
1    

Security Policies and 
Enforcement Mechanisms



2    

Terminology and concepts
 Principals, Subjects, Objects
 Principle of least privilege

 Throughout execution, each subject should be given the 
minimal access necessary to accomplish its task

Needs mechanisms for rights amplification and attenuation

 Reference monitors
 Abstract machine that mediates all access

 Security kernel
 Hardware, firmware and software elements that implement 

the reference monitor

 Trusted Computing Base
 Totality of protection mechanisms in the system
 Smaller TCB => Greater assurance that the system is secure



3    

Overview

 Access control
 Mandatory Vs Discretionary policies

 Capabilities
 Information flow
 Least privilege principle

 Domain and type enforcement (DTE)
 POSIX Capabilities

 Other policies
 Chinese wall
 Clark-Wilson

 Policies for containing untrusted code
 Manageability

 Role-based access control (RBAC)
 Deletation and trust management



4    

Access control

 Typically, three kinds of entities
 User (principal)
 Subject: typically, a process acting on behalf of user
 Object: files, network sockets, devices, …

 Goal: Control access to operations performed 
by subjects on objects

 Examples of operations
Read
Write
Append
Execute
Delete
Change permission
Change ownership



5    

Discretionary Access Control

 Permissions specified by users
 permission on an object is set by its owner
 typical on most OSes (UNIX, Windows, …)

 Represented using a matrix
 Indexes by subject and object
 Each element specifies the rights available to subject on that object 

(read, write, etc.)
 Implementations

ACL (associated with an object, represents a column)
Capabilities (associated with subject, represents a row)

 Improve manageability using indirection
 Groups
 Roles (RBAC)
 Inheritance
 Negative permissions



7    

Implementation of DAC on UNIX

 All resources are “files”
 Each file has a owner and group owner
 Permissions divided into 3 parts

 For owner, group, and everybody else
 3 bits per part: read/write/execute

 Subjects inherit the userid of parent
 Programs that perform user authentication need to set this info
 Exception: setuid programs (privilege delegation/amplification mechanism)

Suid and sgid bits

 No permission checks on superuser (userid 0)
 Permission checks based on userid --- usernames used only for login

 Defaults (umask)
 Changing permission
 Changing ownership
 Recent additions

 Access control lists
 Sticky bit



8    

Effective, Real and Saved UID/GID

 Effective: the uid used for determining access 
privileges

 Real: the “real” user that is logged on, and on 
whose behalf a process is running

 Saved: allows processes to temporarily 
relinquish privileges but then restore original 
privileges

 When executing a setuid executable, original euid is 
saved (or it could be explicitly saved)

 Setting userid to saved userid is permitted



9    

DAC on Windows Vs UNIX

 OO-design: permissions can differ, depending 
on type of object

 NTFS files offer additional rights: delete, modify ACL, 
take ownership

Files inherit permission from directory

 Use of Registry for configuration data
Richer set of access permissions for registry entries (e.g., 
enumerate, create subkey, notify, …)

 Mandatory file system locks
 No setuid mechanism



10    

Capabilities

 “Tickets:”  subject presents capabilities to the 
resource to gain access

 Must be unforgeable
 Transferable

 Examples
 File descriptors
 Passwords



11    

Capabilities

 Not widely used in OSes
 More difficult to implement than ACLs

Need forever unique object ids that don’t change
Need to use crypto or rely on OS primitives that may be hard to realize

 Difficult to manage
How do we determine the permissions held by a user?
Do we want to allow them to pass around their capability? What about theft?
How long do we store them?
How can we revoke permissions?

 Provide a better framework than ACLs when policy 
enforcement is NOT centralized

 Kerberos uses capabilities for access across hosts
Uses capabilities with different time scales 
Accesses within a host typically based on ACL mechanism of host OS

 Web applications use cookies containing sessionids to indicate when a 
user has successfully authenticated 



12    

Mandatory Access Control (MAC)

 DAC Limitations
 provides no protection if a resource owner did not bother 

to set the ACL properly
 assumes that users are in full control of programs

What if a program changes permissions without user’s knowledge?
In general, “Trojan horse” programs can subvert DAC

 To overcome these problems, MAC moves the 
responsibility to a central point, typically the 
system administrator

 Organizations want to control access to their resources
 Don’t want to rely on individual employees to ensure that 

organizational policies are enforced



13    

MAC Example: MLS

 Motivation: DAC does not provide any way to 
control the manner in which information is 
used – it only says whether it can be accessed 
or not.

