
The following paper was originally published in the
Proceedings of the Sixth USENIX UNIX Security Symposium

San Jose, California, July 1996.

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

Confining Root Programs with Domain and Type Enforcement (DTE)

Kenneth M. Walker, Daniel F. Sterne, M. Lee Badger,
Michael J. Petkac, David L. Shermann, Karen A. Oostendorp

 Confining Root Programs with Domain and Type Enforcement (DTE)

June 13, 1996 (2:57pm)

Kenneth M. Walker
Daniel F. Sterne
M. Lee Badger

Michael J. Petkac
David L. Sherman

Karen A. Oostendorp

0. Abstract

The pervasive use of the root privilege is a central
problem for UNIX security because an attacker who
subverts a single root program gains complete control
over a computing system. Domain and type
enforcement (DTE) is a strong, configurable operating
system access control technology that can minimize the
damage root programs can cause if subverted. DTE
does this by preventing groups of root programs from
accessing critical files in inappropriate access modes.
This paper illustrates how a DTE-enhanced UNIX
prototype, driven by simple, machine-interpretable
DTE policies, can provide strong protection against
specific classes of attacks by malicious programs that
gain root privilege. We present a sequence of policy
components that protect system binaries against
Rootkit, a widely-used hacker toolkit, and protect
password, system log, user, and device special files
against other root-based attacks. Tradeoffs among
DTE policy complexity, scope of protection, and other
factors are discussed. 1 2

1. Introduction

The pervasive use of the all-powerful root privilege is
one of the most important sources of UNIX security
problems. An attacker who subverts a single root
program can gain complete control over a system,
including enterprise data, operating system
components, cryptographic keys used for secure
communications, and privileged network connections
to other local hosts. Unfortunately, many daemons and

other programs that execute with root privilege are
complex and riddled with security vulnerabilities. For
these reasons, root programs are extremely attractive
targets for attackers. UNIX system lore is replete with
examples of root programs being tricked into misusing
their privileges for a variety of malicious purposes
[6,8]. By providing and relying on a single
all-powerful privilege, UNIX systems "put all their
eggs in one basket."

Finding and fixing vulnerabilities in root programs is
important; but it is unwise to assume that all such
vulnerabilities can be found and fixed before attackers
can exploit them. Domain and type enforcement
(DTE) is an operating system access control technology
offering a fundamentally different approach to this
problem [2,12]. We assume that any UNIX system
will include one or more root programs containing
exploitable vulnerabilities. We then attempt to
minimize the damage these programs can cause if
subverted. Configuring an appropriate DTE access
control policy causes many root programs to be
executed in restrictive domains that only allow access
appropriate to each program's assigned responsibilities,
thereby curtailing unnecessary access, especially to
security-critical files. In effect, this places the UNIX
system eggs in separate baskets.

Previous papers on DTE have focused on the goals,
design, and features of our DTE-enhanced UNIX
prototype and have illustrated these via hypothetical
policy examples [2,12]. This paper illustrates how
DTE mechanisms driven by simple DTE policies can
provide strong protection against specific classes of
root-based attacks on UNIX. In particular, we present
the core of a simple, experimentally validated policy
that protects UNIX against Rootkit [16], an
increasingly popular hacker toolkit that attempts to
overwrite system binaries. Policy enhancements are
then presented to demonstrate how specific
vulnerabilities can be protected. In particular, we will

 Approved for Public Release - Distribution1

Unlimited (#96-S-2589)

 This research was supported by ARPA2

contract DABT63-92-C-0020.

protect various system log files, the password file, and
several device special files (i.e., /dev/kmem). Finally,
we will provide a policy extension that allows a user to
run a web browser in a restricted domain. This domain
will restrict the damage that can be caused by a
browser (or a helper application) when interpreting
malicious code.

2. DTE Background

DTE is an access control technology derived from the
earlier work of Bobert and Kain [5,13] that restricts
process access according to a site-specific security
policy. A DTE system associates a domain with each
running process and a type with each object (e.g., file,
packet). As a DTE UNIX system runs, a kernel-level
DTE subsystem compares a process's domain with the
type of any file or the domain of any process it attempts
to access. The DTE subsystem denies the attempt if the
requesting process's domain does not include a right to
the requested access mode for that type. DTE restricts
root as well as non-root processes and operates in
addition to traditional UNIX protection bits. Suitably
configured, DTE partitions a system according to the
principle of least privilege, which grants each program tracks afterward. An increasingly popular toolkit is
only those access rights needed to perform its assigned Rootkit [16]. Once an attacker has penetrated a system
function. This is a well-established technique for and obtained root permission, Rootkit builds a hidden
increasing both the security and reliability of computing backdoor into the system for future access. Installing
systems. Rootkit modifies the standard UNIX login program to

A characteristic of DTE that distinguishes it from other checks for those names, and provide a hidden session
access control schemes [3,4,5] is its use of a with root privileges. Rootkit modifies several other
human-friendly high-level language for specifying UNIX utilities, including ls, netstat, and ps, to hide the
security policies. The DTE Language (DTEL) presence of the intruder after login.
provides four primary constructs for specifying
policies:

C The type statement declares equivalence
classes of data (e.g., personnel,
manufacturing, corporate proprietary) that are
treated differently by the policy.

C The domain statement defines the access
modes a process running in that domain is
permitted to use when accessing objects of
specified types (e.g., read, write, or execute)
or interacting with processes in other
domains. A process running in domain A may
transition to another domain B only by
executing one of B's entry point programs (via
exec()). A process may transition to another
domain by explicit request only if its domain
includes the exec mode of access to the target
domain. Alternatively, a process may be
automatically transitioned if its domain

includes auto mode access to the target
domain. The auto transition feature allows a
policy to unilaterally partition families of
existing programs into separate domains
without requiring code modifications. A
domain may also provide the right to send
specified UNIX signals to processes in other
domains.

