
CSE 307: Principles of Programming Languages
Variables and Constants

R. Sekar

1 / 22

Topics

2 / 22

Variables and Constants

Variables are stored in memory, whereas constants need not be.

Value of variables can change at runtime.

Variables have a location (l-value) and value (r-value).

Constants have a value, but no location.

3 / 22

Constants

Constants may some times be stored in memory

If so, they have r-values but not l-values

Since values stored in constants cannot be changed, there is no use in accessing

l-values

Thus constants have a “Value semantics”

4 / 22

Values and Constants

Values are quantities manipulated by a program (e.g. integers, strings, data

structures, etc.)

Constants have a fixed value for the duration of its existence in a program.

Constants in a program may be
Literals: unnamed values specified using a particular representation. e.g.:
42

"Markov"

0x2eff

Symbolic: names associated with fixed values. e.g.
const int n = 100;

static final int limit = 1024

5 / 22

Binding Time of Constants

Compile-time

const int n = 100;

Binding of n (to value 100) is known at compile time.

Load-time

static final Date d = new Date();

Constant d is bound to the value of today’s date at load time.

Execution-time

int f(int x) { const int y = x+1; ...}

Constant y is bound to its value at execution time!

Note that y is local to f and refers to di�erent entities for each invocation of f. The above

declaration says that y will be constant for any particular invocation.

Such constants are called dynamic constants

6 / 22

Variables

Variables are associated with locations in Store (memory)

Representation of variables (for explanations only):

�
�

�
�Variable

Location

��
��
Value

The stored values are changed through assignments: e.g. x = y;

The value stored at the location associated with y is copied to the location associated with
x

7 / 22

L-value, R-value and Assignment

In an assignment x = y

we refer to l-value of x on the lhs (“l” for location or lhs of assignments)
r-value of y on the rhs (“r” for right-hand-side of assignments)
Storage semantics: update location of x with the value of y

Accessing a value stored at a location is called “dereferencing”.

C/C++/Java: l-values of variables on rhs are implicitly dereferenced to get their r-values.
In ML, dereferencing should be explicit, as in x := !y

8 / 22

Pointers

C/C++ “address-of” operation to explicitly turn a reference into a pointer.

e.g. &x evaluates to the location of x.

Example:
int x;

// x's location stores int

int *y;

// y's location stores

// pointers to int

x = 20;

y = &x;

�� ��x ��
��
20

�� ��y ��
��$

��-

The “*” operator is used to dereference a pointer

e.g. in the above example, the value stored at *y is 20
9 / 22

L-value and R-value (Continued)

Pointer semantics

x simply “points” to y
more e�cient if the size of y is large
but causes confusion in languages with assignment

Java uses storage semantics for basic types, and pointer semantics for objects

C/C++ use value semantics for all types

In a language free of side-e�ects (i.e., memory updates), both semantics are equivalent.
10 / 22

Arrays Vs Pointers in C

In C, arrays are similar to pointers

int a[5];

int *b

a and b have the same type, but semantically, they di�er

b = a is allowed, but a = b is not!

the l-value of a cannot be changed (it is a const)

11 / 22

Arrays vs. Pointers in C

*a=3 and *b=3 have very di�erent e�ects

For this to work correctly, b should have been previously initialized to hold a valid

pointer value

12 / 22

Garbage

Location that has been allocated, but no longer accessible

int *x = new int; *x = 5;

int y = 3; x = &y;

13 / 22

Garbage (Continued)

Accumulation of garbage can lead to programs running out of memory eventually

But no immediate adverse impact on program

correctness of program is una�ected by garbage

A program that produces garbage is said to have memory leaks

14 / 22

Dangling Pointer

A pointer that points to memory that has been deallocated

Consider:

int *x, *y, *z;

x = new int;

*x = 3;

y= x

delete x;

x = NULL;

z = new int;

*z = 5;

*y = 2;
15 / 22

Dangling Pointer (Continued)

Dangling pointers have an immediate impact on correctness

they cause program to fail

Failure may be immediate

access through NULL pointer

or be delayed

corruption of data structures reached through dangling pointers

16 / 22

Dangling Pointer Vs. Garbage

As compared to garbage, dangling pointers cause much more serious errors

So, it is safer to never free memory
But programs will run out of memory after a period of time
Not an issue for programs that run for short times

To avoid this, can use garbage collection
automatically release unreachable memory

used in OCAML, Java

garbage collection is much harder for languages with weak type systems (e.g., C and C++).

17 / 22

Aliases

Alias: Two variables have the same l-value

C does not support references, but C++ does
Use the syntax <typename>&:
int& y

References have to be initialized with their l-value
int x = 1; int& y = x;

18 / 22

Aliases

x and y are aliased

they both have same l-value

when two variables are aliased, assignments to one variable have the side-e�ect of

changing the r-value of the other variable

side-e�ects cause confusion

They should be used sparingly

Aliasing should be used very carefully

19 / 22

Aliases (Continued)

Aliases may be created using pointer variables as well

int *x = NULL;

20 / 22

Aliases (Continued)

x = new int;

*x = 4;

21 / 22

Aliases (Continued)

int *y;

y = x;

22 / 22

