
Binary Instrumentation

R. Sekar
Stony Brook University

Limitations of SFI/NaCl Approach

Need for compiler support
Does not work on arbitrary binaries ---

binaries should have been compiled using a
cooperative compiler

Otherwise, the binary will trivially fail the
verification step

Question: Can we instrument arbitrary
COTS binaries to insert inline security
checks?

Motivation for COTS Binary
Instrumentation

 No source code needed
Language-neutral (C, C++ or other)

 Can be largely independent of OS
 Ideally, would provide instruction-set

independent abstractions
This ideal is far from today’s reality

 Benefits
Application extension

 Functionality
 Security
 Monitoring and debugging

Instrumenting long-running programs

Approaches
 Static analysis/transformation

Binaries files are analyzed/transformed
Benefits

 No runtime performance impact
 No need for runtime infrastructure

Weakness
 Error-prone, problem with signed code (can work around)

 Dynamic analysis/transformation
Code analyzed/transformed at runtime
Benefit: more robust/accurate
Weakness

 High runtime overhead
 Runtime complexity (infrastructure)

Previous Works (Static)
OM/ATOM (DEC WRL)

Proprietary and probably outdated
EEL (Jim Larus et al, 1995)

The precursor of most modern rewriters
Targets RISC (SPARC)
Provides processor independent

abstractions
Follow up works

UQBT (for RISC)
LEEL (for Linux/i386)

Previous Works (Dynamic)
 LibVerify (Bell Labs/RST Corp)

Runtime rewriting for StackGuard
 DynamoRIO (HP Labs/MIT) Disassembles

basic blocks at runtime
Provides API to hook into this process and

transform executable
 Pin (Intel/U. Colorado)
 Valgrind
 A number of virtualization implementations

rely binary translation (or used to)
QEMU, VMWare, …

Phases in Static Analysis of Binaries

Disassembly
 Instruction decoding/understanding
 Insertion of new code

Static Disassembly
Core component for static analysis of

binaries
Principal Approaches

Linear Sweep
Recursive Traversal

Linear Sweep Algorithm

 Used by GNU objdump
 Problem:

There can be data
embedded within code
There may also be padding,
alignment bytes or junk

Linear sweep will
incorrectly disassemble
such data

Addr = startAddr;

while (Addr < endAddr) {

 ins=decode(addr);

 addr+=LengthOf(ins);

}

Linear Sweep Algorithm
 804964c: 55 push %ebp
 804964d: 89 e5 mov %esp,%ebp
 804964f: 53 push %ebx
 8049650: 83 ec 04 sub $0x4,%esp
 8049653: eb 04 jmp 0x8049658
 8049655: e6 02 04 <junk>
 8049658: be 05000000 mov $0x5,%esi

 804964c: 55 push %ebp
 804964d: 89 e5 mov %esp,%ebp
 804964f: 53 push %ebx
 8049650: 83 ec 04 sub $0x4,%esp
 8049653: eb 04 jmp 0x8049658
 8049655: e6 02 out 0x2, al
 8049657: 04 be add al, 0xbe
 8049659: 05 00000012 add eax, 0x12000000

 Incorrectly disassembles junk (or padding) bytes
Confusion typically cascades past the padding, causing

subsequent instructions to be missed or misinterpreted.

Self Repairing Disassembly

 Property of a disassembler where it
re-synchronizes with the actual
instruction stream

 Makes detecting disassembly errors
difficult

 216 of 256 opcodes are valid
 Observation: re-synchronization

happens quickly, within 2-3
instructions beyond point of error.

Self Repairing Disassembly (example)

 Linear Sweep output
 100: push ebp
 101: mov ebp, esp
 103: jmp 109

105: nop
 106: nop
 107: or dword ptr ds:[ebx+eax*1], 0xb8

111:add dword ptr ds:[eax+eax*1], eax

113: add byte ptr ds:[eax+eax*1], al

116: leave

 Correct Output
 100: push ebp

101: mov ebp, esp
103: jmp 109
106: <GAP>

 107: <GAP>

108: <GAP>

109: or al, 0x3

111: mov eax, 0x1
 116: leave

Consider the byte stream
55 89 e5 eb 03 90 90 83 0c 03 b8 01 00 00 00 c9

Recursive Traversal

 Approach: Takes into account the
control flow behavior of the
program

 Weakness: For indirect jumps,
jump target cannot be determined
statically, so no recursive traversal
of the target can be initiated

