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Limitations of SFI/NaCl Approach

Need for compiler support
Does not work on arbitrary binaries --- 

binaries should have been compiled using a 
cooperative compiler

Otherwise, the binary will trivially fail the 
verification step

Question: Can we instrument arbitrary 
COTS binaries to insert inline security 
checks?



Motivation for COTS Binary 
Instrumentation

 No source code needed
Language-neutral (C, C++ or other)

 Can be largely independent of OS
 Ideally, would provide instruction-set 

independent abstractions
This ideal is far from today’s reality

 Benefits
Application extension

 Functionality
 Security
 Monitoring and debugging

Instrumenting long-running programs



Approaches
 Static analysis/transformation

Binaries files are analyzed/transformed
Benefits

 No runtime performance impact
 No need for runtime infrastructure

Weakness
 Error-prone, problem with signed code (can work around)

 Dynamic analysis/transformation
Code analyzed/transformed at runtime
Benefit: more robust/accurate
Weakness

 High runtime overhead
 Runtime complexity (infrastructure)



Previous Works (Static)
OM/ATOM (DEC WRL)

Proprietary and probably outdated
EEL (Jim Larus et al, 1995)

The precursor of most modern rewriters
Targets RISC (SPARC)
Provides processor independent 

abstractions
Follow up works

UQBT (for RISC)
LEEL (for Linux/i386)



Previous Works (Dynamic) 
 LibVerify (Bell Labs/RST Corp)

Runtime rewriting for StackGuard
 DynamoRIO (HP Labs/MIT) Disassembles 

basic blocks at runtime
Provides API to hook into this process and 

transform executable
 Pin (Intel/U. Colorado)
 Valgrind
 A number of virtualization implementations 

rely binary translation (or used to)
QEMU, VMWare, …



Phases in Static Analysis of Binaries

Disassembly
 Instruction decoding/understanding
 Insertion of new code



Static Disassembly
Core component for static analysis of 

binaries
Principal Approaches

Linear Sweep
Recursive Traversal 



Linear Sweep Algorithm

 Used by GNU objdump
 Problem:

There can be data 
embedded within code
There may also be padding, 
alignment bytes or junk

Linear sweep will 
incorrectly disassemble 
such data

Addr = startAddr;

while (Addr < endAddr ) {

    ins=decode(addr);

    addr+=LengthOf(ins);

}



Linear Sweep Algorithm
  804964c:   55             push   %ebp
  804964d:  89 e5         mov    %esp,%ebp
  804964f:    53             push   %ebx
  8049650:   83 ec 04   sub   $0x4,%esp
  8049653:    eb 04       jmp   0x8049658
  8049655:    e6 02 04  <junk>
  8049658:    be 05000000     mov   $0x5,%esi

  804964c:   55              push   %ebp
  804964d:   89 e5         mov    %esp,%ebp
  804964f:    53              push   %ebx
  8049650:   83 ec 04    sub    $0x4,%esp
  8049653:   eb 04         jmp    0x8049658
  8049655:   e6 02        out 0x2, al
  8049657:   04 be        add al, 0xbe
  8049659:   05 00000012    add eax, 0x12000000

 Incorrectly disassembles junk (or padding) bytes
Confusion typically cascades past the padding, causing 

subsequent instructions to be missed or misinterpreted.



Self Repairing Disassembly

 Property of a disassembler where it 
re-synchronizes with the actual 
instruction stream

 Makes detecting disassembly errors 
difficult

 216 of 256 opcodes are valid
 Observation: re-synchronization 

happens quickly, within 2-3 
instructions beyond point of error.



Self Repairing Disassembly (example)

 Linear Sweep output
 100: push ebp
 101: mov ebp, esp
 103: jmp 109

105: nop
 106: nop
 107: or dword ptr ds:[ebx+eax*1], 0xb8

111:add dword ptr ds:[eax+eax*1], eax

113: add byte ptr ds:[eax+eax*1], al

116: leave

 Correct Output
 100: push ebp

101: mov ebp, esp
103: jmp 109
106:  <GAP>

 107:  <GAP>

108:  <GAP>

109: or al, 0x3

111: mov eax, 0x1
 116: leave

Consider the byte stream 
55 89 e5 eb 03 90 90 83 0c 03 b8 01 00 00 00 c9



Recursive Traversal

 Approach: Takes into account the 
control flow behavior of the 
program 

 Weakness: For indirect jumps, 
jump target cannot be determined 
statically, so no recursive traversal 
of the target can be initiated

