
1

Security Policies and
Enforcement Mechanisms

2

Terminology and concepts
 Principals, Subjects, Objects
 Principle of least privilege

 Throughout execution, each subject should be given the
minimal access necessary to accomplish its task

Needs mechanisms for rights amplification and attenuation

 Reference monitors
 Abstract machine that mediates all access

 Security kernel
 Hardware, firmware and software elements that implement

the reference monitor

 Trusted Computing Base
 Totality of protection mechanisms in the system
 Smaller TCB => Greater assurance that the system is secure

3

Overview

 Access control
 Mandatory Vs Discretionary policies

 Capabilities
 Information flow
 Least privilege principle

 Domain and type enforcement (DTE)
 POSIX Capabilities

 Other policies
 Chinese wall
 Clark-Wilson

 Policies for containing untrusted code
 Manageability

 Role-based access control (RBAC)
 Deletation and trust management

4

Access control

 Typically, three kinds of entities
 User (principal)
 Subject: typically, a process acting on behalf of user
 Object: files, network sockets, devices, …

 Goal: Control access to operations performed
by subjects on objects

 Examples of operations
Read
Write
Append
Execute
Delete
Change permission
Change ownership

5

Discretionary Access Control

 Permissions specified by users
 permission on an object is set by its owner
 typical on most OSes (UNIX, Windows, …)

 Represented using a matrix
 Indexes by subject and object
 Each element specifies the rights available to subject on that object

(read, write, etc.)
 Implementations

ACL (associated with an object, represents a column)
Capabilities (associated with subject, represents a row)

 Improve manageability using indirection
 Groups
 Roles (RBAC)
 Inheritance
 Negative permissions

7

Implementation of DAC on UNIX

 All resources are “files”
 Each file has a owner and group owner
 Permissions divided into 3 parts

 For owner, group, and everybody else
 3 bits per part: read/write/execute

 Subjects inherit the userid of parent
 Programs that perform user authentication need to set this info
 Exception: setuid programs (privilege delegation/amplification mechanism)

Suid and sgid bits

 No permission checks on superuser (userid 0)
 Permission checks based on userid --- usernames used only for login

 Defaults (umask)
 Changing permission
 Changing ownership
 Recent additions

 Access control lists
 Sticky bit

8

Effective, Real and Saved UID/GID

 Effective: the uid used for determining access
privileges

 Real: the “real” user that is logged on, and on
whose behalf a process is running

 Saved: allows processes to temporarily
relinquish privileges but then restore original
privileges

 When executing a setuid executable, original euid is
saved (or it could be explicitly saved)

 Setting userid to saved userid is permitted

9

DAC on Windows Vs UNIX

 OO-design: permissions can differ, depending
on type of object

 NTFS files offer additional rights: delete, modify ACL,
take ownership

Files inherit permission from directory

 Use of Registry for configuration data
Richer set of access permissions for registry entries (e.g.,
enumerate, create subkey, notify, …)

 Mandatory file system locks
 No setuid mechanism

10

Capabilities

 “Tickets:” subject presents capabilities to the
resource to gain access

 Must be unforgeable
 Transferable

 Examples
 File descriptors
 Passwords

11

Capabilities

 Not widely used in OSes
 More difficult to implement than ACLs

Need forever unique object ids that don’t change
Need to use crypto or rely on OS primitives that may be hard to realize

 Difficult to manage
How do we determine the permissions held by a user?
Do we want to allow them to pass around their capability? What about theft?
How long do we store them?
How can we revoke permissions?

 Provide a better framework than ACLs when policy
enforcement is NOT centralized

 Kerberos uses capabilities for access across hosts
Uses capabilities with different time scales
Accesses within a host typically based on ACL mechanism of host OS

 Web applications use cookies containing sessionids to indicate when a
user has successfully authenticated

12

Mandatory Access Control (MAC)

 DAC Limitations
 provides no protection if a resource owner did not bother

to set the ACL properly
 assumes that users are in full control of programs

What if a program changes permissions without user’s knowledge?
In general, “Trojan horse” programs can subvert DAC

 To overcome these problems, MAC moves the
responsibility to a central point, typically the
system administrator

 Organizations want to control access to their resources
 Don’t want to rely on individual employees to ensure that

organizational policies are enforced

13

MAC Example: MLS

 Motivation: DAC does not provide any way to
control the manner in which information is
used – it only says whether it can be accessed
or not.