 MLS policies control information flow, and 
hence control how information is used

 Developed originally in the context of 
protecting secrets in the military



14    

MLS: Confidentiality Policies

 Objects are labeled with a level
 Labels correspond to points in a lattice
 Typical levels used in military include:

unclassified, classified, secret, top secret

 Subjects associated with clearance levels
 A subject can access an object is his clearance level is 

equal to or above the object’s level

 Information is also compartmentalized
 “Need-to-know” principle is used to decide who gets to 

access what information
e.g., top-secret information regarding nuclear fuel processing is 
made available to those working on nuclear-related projects



15    

MLS: Bell-LaPadula Model [1973]

 To ensure that sensitive information does not 
leak, we need to ensure:

 No “read-up:”
A subject S can read object O only if C[S] >= L[O]

 No “write-down:”
 A subject can write an object O only if C[S] <= L[O]
Prevents indirect flows where a top-secret-clearance subject 
reads a top-secret file and writes to a secret file, which may then 
be read by someone with a lower (ie secret) clearance

 Based on the idea that any subject that reads 
information at a certain level has the potential to leak 
information at that level whenever it outputs anything.



16    

MLS: Biba Model (Integrity)

 Designed to ensure integrity rather than confidentiality
 In non-military settings, integrity is more important

 Conditions
 No “read-down:”

A subject S can read object O only if C[S] <= L[O]
A subject’s integrity can be compromised by reading lower integrity data, 
so this is disallowed

 No “write-up:”
 A subject can write an object O only if C[S] >= L[O]
The integrity of a subject’s output can’t be greater than that of the 
subject itself.

 Variation: Low Water-Mark Policy (LOMAC)
 Allow read-downs, but downgrade subject to the level of object

 Both policies ensure system integrity



17    

Problems with Information Flow

 In a nutshell: difficult to set up/use
 “Label creep:” More and more objects become sensitive, 

making it difficult for the system to be used by lower-
clearance subjects

 Exceptions need to be made, e.g., an encryption 
programs

“Trusted” programs are allowed to be exempted from “*”-
property

But exceptions are misused widely, since it is hard to configure 
whole systems carefully so that “*”-property can be enforced 
without breaking functionality

 Motivate alternate approaches, or hybrid 
approaches 



18    

Alternative Approaches

 Key goal: Mitigate damage that may result from 
all-powerful root privileges

 Break down root privilege into a number of sub-
privileges

 Decouple user privileges from program privileges

 Examples
 Domain and type enforcement

SELinux

 “Linux capabilities”
not to be confused with capabilities as described earlier



19    

Domain and Type Enforcement

 Subjects belong to domains
 Users have default domains, but not all their processes belong to 

the same domain
Some processes transition to another domain, typically when executing 
another program

 Objects belong to types
 Policies specify

 Which domains have what access rights on which types
 Domain transitions

 Domain transitions are an important feature
 Enable application of least-privilege principle
 Example: a media player may need to write its configuration or data 

files, but not libraries or config files of other applications



20    

DTE and SELinux

 Security-enhanced Linux combines standard 
UNIX DAC with DTE

 Intuitively, the idea is to make access rights a 
function of (user, program, object)

 Roughly speaking, MLS requires us to trust a 
program (and not enforce “*”-property), or fully 
trust it (ie it may do whatever it wants with 
information that it read)

 In contrast, DTE allows us to express limited trust, i.e., 
grant a program only those rights that it needs to carry 
out its function



21    

DTE/SELinux Vs Information Flow

 In practice DTE has turned out to be “one 
policy per application”

 Scalability is clearly an issue
 In addition, SELinux policies are quite complex
 While DTE is able to gain additional power because it 

captures the fact that trust is not transitive, this very 
feature makes DTE policies difficult to manage

What overall system-wide assurances can be obtained, given a 
set of DTE policies developed independent of each other

 In contrast, information flow policies are 
simple, easier to understand, and more closely 
relate to higher level objectives

 Confidentiality or Integrity



22    

Linux (POSIX) Capabilities
 Decompose root privilege into a number of “capabilities”

CAP_CHOWN
CAP_DAC_OVERRIDE
CAP_NET_BIND_SERVICE
CAP_SETUID
CAP_SYS_MODULE
CAP_SYS_PTRACE
...