 Some error cases not handled, 
e.g., jump to the middle of an 
instruction

RecursiveTraversal (addr)  {
   while (!visited[addr]) {
       visited[addr] = true;
       ins = decode (addr);
       if (isControlTransfer(ins))
          RecursiveTraversal (target(ins))

       if (uncondJumpOrRet(ins)) 
          return
       else addr+=LengthOf(ins);
   }
}



Static Disassembly – Impediments

Code/Data distinction 
Variable x86 instruction size 
Indirect Branches

Mainly due to function pointers
Cross-module calls

e.g., calls from executable to a library
GUI code (event handlers)
C++ code (Virtual functions) 

Functions without explicit CALL
PIC (Position-Independent Code)
Hand-coded Assembly



Optimized Code Example
#include <stdio.h>
void f(int c) {
  printf("%d\n", c);
}
void h(int i) {
  f(i+1);
}
int i(int j) {
  return j+1;
}
int main(int argc, char*argv[]) {
  h(i(argc));
  f(argc+2);
}



Compiled Code Example
void f(int c) {
  printf("%d\n", 
c);

}

Function prologue

Function epilogue

pushl   %ebp
movl    %esp, %ebp
subl    $16, %esp

pushl   8(%ebp)
pushl   $.LC0 (“%d”)
call    printf

leave
ret



Optimized Code Example
void h(int i) {

  f(i+1);

}

No push of arguments

No epilogue, 
not even a call!

h:

  pushl   %ebp

  movl    %esp, %ebp

  subl    $8, %esp

  incl    8(%ebp)

  leave

  jmp     f



Optimized Code Example
main(int argc, 
char*argv[]) {

  h(i(argc));
  f(argc+2);
}

Return value in eax reg,
No argument push!

No push of arguments
to f, tail call 

main:
  pushl   %ebp
  movl    %esp, %ebp
  pushl   %ebx
  subl    $16, %esp
  movl    8(%ebp), %ebx
  pushl   %ebx
  call    i
  movl    %eax, (%esp)
  call    h
  addl    $2, %ebx
  movl    %ebx, 8(%ebp)
  addl    $16, %esp
  movl    -4(%ebp), %ebx
  leave
  jmp     f



Static Code Transformation 
Limitations

 Cannot move code
Cannot predict the destination of indirect calls, so 

there is no safe way to move code
Can copy code, if original is left in place

 If the goal is to protect against vulnerabilities in original 
code, then leaving of original code defeats this purpose!

 Code insertion is tricky
Obvious approach: overwrite original code with 

unconditional jump, patch
Problem: There may not be enough room for jump 

instruction (5 bytes)
Possible solution: use INT 3 (one-byte) instruction

 Higher overhead for handling (signal generation/handling)



Static Code Transformation 
Limitations

Code insertion at arbitrary points is 
very difficult
Code insertion at beginning/end of function 

is easy
Other points in code are not well defined in 

optimized code
Loops may be unrolled
Switch statements translated to jump tables
Successive branches may be combined
Function arguments may not be explicitly 

pushed (nor return value popped)
Tail call optimization and function inlining



Code Transformation Limitations
 Relocation of static data is not feasible

Cannot identify and relocate static pointers, which 
appear as immediate constants in assembly code

Note: These constants may be passed through 
several functions before used

 Note: Most above limitations can be removed 
if relocation information is present in binary

 Relocation of stack/heap data possible 
Change SP at program beginning
Intercept/modify malloc and/or mmap requests



Dynamic Transformation 
Techniques



Libverify
 Inserts (StackShield) checks in binary code

Copy each function to heap
Modify first and last instruction in each function to jump to wrapper 

code implementing StackShield
Replace original copy with TRAP instructions

 Any jump/calls to original code activates trap handler
 Handler looks up corresponding address in copied code and transfers control there
 If no copy exists (entry to function not discovered at load time), the function can be 

copied to heap and instrumented at this time

 Benefit: handles all indirect control transfers correctly
Note: indirect transfers will go to original code locations, 

unless code pointers are identified and modified to point to 
new locations
As mentioned before, this is hard to do in many cases, so 

this approach of using traps and runtime redirection is a 
good trade-off between performance and compatibility

