicious code, you have a strong
adversary
vCan modify code to evade specific defenses

vYou cannot make assumptions such as the absence of
intentionally introduced errors, obfuscation, etc.