 Effective, Permitted and Inheritable capabilities
 Effective: accesses will be checked against this set
 Permitted: superset of effective, cannot be increased

Effective set can be set to include any subset of permitted
 Inheritable: capabilities retained after execve

at execve, permitted and effective sets are masked with inheritable

 attaching capabilities to executables
 Allowed: capabilities not in this set are taken away on execve
 Forced: “setuid” like feature --- given to executable even if parent does not 

have the capability
 Effective: Indicates which of the permitted bits are to be transferred to effective



23    

Commercial Policies

 High-level policies in commercial 
environments are somewhat different from 
those suitable for military environments

 Examples
 Chinese Wall (conflict of interest)
 Clark-Wilson

 Common principles
 Separation of duty: critical functions need to be 

performed by multiple users
 Auditing: ensure actions can be traced and attributed, 

and if necessary, reverted (recoverability)



24    

Clark-Wilson Policy

 Focuses on data integrity rather than confidentiality
 Based on the observation that in the “real-world,” errors and fraud 

are associated with loss of data integrity

 Based on the concept of well-formed transactions
 Data is processed by a series of WFTs
 Each WFT takes the system from one consistent state to another

Operations within a WFT may temporarily make system state 
inconsistent

 While the use of WFTs guarantee consistency of system state, we 
need other mechanisms to ensure integrity of  WFTs themselves

Was that a fraudulent money transfer? Was that travel voucher properly 
inspected?

–Relies primarily on separation of duty

 Auditing to verify integrity of transactions
 Maintain adequate logs so that WFTs in error can be undone



25    

Chinese Wall Policy

 Addresses “conflict of interest”
 Common in the context of financial industry
 Regulatory compliance, auditing, advising, consulting,..

 Defined in terms of
 CD: objects related to a single company
 COI classes: sets of companies that are competitors
 Policy: no person can have access to two CDs in the 

same COI class
Implies past, present or future access



26    

Policies and Mechanisms for Untrusted Code

 Isolation
 Two-way isolation

Chroot jails
Userid-based isolation
Virtual machines

 One-way isolation
Read access permitted, but write access denied

 System-call sandboxing
 Linux seccomp and seccomp-bpf
 Delegation

 Information flow



27    

chroot jails

 Makes the specified directory to be the root
 Process (and its children) can no longer access files 

outside this directory

 Requires root privilege to chroot
 For security, relinquish root privilege after chroot
 All programs, libraries, configuration and data files used 

by this process should be within this chroot’ed dir

 Isolation limited to file system
e.g., it does not block interprocess interactions

 For this reason, chroot jail is useful mainly to limit 
privilege escalation; but the mechanisms is insecure 
against malicious code.



28    

Userid based isolation

 Create a new userid for running untrusted code
 Real user’s userid is not used, so the “Trojan horse” problem of altering 

permissions on user’s files is avoided

 Android uses one userid for each app
 Default permissions are set so that each app can read and write only the 

files it owns (except a few system directories)

 Protects against malicious interprocess interactions
 kill, ptrace, …

 Better than chroot, but still insufficient against malicious 
code

 Can subvert benign processes by creating malicious files that may be 
accidentally consumed by them

Many sandbox escape techniques work this way

 Too much information available via /proc, as well as system directories 
that are public: Can use this info to exploit benign processes via IPC



29    

One-way isolation
 Full isolation impacts usability

 untrusted applications are unable to access user’s files
 makes it difficult to use nonmalicious untrusted applications

 One-way isolation
 Untrusted application can read any data, but writes are limited

cannot overwrite user files
More importantly, benign applications don’t ever see untrusted files