 Drawback: performance impact if traps are repeatedly executed



DynamoRIO
Use Libverify’s runtime handling to the extreme

All code is discovered dynamically, analyzed dynamically, 
and then rewritten

Code is transformed one basic block at a time
Side-steps the thorny problem of disassembly
Note that it is trivial to reliably disassemble a single basic block, 

which is straight-line code with no control-transfers in the middle.
Only the first execution of a basis block requires analysis and 

rewriting. Subsequent executions can use the same 
rewritten block.

Control transfers occur in the last instruction of a basic 
block. These instructions need to be checked at 
runtime.

Non-control-transfer instructions are executed natively 



RIO System Infrastructure

Basic Block
 Builder

Trace Selector

Dispatch

Indirect Branch
Lookup

Indirect Branch
Stays on trace ?

Trace Cache
Non-ctrl flow
instructions

Basic Block
Cache

Non-ctrl flow
instructions

Context Switch

Start



DynamoRIO Operation
 Instrumented programs run in two contexts

DynamoRio context (above the redline, representing 
DynamoRIO runtime). Responsible for detecting the 
execution of new basic blocks (BBs)
These BBs are disassembled, analyzed and then transformed: 

just-in-time disassembly/rewriting, just before first execution
DynamoRIO provides an API for instrumentation: one can use 

this API to implement custom instrumentation, e.g., count 
number of BBs executed, number of memory accesses, etc.

Application context (below the red line, application code 
executes natively) 
Non-control-transfer instructions need no special treatment
Control-transfers need to be checked

 If they are direct transfers, then we check if the target has already been 
instrumented (and hence is in the code cache). If so, directly jump there. 
If not, switch into DynamoRIO context to perform instrumentation.

 Indirect transfers need to go through a translation table 



Handling Indirect CFT
Note that indirect control transfers will use original code 

addresses
But the instrumented code is in the code cache at a different address. 

(We cannot use the original addresses, even if they were available: 
instrumentation causes code to expand, so every target except the 
very first function in the instrumented application will necessarily 
reside at a different location as compared to the original code.)

As discussed before, we cannot “fixup” code references either. This is 
because code addresses will be immediate constants in the binary, 
and there is no way to distinguish integer constants from code 
addresses
 If we mistakenly “fixup” an integer value, that will change program behavior
 If we mistakenly omit the fixup of a code pointer, then code will jump to an 

incorrect
location, likely leading to a crash

Clever idea put forth by DynamoRIO authors
Wait until a pointer is actually used

 If it is used as a target of control transfer, then it is obviously a code pointer
 Just-in-time code pointer fixup: fixup happens at the very last step.



Fixup Implementation
Fixup is implemented using a translation table

A hash table jmptab maps the original address of a BB to its 
new address in the code cache (corresponding to the location 
of the instrumented version of code)

Each time DynamoRIO runtime instruments a BB, it enters the 
mapping between the original location and the new location in 
this table.

At runtime, every indirect CFT to a location l is 
translated into jmptab[l]
Each indirect jump requires a hash table lookup, and 
has a performance cost

Fortunately, common cases (e.g., returns and repeated 
calls to same target) can be optimized

 If the target is not in jmptab, then control transferred to 
DynamoRIO runtime.



DynamoRIO Context Switch
• Preserve the following conditions

– All GPRs (8 in x86-32)
– Eflags
– Some system state. Eg: error code

• DynamoRIO uses one slot in TLS (thread local storage) 
to store error code (errno) of the application.

• DynamoRIO will use some library routines that may 
modifiy the state as error code, so it is necessary to 
preserve application’s errno.



add  %eax, %ecx

cmp  $4, %eax

jle  $0x40106f add  %eax, %ecx

cmp  $4, %eax

jle  <stub0>

jmp  <stub1>

mov  %eax, eax-slot

mov  &dstub0, %eax

jmp  context_switch

mov  %eax, eax-slot

mov  &dstub1, %eax

jmp  context_switch

frag7:

stub0:

stub1:

bb with conditional jump

bb in code cache

• Assumes that the BBs at 0x40106f and 
the immediately following BBs  are not 
in the code cache. In this case, control
has to be transferred to DynamoRIO
runtime when execution reaches the 
end of this BB. Before context switch, 
all of the application state (in particular,
registers) need to be saved.