C The initial_domain statement determines the
domain in which the system's first process
(usually /etc/init) starts.

C The assign statement binds types of data to
specific files or directory hierarchies of files.

DTE and DTEL are described in greater detail in
previous papers [2,12]; this paper covers them only as
needed to elucidate the policy examples below.

3. Protecting System Binaries from Rootkit

Hacker toolkits are now widely available through many
sources, including the Internet. These toolkits allow
attackers to break into systems by exploiting security
holes. Some toolkits also help the attacker cover their

recognize special login names, skip normal access

3.1 Strategy

Our strategy for preventing installation of Rootkit is
simple. Using DTE, we create a special administrative
domain having write access to system binaries and their
containing directories, and we allow transitions into
that domain only after performing strong user
authentication and authorization checks. All other
processes, including root daemons, will run in less
powerful domains that lack such write access. If an
attacker subverts a root daemon, its accesses will be
confined according to the daemon's domain, and it will
be unable to replace login, ls, and other programs that
constitute Rootkit's hidden backdoor.

The organization of a simple DTE policy that
implements this strategy is depicted in Figure 1. The
policy partitions all processes into four domains: 1)
daemon_d, a domain for system daemons including init;

2) login_d, a domain for the DTE-enhanced login automatic transition of the login program into the
program; 3) user_d, a domain for ordinary user login_d domain, as indicated by the tuple
sessions; and 4) admin_d, a domain for system (auto->login_d). Note that invoking the login program
administrator sessions. The daemon_d domain
includes an access right for transitioning to the login_d
domain so that the daemon that invokes login (getty)
can start login in the proper domain. The login
program acts as a gatekeeper, determining which user
sessions should be started in the user_d and admin_d
domains. Consequently, the login_d domain includes
rights that allow transitions to those two domains.
Although most system administration tasks will be
carried out using root processes in the administrator
domain, both root and non-root processes can exist in
each of these four domains.

All information in files and other objects is categorized
into five types: 1) generic information created by user
processes (generic_t); 2) system binaries (binaries_t);
3) UNIX configuration files to which most processes
need only read access (readable_t); 4) DTE security
metadata (dte_t); and 5) miscellaneous system-
generated information that many processes may need to
update (writable_t).

3.2 Initial Policy Core

Figure 2 shows the core of a simple DTE policy that
implements this strategy. Additional policy elements
needed to loosen constraints on functionality or
strengthen security are described later.

3.2.1 Daemon_d

The daemon_d domain is the domain in which the first
system process, init, runs. This is indicated in the
initial_domain statement and by the tuple showing that
/sbin/init is the entry point for the daemon_d domain.
All descendants of init will run in the daemon_d
domain until one of them invokes /usr/bin/login, the
entry point for the login_d domain. This causes an

is the only way for processes in this domain to
transition to any other domain.

Like most domains, daemon_d's definition includes a
comma-separated list of expressions of the form
(modes->type). DTE modes include read (r), write
(w), and execute (x). These are similar to UNIX
modes except that execute does not include directory
traversal, which is a separate mode (d). The default
creation type (c), is an extension of write mode; it
identifies the type attribute automatically associated
with new objects if the creating process does not
explicitly specify a type.

The tuple (rxd->binaries_t) allows a process in the
daemon_d domain to read, execute, and search for
system binaries but not modify them, even if the
process has root privilege; this tuple implements a key
aspect of our strategy to thwart Rootkit. In this domain
there is no type of file that is both executable and
modifiable. As a result, processes in this domain
cannot manufacture or import any executable that they
can subsequently execute. Similarly, the tuple
(rd->generic_t, readable_t) allows daemon processes to
read but not modify various user-generated files and
UNIX configuration files. The assign statements at the
bottom of Figure 2 assign the type readable_t by default
to all files in /etc and the type generic_t by default to all
files in the file system that are not assigned a type by
other assign statements. Additional assign statements
can be added to label and protect additional
configuration files in any other part of the file
hierarchy. Defaults for directories are indicated by the
-r (recursive) flag. The -s (strict) flag indicates that the
type associated with the pathname cannot be changed at
runtime, even if the file is replaced by a different file.
When combined with the -r flag, -s indicates that all
files within the indicated directory will be labeled with

the specified type, no other types will be permitted in a role request from the user. If the user is authorized to
the directory. assume that role, the login program invokes the user's

3.2.2 Login_d

The login_d domain is the only domain that includes
the tuple (exec->user_d, admin_d). It is therefore the
only domain that can transition into the user_d or
admin_d domains and is, hence,
non-bypassable. Because the login_d domain is critical
to our strategy, it has been designed so that only one
binary can execute in it. That binary is the domain's
entry point /usr/bin/login, the DTE-enhanced login
program. Because this domain lacks execute (x) access
to any type, any attempt by the login program to invoke
any other binary without first transitioning to another
domain (and shedding privilege) will be denied. This
increases an attacker's difficulty of "commandeering" a
process in this domain, should a means be discovered
for penetrating the login program.