 Some error cases not handled,
e.g., jump to the middle of an
instruction

RecursiveTraversal (addr) {
 while (!visited[addr]) {
 visited[addr] = true;
 ins = decode (addr);
 if (isControlTransfer(ins))
 RecursiveTraversal (target(ins))

 if (uncondJumpOrRet(ins))
 return
 else addr+=LengthOf(ins);
 }
}

Static Disassembly – Impediments

Code/Data distinction
Variable x86 instruction size
Indirect Branches

Mainly due to function pointers
Cross-module calls

e.g., calls from executable to a library
GUI code (event handlers)
C++ code (Virtual functions)

Functions without explicit CALL
PIC (Position-Independent Code)
Hand-coded Assembly

Optimized Code Example
#include <stdio.h>
void f(int c) {
 printf("%d\n", c);
}
void h(int i) {
 f(i+1);
}
int i(int j) {
 return j+1;
}
int main(int argc, char*argv[]) {
 h(i(argc));
 f(argc+2);
}

Compiled Code Example
void f(int c) {
 printf("%d\n",
c);

}

Function prologue

Function epilogue

pushl %ebp
movl %esp, %ebp
subl $16, %esp

pushl 8(%ebp)
pushl $.LC0 (“%d”)
call printf

leave
ret

Optimized Code Example
void h(int i) {

 f(i+1);

}

No push of arguments

No epilogue,
not even a call!

h:

 pushl %ebp

 movl %esp, %ebp

 subl $8, %esp

 incl 8(%ebp)

 leave

 jmp f

Optimized Code Example
main(int argc,
char*argv[]) {

 h(i(argc));
 f(argc+2);
}

Return value in eax reg,
No argument push!

No push of arguments
to f, tail call

main:
 pushl %ebp
 movl %esp, %ebp
 pushl %ebx
 subl $16, %esp
 movl 8(%ebp), %ebx
 pushl %ebx
 call i
 movl %eax, (%esp)
 call h
 addl $2, %ebx
 movl %ebx, 8(%ebp)
 addl $16, %esp
 movl -4(%ebp), %ebx
 leave
 jmp f

Static Code Transformation
Limitations

 Cannot move code
Cannot predict the destination of indirect calls, so

there is no safe way to move code
Can copy code, if original is left in place

 If the goal is to protect against vulnerabilities in original
code, then leaving of original code defeats this purpose!

 Code insertion is tricky
Obvious approach: overwrite original code with

unconditional jump, patch
Problem: There may not be enough room for jump

instruction (5 bytes)
Possible solution: use INT 3 (one-byte) instruction

 Higher overhead for handling (signal generation/handling)

Static Code Transformation
Limitations

Code insertion at arbitrary points is
very difficult
Code insertion at beginning/end of function

is easy
Other points in code are not well defined in

optimized code
Loops may be unrolled
Switch statements translated to jump tables
Successive branches may be combined
Function arguments may not be explicitly

pushed (nor return value popped)
Tail call optimization and function inlining

Code Transformation Limitations
 Relocation of static data is not feasible

Cannot identify and relocate static pointers, which
appear as immediate constants in assembly code

Note: These constants may be passed through
several functions before used

 Note: Most above limitations can be removed
if relocation information is present in binary

 Relocation of stack/heap data possible
Change SP at program beginning
Intercept/modify malloc and/or mmap requests

Dynamic Transformation
Techniques

Libverify
 Inserts (StackShield) checks in binary code

Copy each function to heap
Modify first and last instruction in each function to jump to wrapper

code implementing StackShield
Replace original copy with TRAP instructions

 Any jump/calls to original code activates trap handler
 Handler looks up corresponding address in copied code and transfers control there
 If no copy exists (entry to function not discovered at load time), the function can be

copied to heap and instrumented at this time

 Benefit: handles all indirect control transfers correctly
Note: indirect transfers will go to original code locations,

unless code pointers are identified and modified to point to
new locations
As mentioned before, this is hard to do in many cases, so

this approach of using traps and runtime redirection is a
good trade-off between performance and compatibility

 Drawback: performance impact if traps are repeatedly executed

DynamoRIO
Use Libverify’s runtime handling to the extreme

All code is discovered dynamically, analyzed dynamically,
and then rewritten

Code is transformed one basic block at a time
Side-steps the thorny problem of disassembly
Note that it is trivial to reliably disassemble a single basic block,

which is straight-line code with no control-transfers in the middle.
Only the first execution of a basis block requires analysis and

rewriting. Subsequent executions can use the same
rewritten block.

