CSE 307: Principles of Programming Languages

Variables and Constants

R. Sekar

Topics

Variables and Constants

@ Variables are stored in memory, whereas constants need not be.

o Value of variables can change at runtime.

@ Variables have a location (/-value) and value (r-value).

o Constants have a value, but no location.

Constants

e Constants may some times be stored in memory
e If so, they have r-values but not l-values

@ Since values stored in constants cannot be changed, there is no use in accessing

|-values

@ Thus constants have a “Value semantics”

Values and Constants

@ Values are quantities manipulated by a program (e.g. integers, strings, data

structures, etc.)
e Constants have a fixed value for the duration of its existence in a program.

e Constants in a program may be

o Literals: unnamed values specified using a particular representation. e.g.:
e 42
e "Markov"
o Ox2eff

e Symbolic: names associated with fixed values. e.g.
@ const int n = 100;
e static final int limit = 1024

Binding Time of Constants

e Compile-time
const int n = 100;

Binding of n (to value 100) is known at compile time.

o Load-time
static final Date d = new Date();

Constant d is bound to the value of today’s date at load time.

e Execution-time
int f(int x) { const int y = x+1; ...}
Constant y is bound to its value at execution time!

o Note that y is local to £ and refers to different entities for each invocation of £. The above
612

declaration says that y will be constant tor any particular mvocation.

Variables

@ Variables are associated with locations in Store (memory)

@ Representation of variables (for explanations only):

Location

(Variable)7

@ The stored values are changed through assignments: e.g. x = y;

o The value stored at the location associated with y is copied to the location associated with

X

L-value, R-value and Assignment

@ In an assignment x =y

o we refer to l-value of x on the lhs (“” for location or lhs of assignments)

o r-value of y on the rhs (“r” for right-hand-side of assignments)
e Storage semantics: update location of x with the value of y

© \
O—AIF

@ Accessing a value stored at a location is called “dereferencing”.

e C/C++/)ava: I-values of variables on rhs are implicitly dereferenced to get their r-values.
o In ML, dereferencing should be explicit, as in x := !y

Pointers

@ C/C++ “address-of” operation to explicitly turn a reference into a pointer.
e.g. &x evaluates to the location of x.

Example:

int x;
// x’s location stores int ‘ @

int *y;

// y’s location stores

// pointers to int

C

y = &x;

@ The “*” operator is used to dereference a pointer

e.g. in the above example, the value stored at *y is 20

L-value and R-value (Continued)

@ Pointer semantics
e x simply “points” to y
e more efficient if the size of y is large
e but causes confusion in languages with assignment

O

@ Java uses storage semantics for basic types, and pointer semantics for objects

@ C/C++ use value semantics for all types

@ In a language free of side-effects (i.e., memory updates), both semantics are equivalent.

Arrays Vs Pointers in C

@ In C, arrays are similar to pointers

e int a[5];

e int *b
@ a and b have the same type, but semantically, they differ
@ b = ais allowed, but a = b is not!

o the I-value of a cannot be changed (it is a const)

O lSImIE)

Arrays vs. Pointers in C

e *a=3 and *b=3 have very different effects

O D] et

@ For this to work correctly, b should have been previously initialized to hold a valid

pointer value

Garbage

@ Location that has been allocated, but no longer accessible
e int *x = new int; *x = 5;

e inty =3 x=_&y;

Garbage (Continued)

@ Accumulation of garbage can lead to programs running out of memory eventually

@ But no immediate adverse impact on program

e correctness of program is unaffected by garbage

@ A program that produces garbage is said to have memory leaks

Dangling Pointer

@ A pointer that points to memory that has been deallocated

o Consider:

int *x, *y, *z;

X = new int;
*x = 3;

y= X

delete x;

x = NULL;

Z = new int;
*z = 5;

Dangling Pointer (Continued)

e Dangling pointers have an immediate impact on correctness

o they cause program to fail

@ Failure may be immediate

e access through NULL pointer

e or be delayed

e corruption of data structures reached through dangling pointers

Dangling Pointer Vs. Garbage

@ As compared to garbage, dangling pointers cause much more serious errors

@ So, it is safer to never free memory
e But programs will run out of memory after a period of time
@ Not an issue for programs that run for short times
o To avoid this, can use garbage collection
e automatically release unreachable memory

e used in OCAML, Java
e garbage collection is much harder for languages with weak type systems (e.g., C and C++).

Aliases

o Alias: Two variables have the same I-value

e C does not support references, but C++ does

o Use the syntax <typename>&:
e int&y
e References have to be initialized with their I-value

o intx=1int&y=x;

Aliases

@ x and y are aliased

o they both have same I-value

e when two variables are aliased, assignments to one variable have the side-effect of

changing the r-value of the other variable

o side-effects cause confusion

e They should be used sparingly

o Aliasing should be used very carefully

Aliases (Continued)

@ Aliases may be created using pointer variables as well

@ int *x = NULL;

Aliases (Continued)

@ X = new int;

@ *x = 4

Aliases (Continued)

@ int *y;

o @]

@