The DTE login program itself has been extended and
strengthened in several ways. At login time, it obtains

shell (or other program) in the initial domain associated
with that role, in this example, user_d or admin_d. The
authentication and role authorization databases are
labeled with DTE types (readable_t and dte_t) and
access to these type is strictly controlled by the DTE
policy to protect these files from unauthorized
modification. Furthermore, at session start, the login
program establishes a separate, immutable user ID,
called the DTE UID, that cannot be modified via setuid
programs or system calls. In addition, we will assume
that the DTE login program uses stronger
authentication mechanisms than ordinary reusable
passwords. In fact, we have not yet implemented this
modification, though doing so appears straightforward
and several such mechanisms are readily available [1,
9, 17]. In a later section, we illustrate how DTE can be
used to protect authentication data, using password
files as a familiar example. The techniques described,
however, are equally applicable to other kinds of
authentication data.

 type generic_t, binaries_t, dte_t, readable_t, writable_t;

 domain daemon_d =(/sbin/init),
 (crwd->writable_t),
 (rxd->binaries_t),
 (rd->generic_t, readable_t),
 (auto->login_d);

 domain login_d = (/usr/bin/login),
 (crwd->writable_t),
 (rd->generic_t, readable_t, dte_t),
 setauth,
 (exec->user_d, admin_d);

 domain user_d = (/usr/bin/{sh, csh, tcsh}),
 (crwxd->generic_t),
 (rwd->writable_t),
 (rxd->binaries_t),
 (rd->readable_t, dte_t);

 domain admin_d = (/usr/bin/{sh, csh, tcsh}),
 (crwxd->generic_t),
 (rwxd->writable_t, binaries_t, readable_t,
 dte_t);

 initial_domain = daemon_d;

 assign -r generic_t /;
 assign -r writable_t /usr/var, /dev, /tmp;
 assign -r readable_t /etc;
 assign -r -s dte_t /dte;
 assign -r -s binaries_t /sbin, /bin, /usr/libexec,
 /usr/{sbin,bin},
 /usr/local/bin;

Figure 2. Simple DTE Policy For Protecting Binaries and Configuration Files

3.2.3 User_d

The user_d domain allows read and directory access to
all types of information on the system, subject to the
additional restrictions imposed by ordinary UNIX
mechanisms. In addition, execute access is allowed for
system binaries (binaries_t) and other files created in
this domain (generic_t). The "c" in the tuple
(crwxd->generic_t) indicates that by default, any
objects created in this domain will automatically be
typed as generic_t. In addition, processes in this
domain are permitted to modify existing objects of type
writable_t or create new ones by explicit request. As
indicated by the tuple (/usr/bin/{sh, csh, tcsh}), several
common shells can be used as entry points into this
domain. To non-administrative users running sessions
in this domain, the system seems to behave like an
ordinary UNIX system. Administrative users running
in the user_d domain are prevented from carrying out
certain administrative functions, even after becoming
the superuser. In order to carry out all administrative
duties, administrative users must login to the admin_d
domain via the login domain.

3.2.4 Admin_d

The admin_d domain allows read, write, execute, and
directory access to all types of files on the system. This
includes the capability to create and modify binaries,
UNIX configuration files, and DTE policy files. This
capability is not available in any other domain. DTE
files are of type dte_t and are kept in the /dte directory,
as indicated by the policy statement "assign -r -s dte_t
/dte."

The policy core described above, together with a small
amount of standard policy boilerplate, has been
validated experimentally on both OSF/1-based and
BSD/OS-based DTE prototypes and shown to prevent
installation of Rootkit while transparently allowing
many normal system activities. We invoked the Rootkit
installation script from a root shell in the daemon_d
and user_d domains and verified that the script was
unable to overwrite the login, ps, ls, and other binaries
because of DTE access control checks.

3.3 Extension 1: Controlling Access to
Password Files

In the initial policy example, it is not possible for
regular users to change their system passwords or login
shells. The password files typically reside in /etc, and
therefore are of type readable_t. There are several
ways this functionality deficiency can be handled. The

simplest approach would be to provide the user_d
domain with write access to readable_t. This approach
is not acceptable because it allows any user who gains
root privilege to change the password of any other user.
This could allow an attacker in the regular user_d
domain to change the password of a user authorized for
the admin_d domain, thereby gaining access to a
domain with the power to modify system binaries.

In order to fully protect user authentication information
from unauthorized modification, access to this
information must be strictly controlled. To do this, the
password files are assigned a new type to which most
domains are granted read-only access. The admin_d
domain and a newly created domain (passwd_d) are
permitted to write the password files. For this
example, regular UNIX authentication mechanisms are
employed, so the password programs (i.e., passwd,
chpass and chsh) are the entry points to the passwd_d
domain. User_d’s domain specification forces the
domain transition whenever one of these programs is
executed.

This insures that only particular programs are
permitted access to the authorization information.
However, as indicated above, this is not sufficient
because root users can change other users’ passwords.
Since we assume that root access can be obtained
illicitly, the UNIX UID cannot be trusted for user
identification. The DTE UID which is only set by login
could be used, but the password programs would need
to be modified to do this.

A less disruptive approach that allows the password
programs to remain unmodified involves creating a
simple wrapper (dtpasswd) for the programs. The
wrapper program checks the DTE UID to ensure that
the user is not attempting to change someone else’s
password information and then executes the requested
password program. The wrapper program is
designated as an entry point to the domain that has
write access to the password files. This new domain is
set up as an auto-transition from the user_d domain. If
the user attempts to run a password program directly
without using the wrapper, the program will run in the
user_d domain and will not be allowed to update the
password files. However, from the admin_d domain,
the programs can execute unconstrained since the
admin_d domain has write access to passwd_t.
Therefore, the administrator can bypass the wrapper
and will be permitted to change other user’s passwords.
The pertinent policy statements are included below; the
full policy is in the appendix.

type passwd_t;
domain passwd_d = (/usr/bin/dtpasswd),

(crwd->passwd_t),
(rwd->readable_t, writable_t),
(rxd->binaries_t),
(rd->generic_t);

assign -s passwd_t /etc/{master.passwd, spwd.db, pwd.db,
 passwd};

Figure 3. DTE Policy Extension for Passwd

3.4 Extension 2: Providing Additional
Assurance

The above policies protect a system’s executables and
configuration files from direct manipulation by an
attacker. In particular, the above policy protects these
resources from direct attack via a toolkit like Rootkit.
We now provide an extension that protects these
resources from other, more sophisticated attacks by
users who obtain root privilege. One such class of
attacks attempts to manipulate raw devices via device
special files, bypassing normal access paths and their
associated DTE constraints. Two types of device
special files present particularly inviting targets. The
disk device special files allow access to the disk,
bypassing the file system controls. The memory device
files (/dev/kmem, /dev/mem) allow direct access to
system memory. Using these devices, an attacker
could change data on disk or in memory and undermine
the security policy.