Control transfers occur in the last instruction of a basic
block. These instructions need to be checked at
runtime.

Non-control-transfer instructions are executed natively

RIO System Infrastructure

Basic Block
 Builder

Trace Selector

Dispatch

Indirect Branch
Lookup

Indirect Branch
Stays on trace ?

Trace Cache
Non-ctrl flow
instructions

Basic Block
Cache

Non-ctrl flow
instructions

Context Switch

Start

DynamoRIO Operation
 Instrumented programs run in two contexts

DynamoRio context (above the redline, representing
DynamoRIO runtime). Responsible for detecting the
execution of new basic blocks (BBs)
These BBs are disassembled, analyzed and then transformed:

just-in-time disassembly/rewriting, just before first execution
DynamoRIO provides an API for instrumentation: one can use

this API to implement custom instrumentation, e.g., count
number of BBs executed, number of memory accesses, etc.

Application context (below the red line, application code
executes natively)
Non-control-transfer instructions need no special treatment
Control-transfers need to be checked

 If they are direct transfers, then we check if the target has already been
instrumented (and hence is in the code cache). If so, directly jump there.
If not, switch into DynamoRIO context to perform instrumentation.

 Indirect transfers need to go through a translation table

Handling Indirect CFT
Note that indirect control transfers will use original code

addresses
But the instrumented code is in the code cache at a different address.

(We cannot use the original addresses, even if they were available:
instrumentation causes code to expand, so every target except the
very first function in the instrumented application will necessarily
reside at a different location as compared to the original code.)

As discussed before, we cannot “fixup” code references either. This is
because code addresses will be immediate constants in the binary,
and there is no way to distinguish integer constants from code
addresses
 If we mistakenly “fixup” an integer value, that will change program behavior
 If we mistakenly omit the fixup of a code pointer, then code will jump to an

incorrect
location, likely leading to a crash

Clever idea put forth by DynamoRIO authors
Wait until a pointer is actually used

 If it is used as a target of control transfer, then it is obviously a code pointer
 Just-in-time code pointer fixup: fixup happens at the very last step.

Fixup Implementation
Fixup is implemented using a translation table

A hash table jmptab maps the original address of a BB to its
new address in the code cache (corresponding to the location
of the instrumented version of code)

Each time DynamoRIO runtime instruments a BB, it enters the
mapping between the original location and the new location in
this table.

At runtime, every indirect CFT to a location l is
translated into jmptab[l]
Each indirect jump requires a hash table lookup, and
has a performance cost

Fortunately, common cases (e.g., returns and repeated
calls to same target) can be optimized

 If the target is not in jmptab, then control transferred to
DynamoRIO runtime.

DynamoRIO Context Switch
• Preserve the following conditions

– All GPRs (8 in x86-32)
– Eflags
– Some system state. Eg: error code

• DynamoRIO uses one slot in TLS (thread local storage)
to store error code (errno) of the application.

• DynamoRIO will use some library routines that may
modifiy the state as error code, so it is necessary to
preserve application’s errno.

add %eax, %ecx

cmp $4, %eax

jle $0x40106f add %eax, %ecx

cmp $4, %eax

jle <stub0>

jmp <stub1>

mov %eax, eax-slot

mov &dstub0, %eax

jmp context_switch

mov %eax, eax-slot

mov &dstub1, %eax

jmp context_switch

frag7:

stub0:

stub1:

bb with conditional jump

bb in code cache

• Assumes that the BBs at 0x40106f and
the immediately following BBs are not
in the code cache. In this case, control
has to be transferred to DynamoRIO
runtime when execution reaches the
end of this BB. Before context switch,
all of the application state (in particular,
registers) need to be saved.

DynamoRIO Context Switch

Transparency & OS Issues
• Transparency: application cannot tell that it is

running inside DynamoRIO
• Why does DynamoRIO need transparency?

– Ensures that application behaves exactly the same way as
before: it can’t even tell the difference.

