
Symlink attacks
Do not assume that symlinks are trustworthy:

Example 1
Application A creates a file for writing in /tmp. It assumes that
since the file name is unusual, or because it encodes A's name or
pid, there is no need to check if the file is already present
Attacker creates a symlink with same name that points to an
important file F. When root runs A, F will be overwritten.

Example 2
User A runs an application that creates a file in /tmp/x and then
later updates it.
User B attacks this application by removing /tmp/x and then
creating a symlink named /tmp/x that points to an important file F.

Hard links and file/directory renames can also be used
to carry out some of these attacks, but they are difficult
because there are more restrictions on them.

Race conditions
Time-of-check-to-time-of-use (TOCTTOU) attacks

Often arise when an application tries to protect itself
against name-based attacks

Example
A setuid application permits a non-root user to specify the
name of an output file, say, for logging
It checks if the real user has permission to write this file,
usually using the access system call
Attacker modifies the file between access and open

Checks OK, but the attack succeeds!

Race condition examples
access/open
chmod/chown
Directory renames

Root invokes rm -r on /tmp/* to clean up /tmp
Attacker creates a directory /tmp/a and then another
directory /tmp/a/b
rm may (1) cd into /tmp/a/b, remove all files in it, (2) cd
into “..”, (3) continue to remove files in /tmp/a, (4) cd “..”
and (5) continue to remove files in /tmp
Attacker moves /tmp/a/b to /tmp between (1) and (3),
causing files in / to be removed in step (5).

Succeeding in Races ...
It may seem that it would be hard for the
attacker to succeed, but he can mount
“algorithmic complexity attacks”

Make a normally fast operation take very long
Example: Instead of creating a file /tmp/a, make it point
to a symlink which in turn points to a symlink and so on.
Access operation, which needs to resolve this sequence of
symlinks will take very long. Can further slow it down by
creating deep directory trees.
As a result, races can succeed with near 100% probability!

Common Software Vulnerabilities
CWE (Common Weakness Enumeration) is an
excellent source on currently prevalent software
vulnerabilities
CWE Top-25 is a good point to start

You are expected to be familiar with the vulnerabilities in
this list – read the list and understand what each
vulnerability means

Common Software Weaknesses
Input validation

Injection vulnerabilities
Cross-site scripting, SQL/command injection, code/script injection,
format-string, path-traversal, open redirect, ...

Buffer overflows
integer overflows, incorrect buffer size or bounds calculation

Many other application-specific effects of untrusted input
Failure to recognize or enforce trust boundaries

Calling function that trust their inputs with untrusted data
Including code without understanding its dependencies
Relying on form data or cookies in a web application

Missing security operation
Authentication: missing, weak, or using hard-coded credentials
Authorization: missing checks

Cross-site request forgery
Failure to encrypt, hash, use salt, …

Common Software Weaknesses
Use of weak security primitives

Weak random numbers, encryption, hash algorithms, …
Information leakage

Error messages that reveal too much information
Software version, source code fragments, database table names
or errors, …
Timing channels

Execution with unnecessary privileges
Executing code with admin privileges
Incorrect (or missing) permission settings

Error/exception-handling code
Failure to check error codes, e.g., open, malloc, …
Failure to test error/exception-handling code

Race conditions

CWE -1000: Research View of CWEs
Top 25 is useful to understand current trends,
but the descriptions can often be uninformative
CWE-1000 organization has a much better
structure and organization
You don’t necessarily get a sense of
completeness from these, but reading them will
still significantly broaden your understanding of
software vulnerabilities and more secure coding
practices.

Secure Coding Practices
The goal of this course is to expose you to a
range of vulnerabilities and exploits, so you can
learn how to build secure systems and develop
secure code
But we don’t necessarily provide a “cook book”

The hope is that you will learn more from understanding
the examples in depth than reading a long laundry list

Nevertheless, several good sources are available
on the Internet that discuss secure coding
practices

CERT top 10 secure coding practices
CERT Secure coding standards for C, C++, and Java
OWASP Secure coding principles

Vulnerabilities Vs Malicious Code
These two pose very different threats

With vulnerable code, you have a relatively weak
adversary: one that is constrained to exploiting an
existing vulnerability, but has no way of
controlling it.
So, relatively weak defenses such as
randomization can work.
With malicious code, you have a strong
adversary

Can modify code to evade specific defenses
You cannot make assumptions such as the absence of
intentionally introduced errors, obfuscation, etc.

