
CSE 307: Principles of Programming Languages
Course Review

R. Sekar

1 / 57

Course Topics
Introduction and History

Syntax

Values and types

Names, Scopes and Bindings

Variables and Constants

Expressions

Statements and Control-flow

Procedures, Parameter Passing

Runtime Environments

Object-Oriented Programming

Functional Programming

Logic Programming
2 / 57

Programming Language

A notational system for describing computation in a machine and human readable

form

Human readability requires:
abstractions
data abstractions, e.g., primitive and compound, structured data types, encapsulation, ...

control abstractions, e.g., structured statements (if, switch, loops,...)

procedure abstractions

promotes reuse and maintainability

3 / 57

Computational Paradigms

Imperative: characterized by variable assignment and sequential execution

procedural

object-oriented

Declarative: Focus on specifying what, reduced emphasis on how. No variable

assignment or sequential execution.

functional

logic

4 / 57

History of Programming Languages (1)

1940s: Programming by “wiring,” machine languages, assembly languages

1950s: FORTRAN, COBOL, LISP, APL

1960s: PL/I, Algol68, SNOBOL, Simula67, BASIC

1970s: Pascal, C, SML, Scheme, Smalltalk

1980s: Ada, Modula 2, Prolog, C++, Ei�el

1990s: Java, Haskell

2000s: Javascript, PHP, Python, ...

5 / 57

History of Programming Languages (2)

FORTRAN: the grandfather of high-level languages

Emphasis on scientific computing

Simple data structures (arrays)

Control structures (goto, do-loops, subroutines)

ALGOL: where most modern language concepts were first developed

Free-form syntax

Block-structure

Type declarations

Recursion

6 / 57

History of Programming Languages (3)

LISP: List-processing language — Focus on non-numeric (symbolic) computation

Lists as a “universal” data structure

Polymorphism

Automatic memory management

Mother of modern functional languages

Descedants include Scheme, Standard ML and Haskell

Some of these languages have greatly influenced more recent languages such as Python,

Javascript, and Scala

7 / 57

History of Programming Languages (4)

Simula 67:

Object orientation (classes/instances)

Precursor of all modern OO-languages

Smalltalk

C++

Java

Prolog:

Back-tracking

Unification/logic variables

8 / 57

History of Programming Languages (5)

C: “High-level assembly language”

Simplicity

Low-level control that enables OSes to be implemented mostly in C

Registers and I/O

Memory management

Support for interspersing assembly code

Java: A simple, cleaner alternative to C++

Reliability: Robustness/Security built from ground-up

Internet focused: “write once, run every where”

Bundled with runtime libraries providing rich functionality

Draws on some concepts from functional languages
9 / 57

Programming Language Design

The primary purpose of a programming language is to support

the construction of reliable (and e�cient) software

E�ciency was the singular focus in the early days (1940s and 1950s). As programs
became more complex, other criteria gradually assumed more importance:

Readability

Language complexity

Reliability

Expressive power

Maintainability

Portability
10 / 57

Language Design Principles

Generality: a few general features and mechanisms, rather than many special cases

Orthogonality: language constructs can be combined in any meaningful way, rather

than being restricted to certain combinations

Uniformity: Similar things should look and behave in similar fashion, and dissimilar

things should be clearly distinguishable

11 / 57

Syntax Vs Semantics

Syntax describes the structure of a program

Determines which programs are legal
Consists of two parts
Lexical structure: Structure of words

Distinguish between words in the language from random strings

Grammar: How words are combined into programs

Similar to how English grammar governs the structure of sentences in English

Programs following syntactic rules may or may not be semantically correct.

Compare with grammatically correct but nonsensical English sentences

Formal mechanisms used to describe syntax and semantics to ensure that a language

specification is unambiguous and precise

12 / 57

Lexical Structure of Languages

Lexical analysis or scanning recognizes lexemes or “words” in the language:

keywords

identifiers

literals

operators

comments

Based on regular expressions

Ambiguity resolution

Prefer longest match Prefer first match over subsequent matches

13 / 57

Syntactic Structure

“How to combine words to form programs”

Context-free grammars (CFG) and Backus-Naur form (BNF)

terminals nonterminals productions of the form nonterminal −→ sequence of terminals

and nonterminals

EBNF and syntax diagrams

14 / 57

Syntax-related topics

Derivations

Parse trees

Ambiguity

Resolution of ambiguity

operator precedence and associativity

shift over reduce

Construction of parsers

Abstract syntax trees (AST)

15 / 57

Data Types

A data type is a set of values, together with a set of operations that operate uniformly

over this set.

Type checking: check the use of an expression w.r.t. specified declarations

Type inference: infer the types of expressions from their use

Type compatibility:

16 / 57

Data types
Base types (aka primitive or simple types)

e.g., int, bool, real, enumerated, ...