– So, it can’t evade DynamoRIO, nor can it behave differently.
• Transparency Issues

– Library transparency
– Thread transparency
– Stack transparency
– Address space transparency
– Context Translation
– Performance transparency (not preserved)

Program Shepherding:
An IRM based on DynamoRIO

 Introduces in-line checks to defend
against common exploits
Buffer overflow attacks
Format string attacks
Injection of malicious code
Re-use of existing code (existing code

attacks)
Sandboxing

Program Shepherding
Performance under Linux

 gcc is slow since it consists of many short runs
with little code re-use

Program Shepherding
Performance under Windows

 Windows is much less efficient at changing
privileges on memory pages than Linux

Caveat about performance
DBT performance measurements usually based very long-

running CPU-intensive benchmarks
These applications represent the “best case scenario” for DBT

systems
Rewrite once, execute for a long time

Real-world performance can be bad
10x to 40x slowdown in the worst case

Example DBT systems
DynamoRIO, Pin, Valgrind, …

But its exceptional level of compatibility with arbitrary binary
code can still be compelling for
CPU-intensive applications with tight loops
Coarse-granularity instrumentation (i.e., very small fraction of

instructions instrumented)
Debugging applications

DynamoRIO API
DynamoRIO exports an API that

supports building a DynamoRIO client
DynamoRIO and the client jointly

operate on target input binaries
Client registers callback functions that

are invoked by DynamoRIO at specified
points

DynamoRIO API

• The engine exports
an API for building a
client

• System details are
abstracted away;
client focuses on
manipulating the
code stream

Clients are actually “plug-ins”
for the DynamoRIO engine and
the application

DynamoRIO API

• DynamoRIO supports 3 working modes:
– Application Control

• A client is built as a shared library loaded into
DynamoRIO, client hooks are called before each BB
executes

– Explicit Control Interface
• Allow application to launch DynamoRIO on its own.
• Application decides which part to be “translated”.

– Standalone Client
• Client simply uses DynamoRIO as a tool library to

decode/disassemble binary

• We will focus on the 1st mode, which is the
easiest to work with.

Client Hooks

Client API
 Instruction Manipulation

Creating/Encoding/Decoding
 INSTR_CREATE_push(context, opnd_create_reg(REG_EAX))

Inspecting/Modifying
 Recognizing Instruction Type:

 Instr_is_call_direct(instr)
 Instr_is_call_indirect(instr)
 Instr_is_syscall(instr)

Instrumentation:
 dr_insert_call_instrumentation(context, bb, instr, (app_pc)at_call);

at_call(…) is the user function pointer
 File Operations

 dr_open_log_file(…)

Simple Example
static void at_call(app_pc instr_addr, app_pc target_addr){
 File f = (File) dr_get_drcontext_field(dr_get_current_drcontext());
 dr_fprintf(f, "CALL @ 0x%08x to 0x%08x\n", instr_addr, target_addr);
}

EXPORT void dynamorio_basic_block(void *context, app_pc tag, InstrList *bb) {
 Instr *instr, *next_instr;
 for (instr = instrlist_first(bb); instr != NULL; instr = next_instr) {
 next_instr = instr_get_next(instr);
 if (instr_is_call_direct(instr))
 dr_insert_call_instrumentation(context, bb, instr, (app_pc)at_call);
 }
}

Print the source & destination of ALL direct call instructions

Other Dynamic Transformation Tools

Pin
better supported now than DynamoRIO
better engineered for Linux

Strata
Valgrind

Most popular open-source tool for finding
memory errors and many other
applications

Qemu
Can support whole system emulation

DynamoRIO vs Pin
• Architecture dependency

– Pin tools: written in c/c++
– DynamoRIO: written in x86 assembly

– DynamoRIO’s tools allow users to operate at a lower
level
– Have more control over efficiency, but

programming can be hard, and architecture
dependent.

C
o
p
y
ri
g
h
t
©

2
0
0
8
V
M
w
a
r
e,
In
c.
A
ll
ri
g
h
ts
r
e
s
e
r
v
e
d.

BBCount Pin Tool
For more information, including tutorials and examples, seehttps://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
static int bbcount;

VOID PIN_FAST_ANALYSIS_CALL docount() { bbcount++; }

VOID Trace(TRACE trace, VOID *v) {
 for (BBL bbl = TRACE_BblHead(trace); BBL_Valid(bbl);
 bbl = BBL_Next(bbl)) {
 BBL_InsertCall(bbl, IPOINT_ANYWHERE, AFUNPTR(docount),
 IARG_FAST_ANALYSIS_CALL, IARG_END);
 }
}

int main(int argc, char *argv[]) {
 PIN_InitSymbols();
 PIN_Init(argc, argv);
 TRACE_AddInstrumentFunction(Trace, 0);
 PIN_StartProgram();
 return 0;
}

C
o
p
y
ri
g
h
t
©

2
0
0
8
V
M
w
a
r
e,
In
c.
A
ll
ri
g
h
ts
r
e
s
e
r
v
e
d.