To protect the memory device files, a new type is
defined (mem_t), and access to this type is restricted.
The memory device files do not need to be written by
any process, though they are read by several of the
daemons and user processes (e.g. ps, vmstat).

Similarly, the disk device files can be protected by
creating a new type for the device files and then

restricting access to this type. Access can be limited to
a few administrative processes (i.e., fsck, newfs,
mount_mfs) by placing these processes in a new
domain. This eliminates the need for the daemon_d
domain to retain any access to the disk devices.

Another possible attack is to create new device special
file that aliases a critical resource, such as the boot disk
partition, and then freely manipulate that resource via
the new device special file. The DTE prototype
prevents these attacks by requiring that all device
special files naming the same physical device have the
same type and by allowing mknod commands only if
the requesting process has read and write access to the
type of the device. These mechanisms ensure that only
processes in domains authorized by the DTE policy can
manipulate devices. Note that this kind of protection
can be extended to other kinds of devices (e.g., the
console).

File system mount operations provide another potential
means of attack. Because the DTE kernel binds type
attributes implicitly to files based on directory
hierarchies, an attacker might attempt to alter the
hierarchies, thereby changing the type bindings in a
way that lessens DTE constraints. For example, if the
root user unmounts a file system and mounts it at a
mount point that is recursively typed "foo_t" , all of the
files on the file system would have their types changed
to foo_t. To prevent this, DTEL provides "mount

type mem_t, disk_t;
domain fsck_d = (/sbin/{fsck, mount_mfs}),

(crwd->disk_t),
(rwd->writable_t),
(rd->generic_t, readable_t);

assign -s mem_t /dev/{kmem, mem, core};
assign -s disk_t /dev/{rsd0a, rsd0b, rsd0g, rsd0h,

 sd0a, sd0b, sd0h, sd0g};

mount (/dev/sd0a, /);
mount (/dev/sd0h, /usr);
mount (/dev/sd0g, /usr/home);

Figure 4. DTE Policy Extension for Device Special Files

constraints" that restrict where file systems can be As part of the login process, login modifies the files
mounted. The DTEL mount constraints contain wtmp and lastlog. These files are given a separate type
information similar to that in a UNIX fstab file. In (usr_log_t), and the login_d domain is provided write
addition to ensuring that mount operations conform to access to this type. No other domain needs write
the constraints, the DTE prototype also prevents access to this type. The important policy statements are
modification (e.g., rename) of device special files that included below. For the complete policy, see the
are mount constrained. These mechanisms ensure that appendix. This policy protects the system log files
rogue root programs cannot disturb the type from modification by an attacker who has broken a
associations but allow for flexibility to remount disk system daemon or obtained access to a regular user
partitions in cases where the types would not be account. It also prevents a malicious user from using
affected. signals to disrupt the syslog daemon’s operation.

By protecting the device special files and mount
operations, a potentially serious backdoor through the
security of most UNIX systems has been closed. The
pertinent policy additions are included below; the full
policy is provided in the appendix.

4. Broader Protection

The previous section describes how a simple DTE administrative domain. For clarity, we will rename the
policy can protect system binaries from Rootkit and admin_d domain dte_admin_d. These domains will be
other root-based attacks. This section illustrates how designated as initial domains for the UNIX
small policy additions can extend DTE protection to administrator and the DTE administrator roles. Users
other important information resources, in particular, operating in the UNIX administrator role will be
system logs, administrative functions, and user data. allowed to modify system binaries and configuration

4.1 Protecting System Logs

Attackers often attempt to “cover their tracks” by
modifying or disabling the attacked host’s audit system.
This threat can be countered by another simple policy
extension. First, the audit log files are given their own
type, syslog_t. Second, a new domain is created for the
syslogd daemon. Only this domain and the admin_d
domain are permitted to write the syslog_t type. All
other domains are given either no access or read-only
access to the syslog_t type. The admin_d domain
needs write access to this type to allow for controlled
cleanup of the log files. Daemon_d will be permitted
(in fact, required) to auto-transition into syslog_d when
the syslogd program is executed.