 MLS policies control information flow, and
hence control how information is used

 Developed originally in the context of
protecting secrets in the military

14

MLS: Confidentiality Policies

 Objects are labeled with a level
 Labels correspond to points in a lattice
 Typical levels used in military include:

unclassified, classified, secret, top secret

 Subjects associated with clearance levels
 A subject can access an object is his clearance level is

equal to or above the object’s level

 Information is also compartmentalized
 “Need-to-know” principle is used to decide who gets to

access what information
e.g., top-secret information regarding nuclear fuel processing is
made available to those working on nuclear-related projects

15

MLS: Bell-LaPadula Model [1973]

 To ensure that sensitive information does not
leak, we need to ensure:

 No “read-up:”
A subject S can read object O only if C[S] >= L[O]

 No “write-down:”
 A subject can write an object O only if C[S] <= L[O]
Prevents indirect flows where a top-secret-clearance subject
reads a top-secret file and writes to a secret file, which may then
be read by someone with a lower (ie secret) clearance

 Based on the idea that any subject that reads
information at a certain level has the potential to leak
information at that level whenever it outputs anything.

16

MLS: Biba Model (Integrity)

 Designed to ensure integrity rather than confidentiality
 In non-military settings, integrity is more important

 Conditions
 No “read-down:”

A subject S can read object O only if C[S] <= L[O]
A subject’s integrity can be compromised by reading lower integrity data,
so this is disallowed

 No “write-up:”
 A subject can write an object O only if C[S] >= L[O]
The integrity of a subject’s output can’t be greater than that of the
subject itself.

 Variation: Low Water-Mark Policy (LOMAC)
 Allow read-downs, but downgrade subject to the level of object

 Both policies ensure system integrity

17

Problems with Information Flow

 In a nutshell: difficult to set up/use
 “Label creep:” More and more objects become sensitive,

making it difficult for the system to be used by lower-
clearance subjects

 Exceptions need to be made, e.g., an encryption
programs

“Trusted” programs are allowed to be exempted from “*”-
property

But exceptions are misused widely, since it is hard to configure
whole systems carefully so that “*”-property can be enforced
without breaking functionality

 Motivate alternate approaches, or hybrid
approaches

18

Alternative Approaches

 Key goal: Mitigate damage that may result from
all-powerful root privileges

 Break down root privilege into a number of sub-
privileges

 Decouple user privileges from program privileges

 Examples
 Domain and type enforcement

SELinux

 “Linux capabilities”
not to be confused with capabilities as described earlier

19

Domain and Type Enforcement

 Subjects belong to domains
 Users have default domains, but not all their processes belong to

the same domain
Some processes transition to another domain, typically when executing
another program

 Objects belong to types
 Policies specify

 Which domains have what access rights on which types
 Domain transitions

 Domain transitions are an important feature
 Enable application of least-privilege principle
 Example: a media player may need to write its configuration or data

files, but not libraries or config files of other applications

20

DTE and SELinux

 Security-enhanced Linux combines standard
UNIX DAC with DTE

 Intuitively, the idea is to make access rights a
function of (user, program, object)

 Roughly speaking, MLS requires us to trust a
program (and not enforce “*”-property), or fully
trust it (ie it may do whatever it wants with
information that it read)

 In contrast, DTE allows us to express limited trust, i.e.,
grant a program only those rights that it needs to carry
out its function

21

DTE/SELinux Vs Information Flow

 In practice DTE has turned out to be “one
policy per application”

 Scalability is clearly an issue
 In addition, SELinux policies are quite complex
 While DTE is able to gain additional power because it

captures the fact that trust is not transitive, this very
feature makes DTE policies difficult to manage

What overall system-wide assurances can be obtained, given a
set of DTE policies developed independent of each other

 In contrast, information flow policies are
simple, easier to understand, and more closely
relate to higher level objectives

 Confidentiality or Integrity

22

Linux (POSIX) Capabilities
 Decompose root privilege into a number of “capabilities”

CAP_CHOWN
CAP_DAC_OVERRIDE
CAP_NET_BIND_SERVICE
CAP_SETUID
CAP_SYS_MODULE
CAP_SYS_PTRACE
...