DynamoRIO Context Switch



Transparency & OS Issues
• Transparency: application cannot tell that it is 

running inside DynamoRIO
• Why does DynamoRIO need transparency?

– Ensures that application behaves exactly the same way as
before: it can’t even tell the difference. 

– So, it can’t evade DynamoRIO, nor can it behave differently.
• Transparency Issues

– Library transparency
– Thread transparency
– Stack transparency
– Address space transparency
– Context Translation
– Performance transparency (not preserved)



Program Shepherding: 
An IRM based on DynamoRIO

 Introduces in-line checks to defend 
against common exploits
Buffer overflow attacks
Format string attacks
Injection of malicious code
Re-use of existing code (existing code 

attacks)
Sandboxing



Program Shepherding 
Performance under Linux

 gcc is slow since it consists of many short runs 
with little code re-use 



Program Shepherding 
Performance under Windows

 Windows is much less efficient at changing 
privileges on memory pages than Linux



Caveat about performance
DBT performance measurements usually based very long-

running CPU-intensive benchmarks
These applications represent the “best case scenario” for DBT 

systems
Rewrite once, execute for a long time

Real-world performance can be bad
10x to 40x slowdown in the worst case

Example DBT systems
DynamoRIO, Pin, Valgrind, …

But its exceptional level of compatibility with arbitrary binary 
code can still be compelling for
CPU-intensive applications with tight loops
Coarse-granularity instrumentation (i.e., very small fraction of 

instructions instrumented) 
Debugging applications



DynamoRIO API
DynamoRIO exports an API that 

supports building a DynamoRIO client
DynamoRIO and the client jointly 

operate on target input binaries
Client registers callback functions that 

are invoked by DynamoRIO at specified 
points



DynamoRIO API

• The engine exports 
an API for building a 
client

• System details are 
abstracted away; 
client focuses on 
manipulating the 
code stream

Clients are actually “plug-ins” 
for the DynamoRIO engine and 
the application



DynamoRIO API

• DynamoRIO supports 3 working modes:
– Application Control

• A client is built as a shared library loaded into 
DynamoRIO, client hooks are called before each BB 
executes

– Explicit Control Interface
• Allow application to launch DynamoRIO on its own. 
• Application decides which part to be “translated”.

– Standalone Client
• Client simply uses DynamoRIO as a tool library to 

decode/disassemble binary

• We will focus on the 1st mode, which is the 
easiest to work with.



Client Hooks



Client API
 Instruction Manipulation

Creating/Encoding/Decoding
 INSTR_CREATE_push(context, opnd_create_reg(REG_EAX))

Inspecting/Modifying
 Recognizing Instruction Type:

 Instr_is_call_direct(instr)
 Instr_is_call_indirect(instr)
 Instr_is_syscall(instr)

Instrumentation:
 dr_insert_call_instrumentation(context, bb, instr, (app_pc)at_call);

at_call(…) is the user function pointer
 File Operations

 dr_open_log_file(…)



Simple Example
static void at_call(app_pc instr_addr, app_pc target_addr){
     File f = (File) dr_get_drcontext_field(dr_get_current_drcontext());
     dr_fprintf(f, "CALL @ 0x%08x to 0x%08x\n", instr_addr, target_addr);
}

EXPORT void dynamorio_basic_block(void *context, app_pc tag, InstrList *bb) {
    Instr *instr, *next_instr;
    for (instr = instrlist_first(bb); instr != NULL; instr = next_instr) {
         next_instr = instr_get_next(instr);
         if (instr_is_call_direct(instr)) 
             dr_insert_call_instrumentation(context, bb, instr, (app_pc)at_call);
    }
}

Print the source & destination of ALL direct call instructions



Other Dynamic Transformation Tools

Pin 
better supported now than DynamoRIO
better engineered for Linux

Strata
Valgrind

Most popular open-source tool for finding 
memory errors and many other 
applications