–Eliminates the possibility of accidental compromise

 Key issues: 
 Ensuring consistent view

Application creates a file and then reads it, or lists the directory
Inconsistencies typically lead to application failures

 Failures due to denied write permission
Can overcome by creating a private copy of the file

 Both issues overcome using copy-on-write file system
 Note: does not protect against lost of confidential data

 Needs additional policies (which files should be unreadable for untrusted code)

 Note: securing user interactions is always a challenge, especially because of 
how X-windows is designed



30    

System-call sandboxing: seccomp

 Seccomp is a Linux mechanisms for limiting system calls 
that can be made by a process

 Processes in the seccomp sandbox can be make very few system 
calls (exit, sigreturn, read, write).

 More secure than previous mechanisms, but greatly limits 
actions that can be performed by a sandboxed process

 Useful if setup properly, e.g., in Chrome and Docker 

 Seccomp-bpf is a more recent version that permits 
configurable policies

 Allowable syscalls specified in the Berkeley packet filter language
 Policies can reference syscall name and arguments in registers

 Unfortunately, most interesting policies are out-of-scope, 
as they reference data in process memory, e.g., file names

 For this reason, seccomp-bpf is not much more useful than seccomp



31    

System-call delegation

 Used in conjunction with strict syscall sandboxing
 Key idea: Delegate dangerous system calls to a helper 

process
 Helper process is trusted

it cannot be manipulated by untrusted process
can implement arbitrary, application-specific access control logic
avoids race conditions

 Works only if 
 System call semantics permits delegation

e.g., not applicable fork or execve

 Results can be transferred back transparently to untrusted 
process

e.g., file descriptors can be sent over UNIX domain sockets using 
sendmsg



32    

Securing untrusted code using information flow

 Untrusted code = low integrity, benign code = high 
integrity

 Enforce the usual information flow policy that 
 Deny low integrity subject’s writes to high integrity objects

Prevents “active subversion”

 Deny high integrity subject’s read of low integrity objects
Prevents “passive subversion” 

–fooling a user (or a benign application) to perform an action, e.g., click an 
icon on desktop

–exploit a benign process, e.g, benign image viewer compromised by reading 
a malicious image file

 Can provide strong guarantee of integrity
 Not subject to “sandbox escapes”

 Usability issues still need to be addressed



33    

Policy Management

 Goal: simplify the set up and administration of security 
policies

 Topics
 Role-based access control (RBAC)
 Administrative policies

Who can change what policies
 Delegation and trust management



34    

RBAC

 Roles vs groups: Very closely related concepts, but we can 
make a distinction

 Role: a set of permissions
 Group: a set of users

 Roles and groups provide a level of indirection that 
simplifies policy management

 Based on the functions performed by a user, he/she is given 
one or more roles

When the user’s responsibilities change, the user’s roles 
are updated

When the permissions needed to perform a function are 
changed, the corresponding role’s permissions are 
updated

–Does not require any updating of user information



35    

Delegation

 Ability to transfer certain rights to another entity so 
that it may act on behalf of the first entity

 Delegation is necessary for managing authorizations 
in a distributed system

 Decentralized/distributed control

 How to implement delegation
 The issue is one of trust and granularity
 Multiple levels of delegation rely on a chain of trust

Can be implemented using certificates

 Trust management
 Systems designed to manage delegation, and enforce security 

policies in the presence of delegation rules and certificates


	Slide 1
	Slide 2
	General principles and concepts
	Access control
	Discretionary Access Control
	Implementation of DAC on UNIX
	Effective, Real and Saved UID/GID
	DAC on Windows Vs UNIX
	Capabilities
	Slide 11
	Mandatory Access Control (MAC)‏
	MAC Example: MLS
	MLS: Confidentiality Policies
	MLS: Bell-LaPadula Model [1973]
	MLS: Biba Model (Integrity)‏
	Problems with Information Flow
	Alternative Approaches
	Domain and Type Enforcement
	DTE and SELinux
	DTE/SELinux Vs Information Flow
	Linux (POSIX) Capabilities
	Commercial Policies
	Clark-Wilson Policy
	Chinese Wall Policy
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Delegation
	Slide 34
	Slide 35