Type constructors to build compound types
cartesian product: labeled or unlabeled
unlabeled: tuples in ML, labeled: records in Pascal or ML, structs in C

union: tagged or untagged
tagged: algebraic data types in ML, variant records in Pascal; untagged: C/C++

array

pointer

function

Recursive types

recursive type constructors supported in ML

simulated via pointers in imperative languages
17 / 57

Polymorphism

Ability of a function to take arguments of multiple types

Purpose: code reuse

Parameteric polymorphism:

types parameterized with respect to other type

parameter types appear as type variables

example: template types in C++, generics in Java

Overloading (“ad hoc polymorphism”): less general than parametric polymorphism

but still allows reuse of client code.

Method overloading in Java, function or operator overloading in C++

virtual method calls in C++

18 / 57

Type Equivalence

Type equivalence determines whether two types are the same:

structural equivalence

name equivalence

declaration equivalence

ML: structural equivalence

Pascal: declaration equivalence

C/C++: name equivalence for structures/ unions, declaration equivalence for others

19 / 57

Type Checking

Strong Vs Weak typing

Strong typing improves reliability by catching some runtime errors at compile time itself

Static Vs Dynamic type checking

dynamic typing is more flexible, but less e�cient since type info needs to be maintained

and checked at runtime

Type compatibility

20 / 57

Type Conversion

Type coercion (implicit conversion)

(Explicit) type conversion functions

Type cast

“Reinterpretation” in untaged unions union assigned with one type of value may be

accessed using a di�erent type

21 / 57

Names and Attributes

Names are a fundamental abstraction in languages to denote entities

Meanings associated with these entities is captured via attributes associated with the

names

Attributes di�er depending on the entity:

location (for variables)

value (for constants)

formal parameter types (functions)

22 / 57

Static Vs Dynamic Binding
Binding: association between a name and its attributes.

Static binding: association determined at compile time

Dynamic binding: association determined at runtime

Examples: type is statically bound in most langs

value of a variable is dynamically bound

location may be dynamically or statically bound

Binding time: Earliest point in time when the association can be made. Also a�ects

where bindings are stored

Name → type: symbol table

Name → location: environment

Location →value: memory
23 / 57

Symbol Table
Maintains bindings of attributes with names:

SymbolTable : Names −→ Attributes

In a compiler, only static attributes can be computed; thus:

SymbolTable : Names −→ StaticAttributes

While execution, the names of entities no longer are necessary: only locations in

memory representing the variables are important.

Store : Locations −→ Values

(Store is also called as Memory)

A compiler then needs to map variable names to locations.

Environment : Names −→ Locations
24 / 57

Scope and Visibility

Scope establishes the program region over which a binding (introduced by a

declaration) is maintained

Lifetime: the period during which a binding is e�ective.

Visibility: Names may be hidden within their scopes due to redefinitions in inner

blocks

Scope qualifiers (e.g., operator :: in C++) may be available to access hidden names

25 / 57

Variables and Constants

Variables are stored in memory, whereas constants need not be.

Value of variables can change at runtime.

Variables have a location (l-value) and value (r-value).

Constants have a value, but no location.

26 / 57

Allocation

Static

Automatic or stack-based

for procedures and nested blocks

variables allocated on activation records on stack

lifetime of variables follows the LIFO property

Dynamic or heap-based

for objects that do not possess the LIFO property

27 / 57

L-value, R-value and Assignment

In an assignment x = y

we refer to l-value of x on the lhs (“l” for location or lhs of assignments)
r-value of y on the rhs (“r” for right-hand-side of assignments)
Storage semantics: update location of x with the value of y

Accessing a value stored at a location is called “dereferencing”.

C/C++/Java: l-values of variables on rhs are implicitly dereferenced to get their r-values.
In ML, dereferencing should be explicit, as in x := !y

28 / 57

Pointers
C/C++ “address-of” operation to explicitly turn a reference into a pointer.

e.g. &x evaluates to the location of x.

Example:
int x;

// x's location stores int

int *y;

// y's location stores

// pointers to int

x = 20;

y = &x;

�� ��x ��
��
20

�� ��y ��
��$

��
-

The “*” operator is used to dereference a pointer

e.g. in the above example, the value stored at *y is 20
29 / 57

L-value and R-value (Continued)

Pointer semantics

x simply “points” to y
more e�cient if the size of y is large
but causes confusion in languages with assignment

Java uses storage semantics for basic types, and pointer semantics for objects

C/C++ use value semantics for all types

In a language free of side-e�ects (i.e., memory updates), both semantics are equivalent.
30 / 57

Other topics in Variables and Allocation

Arrays Vs Pointers

Aliases

Dangling pointers

Garbage

31 / 57

Expression Evaluation

Order of evaluation

More optimization opportunities if reordering of expressions is permitted, but the

downside is that such reordering can change the expression value in the presence of

expressions with side-e�ects.

Strict (evaluate all subexpressions before applying an operator or function) vs lazy

evaluation

All languages support lazy evaluation of if-then-else

Many languages require lazy (short-circuit) evaluation of boolean operations

Some languages support lazy evaluation of user-defined functions.