 Effective, Permitted and Inheritable capabilities
 Effective: accesses will be checked against this set
 Permitted: superset of effective, cannot be increased

Effective set can be set to include any subset of permitted
 Inheritable: capabilities retained after execve

at execve, permitted and effective sets are masked with inheritable

 attaching capabilities to executables
 Allowed: capabilities not in this set are taken away on execve
 Forced: “setuid” like feature --- given to executable even if parent does not

have the capability
 Effective: Indicates which of the permitted bits are to be transferred to effective

23

Commercial Policies

 High-level policies in commercial
environments are somewhat different from
those suitable for military environments

 Examples
 Chinese Wall (conflict of interest)
 Clark-Wilson

 Common principles
 Separation of duty: critical functions need to be

performed by multiple users
 Auditing: ensure actions can be traced and attributed,

and if necessary, reverted (recoverability)

24

Clark-Wilson Policy

 Focuses on data integrity rather than confidentiality
 Based on the observation that in the “real-world,” errors and fraud

are associated with loss of data integrity

 Based on the concept of well-formed transactions
 Data is processed by a series of WFTs
 Each WFT takes the system from one consistent state to another

Operations within a WFT may temporarily make system state
inconsistent

 While the use of WFTs guarantee consistency of system state, we
need other mechanisms to ensure integrity of WFTs themselves

Was that a fraudulent money transfer? Was that travel voucher properly
inspected?

–Relies primarily on separation of duty

 Auditing to verify integrity of transactions
 Maintain adequate logs so that WFTs in error can be undone

25

Chinese Wall Policy

 Addresses “conflict of interest”
 Common in the context of financial industry
 Regulatory compliance, auditing, advising, consulting,..

 Defined in terms of
 CD: objects related to a single company
 COI classes: sets of companies that are competitors
 Policy: no person can have access to two CDs in the

same COI class
Implies past, present or future access

26

Policies and Mechanisms for Untrusted Code

 Isolation
 Two-way isolation

Chroot jails
Userid-based isolation
Virtual machines

 One-way isolation
Read access permitted, but write access denied

 System-call sandboxing
 Linux seccomp and seccomp-bpf
 Delegation

 Information flow

27

chroot jails

 Makes the specified directory to be the root
 Process (and its children) can no longer access files

outside this directory

 Requires root privilege to chroot
 For security, relinquish root privilege after chroot
 All programs, libraries, configuration and data files used

by this process should be within this chroot’ed dir

 Isolation limited to file system
e.g., it does not block interprocess interactions

 For this reason, chroot jail is useful mainly to limit
privilege escalation; but the mechanisms is insecure
against malicious code.

28

Userid based isolation

 Create a new userid for running untrusted code
 Real user’s userid is not used, so the “Trojan horse” problem of altering

permissions on user’s files is avoided

 Android uses one userid for each app
 Default permissions are set so that each app can read and write only the

files it owns (except a few system directories)

 Protects against malicious interprocess interactions
 kill, ptrace, …

 Better than chroot, but still insufficient against malicious
code

 Can subvert benign processes by creating malicious files that may be
accidentally consumed by them

Many sandbox escape techniques work this way

 Too much information available via /proc, as well as system directories
that are public: Can use this info to exploit benign processes via IPC

29

One-way isolation
 Full isolation impacts usability

 untrusted applications are unable to access user’s files
 makes it difficult to use nonmalicious untrusted applications

 One-way isolation
 Untrusted application can read any data, but writes are limited

cannot overwrite user files
More importantly, benign applications don’t ever see untrusted files