4.2 Providing Multiple Administrative Roles

In many environments, it is prudent to split
administrative duties into several parts so that some
administrative duties can be performed by individuals
whose privileges are limited. As an example of how
this can be accomplished using DTE, we will derive
from the admin_d domain a limited UNIX

files but not the DTE configuration or password files.
DTE administrators will be permitted to perform all
administrative duties. Access to either of these roles is
controlled by login and can be constrained with
appropriate strong authentication. The UNIX
administrator is not permitted to change other users’
passwords because this would allow a UNIX
administrator to change a DTE administrator’s
password and assume the DTE administrator role. The
important changes to the DTE policy files are included
below; see the appendix for a complete listing of the
policy file.

type syslog_t, usr_log_t;
domain syslog_d = (/usr/sbin/syslogd),

(crwd->syslog_t),
(rwd->writable_t),
(rd->readable_t, generic_t);

assign -r syslog_t /usr/var/{log, run/{syslog.pid, utmp}};
assign usr_log_t /usr/var/log/{wtmp, lastlog};

Figure 5. DTE Policy Extension for Syslogd

domain unix_admin_d = SHELLS,
(crwxd->generic_t),
(rwxd->binaries_t, writable_t, readable_t,

 syslog_t, usr_log_t),
(rd->dte_t, passwd_t),
(auto->passwd_d);

 domain dte_admin_d = unix_admin_d,
(rwxd->dte_t, passwd_t);

Figure 6. DTE Policy Extension for Separation of Duties

4.3 Securing a Web Browser

The World Wide Web has made the Internet accessible
to millions. The web was originally used as an easy
way to share documents. Gradually, full-featured
languages, like Java, have been developed that extend
this technology. Using Java, a browser can retrieve
code (an applet) from a remote machine and execute
the code locally. Conceptually, this is a good way to
remove processing bottlenecks; however, the security
implications are considerable. A whole new genre of
malicious code is now possible, code received from
distant, unknown sites, at a user’s request (or possibly
without the users knowledge) and executed on the local
machine with the user’s access privileges. Although
Java purports to prevent hostile applets from harming
the browser’s environment, a number of critical
security flaws in the interpreter have already been
discovered; we expect that additional flaws will be
identified in the future. Generally, web browsers do
not run with root privilege; however, an attack could
certainly be developed that exploits a previously
unknown hole in a setuid program to gain root access.
Even without root, an unconstrained browser could do
significant damage to user data.

Using DTE, users can be forced to run web browsers in
a constrained domain that restricts access to the
system’s critical files. For this paper we constrained
the NCSC’s Mosaic web browser and Netscape’s web
browser. The only files that the browsers need to write
are: 1) the “hotlist” and other files that the browser
must update to capture history between sessions; and 2)
other files in a designated scratchpad subdirectory in
the user’s home directory. The browser may download
files into this subdirectory for printing or other
purposes. In this domain, the browser cannot delete,
modify, or overwrite any other file on the system, even
if root privilege is obtainedn addition, all files created
in the browser’s domain are labeled with a type to
which neither the browser, its progeny, nor any other
process running in an ordinary user’s domain has
execute access rights. This means that the browser
cannot import or manufacture binaries that it or other
processes on the system are able to execute. As a
consequence, the browser cannot plant trojan horse
binaries that users might execute inadvertently. An
auxiliary domain could be built that would allow users
to regrade downloaded files to another type for
execution. This would require the user to make a
conscious decision to execute the code and could not be
done by the browser. The pertinent policy statements
are included below. Figure 8 shows how all of the
above domains relate to each other.

type browser_t;
domain browser_d = (/usr/X11R6/bin/{Mosaic, netscape}),

(crwd->browser_t),
(rwd->writable_t),
(rxd->binaries_t),
(rd->generic_t, readable_t, passwd_t);

assign -r browser_t /usr/home/ken/{.MCOM-HTTP-cookie-file,
.MCOM-preferences, .MCOM-global-history,
.MCOM-cache, .MCOM-bookmarks.html};

assign -r browser_t /usr/home/ken/{.mosaic-global-history,
.mosaic-hotlist-default, .mosiacpid,
.mosaic-personal-annotations);

Figure 7: DTE Policy Extension for a World Wide Web Browser

daemon_d

user_d

Figure 8. Final Domain Relationships

dte_admin_d

passwd_d browser_d

5. Discussion 5.2 Security Tradeoffs

5.1 DTE Policies For Operational Systems Perfect security is an impractical goal. Effective

The DTE policy components presented above and in
the appendix have undergone limited testing to verify
that they protect against the kinds of root-based attacks
we cite. In addition, we have verified that they allow a
significant range of common UNIX programs to
operate normally including vi, emacs, ps, rlogin, telnet,
and mail.

Day-to-day operational use of DTE systems, however,
will likely require further policy extensions and
DTE-aware versions of a few standard utilities. For
example, a DTE-aware cron daemon may be needed
that can start system and user programs in the domain
of a requester or any domain into which a requester is
authorized to transition. This requires that cron's own
domain include the ability to transition into domains of
requesters. Another example is preauthenticated
rlogin. Providing security for preauthenticated rlogin
in the presence of possible root penetrations requires
that all inputs into the login_d domain be conveyed
over DTE-protected paths; these inputs include file
descriptors, command-line arguments, and DTE UID's
received from the network. Protecting these input
paths requires, in turn, that all getty, rlogin, and other
trusted ancestors of login be segregated from other
processes and placed into their own domain.

security, on the other hand, requires that security
measures be deployed selectively and in a manner that
balances security against other competing concerns.
One of our research objectives is to build strong,
flexible mechanisms that enable organizations to make
tradeoffs involving operating system security.

One tradeoff illustrated above is the tradeoff between
extent of protection and policy simplicity.
Finer-grained control over the behavior of root
processes can be gained by partitioning a system into
more types and domains, where each domain provides
minimal essential access rights for a group of related
processes. Increased partitioning, however, results in a
DTE policy that is larger, more complex, and less
easily understood and maintained. This phenomenon is
illustrated by the progression of incremental policy
additions above. The initial policy core is simple but
protects against a limited class of threats; the composite
policy provided in the appendix is more complex but
provides significantly broader protection.

