
Virtual Machines

Concepts
• Virtualization:

– Creation of flexible substitutes for actual resources.
• The substitutes and their actual counterparts:

– have same functions and external interfaces
– differ in size, performance, cost etc.

• Resources to virtualize
– CPU
– Memory
– I/O

Concepts
• System Virtualization

– System virtualization creates several virtual systems within
a single physical one.

• VMM (or hypervisor)
– Virtual machine monitor is the software layer providing the

virtualization.

• VM
– Virtual machine is the virtual systems running on top of

VMM

Brief History
• 1960s, first introduced, for main frames

– Motivation: hardware cost etc.
• 1970s, an active research area
• 1980s, underestimated

– Multitask modern operating systems took its place
– Decreasing in hardware cost

• late 1990s, resurgence: software techniques for x86
virtualization
– Many applications: mixed-OS develop environment,

security, fault tolerance etc.
• mid 2000s, hardware support from both Intel and AMD

Types of Virtualization
• Process virtualization (virtualize one process)

– The VM supports an ABI: user instructions plus system calls
– Dynamic translators, JVM, …

• Lightweight or OS or Namespace virtualization (multiple logical
VMs that share share the same OS kernel)
– Chroot++: Isolates VMs by partitioning all objects (not just files) into

namespaces
– Linux containers and vServer, Solaris zones, FreeBSD jails

• System virtualization (whole system: OS+apps)
– The VM supports a complete ISA: user+system instructions
– Classic VMs, whole system emulators (and many others we discuss in

next slides)

Architectures
• Type I: The VMM runs on bare hardware

(“bare-metal hypervisor”)

Architectures
• Type II: The VMM runs as an ordinary application inside

host OS (hosted hypervisor)

Key Issues in CPU Virtualization
• Protection levels

– Ring 0 (most privileged)
Ring 3 (user mode)

• Requirement for efficient/
effective virtualization
– Privileged instructions

• Trap if executed in user mode
– Sensitive instructions

• affect important “system state”
– If privileged==sensitive, can

support efficient “trap and emulate” approach
• Virtualized execution = native execution+exception handling code that

emulates privileged instructions

• For x86, not all sensitive instructions are privileged
– Some instructions simply exhibit different behaviors in user and

privileged mode

Virtualization Approaches
• Full virtualization using binary translation

– Problem instructions translated into a sequence of instructions that
achieve the intended function

– Example: VMware, QEMU

Virtualization Approaches
• Paravirtualization: OS modified to run on VMM

– Example: Xen

Paravirtualization
• No longer 100% interface compatible, but better

performance
– Guest OSes must be modified to use VMM’s interface
– Note that ABI is unchanged

• Applications need not to be modified

• Guest OSes are aware of virtualization
– privileged instructions are replaced by hypervisor calls
– therefore, no need for binary translation

Xen and the Art of Virtualization

Virtualization Approaches
• Hardware-assisted virtualization

Hardware-assisted Virtualization
• Processor

– AMD virtualization (AMD-V)
– Intel virtualization (VT-x)

AMD-V: CPU virtualization
• Separates CPU execution into two modes

– hypervisor executes in host mode
– all VMs execute in guest mode

• Both hypervisor and VMs can execute in any of the four
rings

• Hypervisor can
– explicitly switch from host mode to guest mode
– specify which events (e.g. interrupts) cause exist from guest

mode

Memory Virtualization
• Access to MMU needs to be virtualized

– Otherwise guest OS may directly access physical memory
and/or otherwise subvert VMM

• Physical Memory is divided among multiple VMs
– Two levels of translation

• Guest OS: guest virtual addr  guest physical addr
• VMM: guest physical addr  machine addr

Memory Virtualization
• Shadow page table needed to avoid 2-step translation

– When guest attempts to update, VMM intercepts and emulate the
effects on the corresponding shadow page table

AMD-V: Memory Virtualization
– CPU is aware of

• the existence of VM
• two-level address translation

• AMD’s nested page table
– (Intel VT-x has a similar scheme called Extended Page

Table)
– managed by VMM
– guest physical addr -> machine addr
– guest OS directly updates its guest page table
– therefore, no need for a shadow page table

I/O Virtualization
• The VMM

– intercepts a guest’s I/O action
– converts it from a virtual device action to a real device

action

Security Applications
• Honeypot systems and Malware analysis

– VM technology provides strong isolation that is necessary
to run malware without undue risks
• Strong resource isolation: CPU, memory, storage
• Snapshot/restore features to speed up testing and recovery

• High-assurance VMs
– On a single workstation, can run high assurance VMs that

support some security functions, but may not provide
general-purpose functions
• single-purpose VM scheme facilitates stricter security policies
• In contrast, security policies that are compatible with the range

of desktop applications being used today will likely be too
permissive.

Security Applications
• Protection from compromised OSes

– Modern OSes are too complex to secure
– Malware-infested OS may subvert security software (virus

and malware scanners)
– Instead, rely on VMM

• run malware and rootkit detection techniques in VMM
• enforce security properties from within the VMM

Trusted Computing
• With TC, the computer will consistently behave in

expected ways
– Enforced by hardware (TPM chip) and software

• Main functionality: allow someone else to verify that
only authorized code runs on a system (remote
attestation)
– verify initial booting and kernel
– may also verify applications and various scripts

• Note: TC itself does not protect against attacks that
exploit security vulnerabilities introduced by
programming bugs

TPM Introduction
• The Trusted Platform Module (TPM) is a dedicated

security chip

TPM functionality
• Can provide an attestation to remote parties

– Platform Configuration Registers (PCRs) summarize the
computer’s software state
• Extend(N, V): PCRN = SHA-1(PCRN | V)

– TPM provides a signature over PCR values (Quote)
– Can provide sealed storage (Seal, Unseal)
– Data is sealed (encrypted) providing a key and target PCR

values
– Only when TPM PCR values match target PCR values (which

indicates valid system state), data can be unsealed
(decrypted) using the right key

24

	Virtual Machines
	Concepts
	Slide 3
	Brief History
	Types of Virtualization
	Architectures
	Slide 7
	Key Issues in CPU Virtualization
	Virtualization Approaches
	Slide 10
	Paravirtualization
	Xen and the Art of Virtualization
	Slide 13
	Hardware-assisted Virtualization
	AMD-V: CPU virtualization
	Memory Virtualization
	Slide 17
	AMD-V: Memory Virtualization
	I/O Virtualization
	Security Applications
	Slide 21
	Trusted Computing
	TPM Introduction
	TPM functionality