–Eliminates the possibility of accidental compromise

 Key issues:
 Ensuring consistent view

Application creates a file and then reads it, or lists the directory
Inconsistencies typically lead to application failures

 Failures due to denied write permission
Can overcome by creating a private copy of the file

 Both issues overcome using copy-on-write file system
 Note: does not protect against lost of confidential data

 Needs additional policies (which files should be unreadable for untrusted code)

 Note: securing user interactions is always a challenge, especially because of
how X-windows is designed

30

System-call sandboxing: seccomp

 Seccomp is a Linux mechanisms for limiting system calls
that can be made by a process

 Processes in the seccomp sandbox can be make very few system
calls (exit, sigreturn, read, write).

 More secure than previous mechanisms, but greatly limits
actions that can be performed by a sandboxed process

 Useful if setup properly, e.g., in Chrome and Docker

 Seccomp-bpf is a more recent version that permits
configurable policies

 Allowable syscalls specified in the Berkeley packet filter language
 Policies can reference syscall name and arguments in registers

 Unfortunately, most interesting policies are out-of-scope,
as they reference data in process memory, e.g., file names

 For this reason, seccomp-bpf is not much more useful than seccomp

31

System-call delegation

 Used in conjunction with strict syscall sandboxing
 Key idea: Delegate dangerous system calls to a helper

process
 Helper process is trusted

it cannot be manipulated by untrusted process
can implement arbitrary, application-specific access control logic
avoids race conditions

 Works only if
 System call semantics permits delegation

e.g., not applicable fork or execve

 Results can be transferred back transparently to untrusted
process

e.g., file descriptors can be sent over UNIX domain sockets using
sendmsg

32

Securing untrusted code using information flow

 Untrusted code = low integrity, benign code = high
integrity

 Enforce the usual information flow policy that
 Deny low integrity subject’s writes to high integrity objects

Prevents “active subversion”

 Deny high integrity subject’s read of low integrity objects
Prevents “passive subversion”

–fooling a user (or a benign application) to perform an action, e.g., click an
icon on desktop

–exploit a benign process, e.g, benign image viewer compromised by reading
a malicious image file

 Can provide strong guarantee of integrity
 Not subject to “sandbox escapes”

 Usability issues still need to be addressed

33

Policy Management

 Goal: simplify the set up and administration of security
policies

 Topics
 Role-based access control (RBAC)
 Administrative policies

Who can change what policies
 Delegation and trust management

34

RBAC

 Roles vs groups: Very closely related concepts, but we can
make a distinction

 Role: a set of permissions
 Group: a set of users

 Roles and groups provide a level of indirection that
simplifies policy management

 Based on the functions performed by a user, he/she is given
one or more roles

When the user’s responsibilities change, the user’s roles
are updated

When the permissions needed to perform a function are
changed, the corresponding role’s permissions are
updated

–Does not require any updating of user information

35

Delegation

 Ability to transfer certain rights to another entity so
that it may act on behalf of the first entity

 Delegation is necessary for managing authorizations
in a distributed system

 Decentralized/distributed control

 How to implement delegation
 The issue is one of trust and granularity
 Multiple levels of delegation rely on a chain of trust

Can be implemented using certificates

 Trust management
 Systems designed to manage delegation, and enforce security

policies in the presence of delegation rules and certificates

	Slide 1
	Slide 2
	General principles and concepts
	Access control
	Discretionary Access Control
	Implementation of DAC on UNIX
	Effective, Real and Saved UID/GID
	DAC on Windows Vs UNIX
	Capabilities
	Slide 11
	Mandatory Access Control (MAC)
	MAC Example: MLS
	MLS: Confidentiality Policies
	MLS: Bell-LaPadula Model [1973]
	MLS: Biba Model (Integrity)
	Problems with Information Flow
	Alternative Approaches
	Domain and Type Enforcement
	DTE and SELinux
	DTE/SELinux Vs Information Flow
	Linux (POSIX) Capabilities
	Commercial Policies
	Clark-Wilson Policy
	Chinese Wall Policy
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Delegation
	Slide 34
	Slide 35