Another tradeoff is between policy simplicity and the
use of unmodified programs. The examples above
attempt to minimize the number of standard UNIX
programs that must be modified because of DTE. By
modifying more programs, equivalent policies can be
made simpler. Consider the domain for syslog
described in section 4.1. Syslog needs to update the
system log, which is of type syslog_t. Syslog also must
be able to send return codes back to clients in other
domains. Since the existing syslog program is not a

DTE-aware program, these return codes will also be of recomputes these checksums and compares them with
type syslog_t. Consequently, the right to read the type the stored values. If a binary has been replaced or
syslog_t must be added to the domains of syslog clients, modified, the checksums will not match. When
making each of them somewhat more complex. The Tripwire detects a mismatch, it notifies the security
need to lengthen these domains can be obviated by administrator.
modifying syslog so that it labels return codes sent to
each client with type used by that client when it COPS compares ownership, permission bits, and
requests log services. contents of security-relevant files to sets of security

5.3 Comparison With Conventional
Techniques

Like DTE, the UNIX chroot facility can limit damage
that can occur if a system program is penetrated or
tricked into misusing its privileges. A process running
in a chroot'd environment is only able to access the
subset of the file hierarchy beneath a designated
directory. Other directories and files that are siblings
or parents of this directory are inaccessible to the
chroot'd process.

In principle, chroot could be used to confine root
processes as described above. Doing so, however,
confronts significant practical problems.

C Each chroot'd environment must contain its
own copy of each file needed by the
process(es) that will run in that environment.
Setting up numerous chroot'd environments is
therefore inconvenient and can waste disk
space. Moreover, when updates are
necessary, the presence of multiple file copies
makes maintaining consistency across
environments more difficult.

C There are known attacks through which
root-privileged programs can subvert the
chroot mechanism.

In contrast, DTE permits files to be made selectively
inaccessible to different processes without file copying
or the problems associated with links. More important,
DTE can provide stronger protection than chroot'd
environments because its underlying mechanisms
provide no special exemptions for root programs. The
primary drawback of DTE as compared with chroot is
that DTE requires a modified kernel.

Tripwire and COPS are security configuration checking
tools that protect system binaries and other critical
files, but in a more limited manner that DTE. When
run initially, Tripwire computes and stores
cryptographic checksums for system binaries and other
security-critical files. When run subsequently, it

expectations derived from established administrative
practices. For example, it verifies that /bin and /etc are
not world writable and that device special files are not
world readable. It also detects poorly-chosen
passwords. COPS produces reports that point out
potential insecurities in the system's current
configuration.

In terms of protecting system binaries and other critical
files, the most important difference among the DTE
prototype, COPS, and Tripwire, is that the former can
prevent malicious modification while the latter two
cannot. Instead, Tripwire detects such modifications
after the fact. COPS simply warns about critical files
that are unnecessarily exposed to attack by
unprivileged programs. COPS provides little help, and
can be disabled, if an attacker obtains root privilege.

COPS and Tripwire have been ported to a variety of
UNIX systems; neither requires kernel modifications.

6. Related Work

The designers of a number of UNIX-oriented secure
operating systems have attempted to eliminate root
privilege or reduce its potential for misuse. Sidewinder
(TM) [1], an Internet firewall, embodies the approach
most similar to ours. Sidewinder is based on a version
of BSD-OS UNIX that has been extended to include
type enforcement, which it uses to impose additional
constraints on root and non-root processes. Sidewinder
includes two different kernels. Under the operational
kernel, all processes are governed by type enforcement
while "security policy checks are bypassed" [1] in the
administrative kernel, which is used to install software.
The administrative kernel can only be entered by a user
who is "physically connected to the Sidewinder" [1]
and only after shutting down the operational kernel.
Sidewinder includes a fixed, vendor-supplied access
control configuration not intended to be modified by
customers. This is entirely appropriate since
Sidewinder is an embedded turnkey system (i.e., a
fixed-function device); moreover it increases the
likelihood that the access controls have been and will
remain configured properly.

By contrast, the DTE prototype is intended to be a Like Trusted XENIX, HP-UX CMW supports user
general purpose UNIX system whose security processes at multiple security levels concurrently [4].
mechanisms are easily configured by user organizations Similarly, HP-UX replaces root privilege with a
in accordance with their own security objectives, collection of finer-grained privileges, each of which
policies, and tradeoff decisions. This paper explains grants a process the right to invoke a particular action
how these mechanisms can be configured effectively. such as setting the system clock. HP-UX CMW
The prototype provides a single kernel for both provides three predefined administrative roles.
operational and administrative purposes. This allows
an organization to use DTE to define and delimit the A fundamental difference between the DTE prototype
rights of administrative personnel as appropriate to the and both Trusted XENIX and HP-UX is that the latter
organization's needs. It also allows administrative two have a predefined privilege structure that is hard-
tasks, including installing software and extending a coded into their kernels. By contrast, the DTE
system's DTE policy, to occur without rebooting. prototype relies only minimally on the notion of3

Moreover, administrative tasks for multiple user predefined privileges. Instead, it allows user
workstations can be carried out from a single organizations to choose the kind and granularity of
administrator workstation via networking. protection appropriate to their needs, recognizing that

Trusted Mach (TM), Trusted XENIX (TM), and granularity may increase the cost and difficulty of
HP-UX CMW (TM) use other strategies to mitigate administering and maintaining a system.
root-related vulnerabilities. Each has been designed to
protect classified information from leakage in
accordance with the Trusted Computer Systems
Evaluation Criteria [2]. Trusted Mach effectively runs
a separate UNIX operating system (OS) at each
security classification, e.g., unclassified or secret. Each
user process also has a classification and can
communicate only with the corresponding OS. Strong
separation between the OSs and clients at different
classifications is enforced by a trusted computing base
completely independent of UNIX mechanisms. As a
result, an adversary that obtains UNIX root privilege at
one classification gains no additional access rights to
information at other classifications; hence security, in
the sense of preventing leakage, is preserved.