BBCount DynamoRIO Tool
static int global_count;

static dr_emit_flags_t
event_basic_block(void *drcontext, void *tag, instrlist_t *bb,
 bool for_trace, bool translating) {
 instr_t *instr, *first = instrlist_first(bb);
 uint flags;
 /* Our inc can go anywhere, so find a spot where flags are dead. */
 for (instr = first; instr != NULL; instr = instr_get_next(instr)) {
 flags = instr_get_arith_flags(instr);
 /* OP_inc doesn't write CF but not worth distinguishing */
 if (TESTALL(EFLAGS_WRITE_6, flags) && !TESTANY(EFLAGS_READ_6, flag
s))
 break;
 }
 if (instr == NULL)
 dr_save_arith_flags(drcontext, bb, first, SPILL_SLOT_1);
 instrlist_meta_preinsert(bb, (instr == NULL) ? first : instr,
 INSTR_CREATE_inc(drcontext, OPND_CREATE_ABSMEM((byte *)&global_coun
t, OPSZ_4)));
 if (instr == NULL)
 dr_restore_arith_flags(drcontext, bb, first, SPILL_SLOT_1);
 return DR_EMIT_DEFAULT;
}

DR_EXPORT void dr_init(client_id_t id) {
 dr_register_bb_event(event_basic_block);
}

Applicability of Static Vs Dynamic
Techniques

 Some techniques require static instrumentation
Any technique that uses static analysis to compute a

property and then enforces it at runtime
 CFI, some aspects of bounds-checking, some types of

randomizations, …

 Others can use dynamic instrumentation
Stackguard, SFI (but may be limited if CFI can’t be

assured)
And yet others that cannot use static

instrumentation
Obfuscated code, mainly malware

Obfuscation against Disassembly

Conditional jumps where the condition
is always true (or false)
Use an opaque predicate to hide this

 Instructions that fault
Execution continues in exception handler

Embedding data in the midst of code
With indirect jumps that make it impossible

to distinguish between code and data

58

Control-flow Obfuscation Against
Reverse Engineering

 Split or aggregate
 Basic blocks
 Loops

 e.g., one loop becomes two loops or vice-versa
 Procedures

 Replace one procedure by two or merge two procedures
 Inline a procedure, or outline (i.e., create new procedure)

 Reorder
 Insert dead-code (i.e., unreachable code)

 Obfuscate using conditions
 Replace instruction sequences w/ alternate ones
 Insert conditional jumps using “opaque” predicates
 Insert indirect jumps
 Exploit aliasing and memory errors

59

Data Obfuscation
 Rename variables
 Split or aggregate variables

 Split structures into individual variables or vice-versa
 Split individual variables

 E.g., A = B - C – instead of A, use B and C
 Clone a variable

 Pad arrays (and possibly structures) with junk
elements

 “Encrypt” data values
 Introduce extra levels of indirection

 Instead of a simple variable, declare a pointer
 Introduce aliasing
 Introduce memory errors
 Introduce additional (or remove) function

parameters

	Binary Instrumentation
	Limitations of SFI/NaCl Approach
	Motivation for COTS Binary Instrumentation
	Approaches
	Previous Works (Static)
	Previous Works (Dynamic)
	Phases in Static Analysis of Binaries
	Static Disassembly
	Linear Sweep Algorithm
	Slide 10
	Self Repairing Disassembly
	Self Repairing Disassembly (example)
	Recursive Traversal
	Static Disassembly – Impediments
	Optimized Code Example
	Compiled Code Example
	Slide 17
	Slide 18
	Static Code Transformation Limitations
	Slide 20
	Code Transformation Limitations
	Dynamic Transformation Techniques
	Libverify
	DynamoRIO
	RIO System Infrastructure
	Slide 26
	Slide 27
	Slide 28
	DynamoRIO Context Switch
	PowerPoint Presentation
	Transparency & OS Issues
	Program Shepherding: An IRM based on DynamoRIO
	Program Shepherding Performance under Linux
	Program Shepherding Performance under Windows
	DynamoRIO API
	Slide 45
	User Interface
	Slide 47
	Slide 49
	Client API
	Simple Example
	Other Dynamic Transformation Tools
	DynamoRIO vs Pin
	BBCount Pin Tool
	BBCount DynamoRIO Tool
	Applicability of Static Vs Dynamic Techniques
	Obfuscation against Disassembly
	Control-flow Obfuscation Against Reverse Engineering
	Data Obfuscation