Qemu
Can support whole system emulation



DynamoRIO vs Pin
• Architecture dependency

– Pin tools: written in c/c++
– DynamoRIO: written in x86 assembly

– DynamoRIO’s tools allow users to operate at a lower 
level
– Have more control over efficiency, but 

programming can be hard, and architecture 
dependent.
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BBCount Pin Tool
For more information, including tutorials and examples, seehttps://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool 
static int bbcount;

VOID PIN_FAST_ANALYSIS_CALL docount() { bbcount++; }

VOID Trace(TRACE trace, VOID *v) {
  for (BBL bbl = TRACE_BblHead(trace); BBL_Valid(bbl); 
                                       bbl = BBL_Next(bbl)) {
    BBL_InsertCall(bbl, IPOINT_ANYWHERE, AFUNPTR(docount),
                       IARG_FAST_ANALYSIS_CALL, IARG_END);
  }
}

int main(int argc, char *argv[]) {
    PIN_InitSymbols();
    PIN_Init(argc, argv);
    TRACE_AddInstrumentFunction(Trace, 0);
    PIN_StartProgram();
    return 0;
}



C
o
p
y
ri
g
h
t 
©
 
2
0
0
8 
V
M
w
a
r
e, 
In
c. 
A
ll 
ri
g
h
ts 
r
e
s
e
r
v
e
d.

BBCount DynamoRIO Tool
static int global_count;

static dr_emit_flags_t
event_basic_block(void *drcontext, void *tag, instrlist_t *bb,
                  bool for_trace, bool translating) {
    instr_t *instr, *first = instrlist_first(bb);
    uint flags;
    /* Our inc can go anywhere, so find a spot where flags are dead. */
    for (instr = first; instr != NULL; instr = instr_get_next(instr)) {
        flags = instr_get_arith_flags(instr);
        /* OP_inc doesn't write CF but not worth distinguishing */
        if (TESTALL(EFLAGS_WRITE_6, flags) && !TESTANY(EFLAGS_READ_6, flag
s))
            break;
    }
    if (instr == NULL)
        dr_save_arith_flags(drcontext, bb, first, SPILL_SLOT_1);
    instrlist_meta_preinsert(bb, (instr == NULL) ? first : instr,
        INSTR_CREATE_inc(drcontext, OPND_CREATE_ABSMEM((byte *)&global_coun
t, OPSZ_4)));
    if (instr == NULL)
        dr_restore_arith_flags(drcontext, bb, first, SPILL_SLOT_1);
    return DR_EMIT_DEFAULT;
}

DR_EXPORT void dr_init(client_id_t id) {
    dr_register_bb_event(event_basic_block);
}



Applicability of Static Vs Dynamic 
Techniques

 Some techniques require static instrumentation
Any technique that uses static analysis to compute a 

property and then enforces it at runtime
 CFI, some aspects of bounds-checking, some types of 

randomizations, …

 Others can use dynamic instrumentation
Stackguard, SFI (but may be limited if CFI can’t be 

assured)
And yet others that cannot use static 

instrumentation
Obfuscated code, mainly malware



Obfuscation against Disassembly

Conditional jumps where the condition 
is always true (or false)
Use an opaque predicate to hide this

 Instructions that fault
Execution continues in exception handler

Embedding data in the midst of code
With indirect jumps that make it impossible 

to distinguish between code and data
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Control-flow Obfuscation Against 
Reverse Engineering

 Split or aggregate
 Basic blocks
 Loops 

 e.g., one loop becomes two loops or vice-versa
 Procedures

 Replace one procedure by two or merge two procedures
 Inline a procedure, or outline (i.e., create new procedure)

 Reorder 
 Insert dead-code (i.e., unreachable code)

 Obfuscate using conditions
 Replace instruction sequences w/ alternate ones
 Insert conditional jumps using “opaque” predicates
 Insert indirect jumps
 Exploit aliasing and memory errors
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Data Obfuscation
 Rename variables
 Split or aggregate variables

 Split structures into individual variables or vice-versa
 Split individual variables

 E.g., A = B - C – instead of A, use B and C
 Clone a variable

 Pad arrays (and possibly structures) with junk 
elements

 “Encrypt” data values
 Introduce extra levels of indirection

 Instead of a simple variable, declare a pointer
 Introduce aliasing
 Introduce memory errors
 Introduce additional (or remove) function 

parameters
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