Trusted XENIX is a modified UNIX operating system
that supports user processes at multiple security levels
concurrently [3]. In Trusted XENIX, root privilege has
been replaced by a collection of 36 specific privileges
that selectively allow use of privileged system calls and
non-privileged system calls with privileged options.
For example, a call to audit() succeeds only if the caller
possesses the AUDIT privilege. Privileges are
encoded in a bit vector associated with each executable
file and stored in an extended inode structure. When a
process executes a program, the process obtains the
program's privileges. Trusted XENIX defines five
hierarchical roles for administrative users.

these needs may evolve over time and that unnecessary

7. Conclusion

The pervasive use of the all-powerful root privilege is
one of the most important sources of security problems
in UNIX systems. This paper has explained how a
DTE-enhanced UNIX, driven by simple DTE policies,
can substantially improve the security of UNIX by
confining the accesses of root programs and preventing
them from accessing critical files in inappropriate
access modes.

As an illustrative example, we have presented a simple
DTE policy that thwarts Rootkit and other root-based
attacks that attempt to modify or replace critical system
binaries, e.g., login. This policy has been
experimentally validated on our BSD-OS-based DTE
prototype as preventing Rootkit from installing
malicious binaries while allowing a variety of
unmodified UNIX programs to be used normally. In
addition, we have presented a sequence of small,
incremental policy extensions that provide broader
protection against other root-based attacks. While
these extensions do not address all known attacks, they
do provide strong protection for several critical UNIX
abstractions including password files, raw disk devices,
kernel memory, mount operations, and system audit
logs.

The DTE prototype is intended to be a general purpose
system whose security mechanisms can be configured
by user organizations in accordance with their own
security concerns and tradeoff decisions. The policy
examples presented here illustrate that very simple
DTE policies can provide limited but useful protectionchanges are currently under development.

 Features to constrain “on-the-fly” policy3

beyond that provided by ordinary UNIX. Moreover, 8. S. Garfinkel, G. Spafford, Practical UNIX Security,
they illustrate that broader protection can be provided O'Reilly and Associates, 1991.
at the expense of policy simplicity. The policies
presented here are predicated on minimizing the 9. N. Haller, "The S/Key One-Time Password
number of existing UNIX utilities that must be System," Proc. Internet Society Symposium on
modified. Additional policy simplifications are Network and Distributed System Security, San Diego,
possible in some cases if minor modifications are made CA Feb, 1994.
to particular UNIX programs.

The results presented here represent work in progress. Implementation of Tripwire: A File System Integrity
We are now beginning to use the above policies to Checker," Purdue Technical Report CSD-TR-93-071,
protect the UNIX workstations we depend on for November 1993.
routine, daily computing. We expect to continue
improving the security of these workstations against 11. "Secure Web Platform Whitepaper,"
root-based attacks by refining and extending these http://www.sware.com/papers/, SecureWare Inc.,
policies and the DTE prototype. February 2, 1996.

Bibliography

1. F. Avolio, M. Ranum, "A Network Perimeter with
Secure External Access," Proc. Internet Society
Symposium on Network and Distributed System
Security, San Diego, CA, Feb 1994.

2. L. Badger, D. F. Sterne, D. L. Sherman, and K. M.
Walker, "A Domain and Type Enforcement UNIX
Prototype," USENIX Computing Systems, Vol 9, No.1,
Winter 1996, pages 47-83.

3. D.E. Bell and L. LaPadula, "Secure Computer
System: Unified Exposition and Multics
Interpretation," Technical Report No.
ESD-TR-75-306, Electronics Systems Division,
AFSC, Hanscom AF Base, Bedford MA, 1976.

4. K.J. Biba, "Integrity Considerations for Secure
Computer Systems," USAF Electronic Systems
Division, Bedford, MA, ESD-TR-76-372, 1977.

5. W.E. Boebert and R.Y. Kain, "A Practical
Alternative to Hierarchical Integrity Policies,"
Proceedings of the 8th National Computer Security
Conference, Gaithersburg, MD, p. 18, 1985.

6. W. Cheswick, and S. Bellovin, Firewalls and
Internet Security: Repelling the Wily Hacker,
Addison-Wesley, 1994.

7. D. Farmer, "The COPS Security Checker System,"
Proceedings of the Summer 1990 USENIX
Conference, Anaheim, CA, p. 165.

10. G. Kim, E. Spafford, "The Design and

12. D.L. Sherman, D. F. Sterne, L. Badger, S.L.
Murphy, K.M. Walker, S.A. Haghighat, "Controlling
Network Communication With Domain and Type
Enforcement," Proc. 18th National Computer Security
Conference, pages 211-220, Baltimore, MD, 1995.

13. D. J. Thomsen, "Role-based Application Design
and Enforcement," In Proc. of the Fourth IFIP
Workshop on Database Security, Halifax, England,
September 1990.

14. D. J. Thomsen, "Sidewinder: Combining Type
Enforcement and UNIX," Proc. 11th Computer
Security Applications Conference, Orlando, FL,
December 1995.

15. Trusted Mach Philosophy of Protection,
Edoc-0003-93B, Trusted Information Systems, Inc.,
May, 1993.

16. W. Venema, "Root Kit," Presentation at SURFnet
CERT-NL SGG-SEC/SSC Workshop, May, 1995.

17. W. Venema, "Logdaemon," software kit, available
from
ftp://ftp.win.tue.nl/pub/security/logdaemon-5.0.tar.gz

18. D.J. Thomsen, “Sidewinder: Combining Type
Enforcement and UNIX,” Proc. 11th Computer
Security Applications Conference, Orlando, FL,
December 1995.

19. Department of Defense Trusted Computer System
Evaluation Criteria, DoD 5200.28-STD, December
1985.

20. Trusted XENIX Version 3.0 Final Evaluation
Report, CSC-EPL-92/001 National Computer Security
Center, Fort Meade, MD, April 8, 1992.

21. “HP-UX CMW Compartmented Mode
Workstation Version 10.9,”
<http://www.dmo.hp.com/Fed/tac4/CMW.10.6.html>,
Hewlett-Packard Company, May 15, 1996.

Appendix

The final DTE policy files are now presented. Some of
the policy statement functions were not covered in the
paper, a short explaination of these functions are
provided in in-line comments.

/*
 * File: /dte/policy/dt_policy
 *
 * DTE policy file.
 */

/******************* TYPE SECTION **********************************/

type
binaries_t, // System executables
dte_t, // DTE configuration files
generic_t, // User data
readable_t, // System configuration files
writable_t, // System-created data
syslog_t, // Log files
usr_log_t, // User logfiles
kmem_t, // Kernel memory device special files
disk_t, // Disk device special files
passwd_t, // Files used for user authentication
browser_t, // Files written by a web browser
tcp_t; // System generated TCP overhead data

// only used when no user data is sent

/******************* END TYPE SECTION ******************************/

#define SHELLS (/bin/{sh,csh}, /usr/contrib/bin/tcsh)

domain tcp_d = (crw->tcp_t);
domain non_dte_d = (crw->generic_t),

(r->binaries_t, dte_t, readable_t, writable_t,
tcp_t, browser_t);

/*
 * User domains.
 */

domain daemon_d = (/sbin/init), SHELLS,
(crwd->writable_t),
(rxd->binaries_t),
(rd->generic_t, readable_t, dte_t, syslog_t, kmem_t,

passwd_t),
(r->disk_t),
(auto->login_d, syslog_d, fsck_d);

domain fsck_d = (/sbin/{fsck, mount_mfs}),

(crwd->disk_t),
(rwd->writable_t),
(rd->generic_t, readable_t);

domain syslog_d = (/usr/sbin/syslogd),
(crwd->syslog_t),
(rwd->writable_t),
(rd->readable_t, generic_t);

domain login_d = (/usr/bin/login),
(crwd->writable_t),
(rwd->usr_log_t),
(rd->generic_t, readable_t, dte_t, syslog_d,

passwd_t),
setauth,
(exec->user_d, dte_admin_d, unix_admin_d);

domain user_d = SHELLS,
(crwxd->generic_t),
(rwd->writable_t),
(rxd->binaries_t),
(rd->syslog_t, usr_log_t, readable_t, dte_t, kmem_t,

passwd_t, browser_t),
(auto->passwd_d, browser_d);

domain passwd_d = (/usr/bin/dtpasswd),
(crwd->passwd_t),
(rwd->writable_t, readable_t),
(rxd->binaries_t),
(rd->generic_t);

domain browser_d = (/usr/X11R6/bin/{Mosaic, netscape}),
(crwd->browser_t),
(rwd->writable_t),
(rxd->binaries_t),
(rd->generic_t, readable_t, passwd_t);

domain unix_admin_d = SHELLS,
(crwxd->generic_t),
(rwxd->writable_t, binaries_t, readable_t, syslog_t),
(rwxd->usr_log_t, disk_t, kmem_t),
(rd->dte_t, passwd_t),
(exec->daemon_d), /* for restarting daemons */
(auto->passwd_d, browser_t),
(sigtstp->daemon_d); /* System reboot */

domain dte_admin_d = unix_admin_d,
(rwdx->dte_t, passwd_t),
(auto->browser_d),
(sigtstp->daemon_d); /* System reboot */

initial_domain = daemon_d;

mount (/dev/sd0a, /);
mount (/dev/sd0h, /usr);
mount (/dev/sd0g, /usr/home);

inet_assign non_dte_d 0.0.0.0;

#include dt_assign

/*
 * File: /dte/policy/dt_assign
 *
 * DTE attribute association file.
 */

// Default type for all files.
assign -r generic_t /;

// Protect security information
assign -r -s dte_t /dte;

// Types for executable areas
assign -r binaries_t /bin, /sbin, /usr/{bin, sbin};
assign -r binaries_t /usr/contrib/bin, /usr/libexec;
assign -r binaries_t /usr/games, /usr/local/etc;
assign binaries_t /etc/uucp/{daily, weekly, uuxqt_hook};

// Writable areas
assign -r writable_t /usr/var, /dev, /tmp;
assign writable_t /dte/dt_diag;

// Read-only areas
assign -r readable_t /etc;

// System log areas
assign -r syslog_t /usr/var/log;
assign syslog_t /usr/var/run/{syslog.pid, utmp};

// User log areas
assign usr_log_t /usr/var/log/{wtmp, lastlog};

// Password files
assign -s passwd_t /etc/{master.passwd, spwd.db, pwd.db,
 passwd};

// Critical device special files
assign -s kmem_t /dev/{kmem, mem, drum};

assign -s disk_t /dev/{rsd0a, rsd0b, rsd0g, rsd0h,
 sd0a, sd0b, sd0g, sd0h};

// Browser writable files
assign -r browser_t /usr/home/ken/{.MCOM-HTTP-cookie-file,

.MCOM-preferences, .MCOM-bookmarks.html,
 .MCOM-global-history, .MCOM-cache};
assign -r browser_t /usr/home/ken/{.mosaic-global-history,
 .mosaic-hotlist-default, .mosaicpid,

.mosaic-personal-annotations};