Interpreter for expression evaluation

32 / 57

Control-flow statements
if-then-else

switch statement
issues, implementation techniques

loops: while, for, repeat, ...
precise semantics

simulating one loop construct by another

break, labeled break (Java), and continue

goto
Allowable targets
Relates to scopes of labels and variables

goto’s considered harmful

Interpretation of assignments and control-flow statements
33 / 57

Procedure calls: Terminology

Formal and actual parameters

Caller Vs Callee

Functions Vs Procedures

Procedure activation

Local Vs nonlocal variables

Parameter Passing

34 / 57

Parameter passing mechanisms
Call-by-value: evaluate actual, assign to formal parameter, execute body

Call-by-reference: actual parameters must be l-values; evaluate and pass these l-values into

the procedure

Needs care in the presence of aliasing

Call-by-value-result: similar to CBV, but in addition copies formal parameters back to actual

parameters after executing callee

Call-by-name and call-by-need (lazy evaluation)

All of these mechanisms can be understood precisely using

inlining the procedure body

... after uniquely renaming local variables to avoid name capture

... and substituting formals by actuals

macros similar to call-by-name without local variable renaming.
35 / 57

Exceptions

Streamlines error-handling
Enables exceptions to be dealt with by higher level procedures, while inner-level function
may not deal with them at all
less cumbersome to write, as compared to return-value based error-handling

robust programs can be written even if some functions do not handle errors satisfactorily

Implicit (rather than explicit) control-flow transfer mechanism

Other implicit CFTs: returns, calls using function pointers, etc.

Resumption model (OS interrupts, UNIX signals) vs termination model (in almost all

programming languages)

36 / 57

Implementing exceptions

Exception handling uses dynamic scoping

when exception is raised, the most recently encountered handler for the exception is

invoked

if a handler exists in the current block, invoke it. Otherwise exit the current block and

search recursively in the outer block

if current block is a procedure, exit the procedure, return to the calling environment,

continue recursive search

requires information to be stored on the AR that records each exception handler

encountered at runtime. This info is used at runtime during the above-mentioned search

in C++, code compiled with exception handling enabled contains code for such a search,

while code compiled without this option does not. So, exceptions cannot be propagated

across code compiled without this option.
37 / 57

Components of Runtime Environment (RTE)

Static area: allocated at load/startup time.

Examples: global/static variables and load-time constants.

Stack area: for execution-time data that obeys a last-in first-out lifetime rule.

Examples: nested declarations and temporaries.

Heap: a dynamically allocated area for “fully dynamic” data, i.e. data that does not obey

a LIFO rule.

Examples: objects in Java, lists in OCaml.

38 / 57

Procedures and the environment

An Activation Record (AR) is created for each invocation of a procedure

Structure of AR:

Direction of stack
growth

Return address

Actual parameters

Saved BP (control link)

Temporary variables

Base
Pointer

Return value

Local variables

39 / 57

Access to Local Variables

Local variables are allocated at a fixed o�set on the stack
Accessed using this constant o�set from BP
Example: to load a local variable at o�set 8 into the EBX register (x86 architecture)

mov 0x8(%ebp),%ebx

Example:

{int x; int y;

{ int z; }

{ int w; }

}

40 / 57

Steps involved in a procedure call

Caller

Save registers
Evaluate actual parameters, push on the stack
Push l-values for CBR, r-values in the case of CBV

Allocate space for return value on stack (unless return is through a register)

Call: Save return address, jump to the beginning of called function

Callee

Save BP (control link field in AR)

Move SP to BP

Allocate storage for locals and temporaries (Decrement SP)

Local variables accessed as [BP-k], parameters using [BP+l]

41 / 57

Steps in return

Callee

Copy return value into its location on AR

Increment SP to deallocate locals/temporaries

Restore BP from Control link

Jump to return address on stack

Caller

Copy return values and parameters

Pop parameters from stack

Restore saved registers

42 / 57

Resolving Nonlocal References

Static/lexical scoping: meaning given by declarations in the blocks lexically

surrounding the procedure

In languages with nested procedures, we need to maintain an access link in the current AR

that points to the AR for the lexically surrounding scope. This link is used to lookup

nonlocal references

In languages where functions can be created on the fly, ARs may need to be allocated on

the heap

Dynamic scoping: meaning given by most recently encountered declaration at

runtime

we can simply follow the control links up the stack until we get to a scope that declares the

nonlocal identifier.

43 / 57

Heap management

Issues

No LIFO property, so management is di�cult

Fragmentation

Locality

Models

Explicit allocation and free (C, C++)

Explicit allocation, automatic free (Java)

Automatic allocation and free (OCAML)

44 / 57

Heap management: Concepts and Issues

Issues

Fragmentation: internal vs external

Compacting to reduce wastage of space

Garbage collection techniques

Reference counting

Mark-and-sweep

Copying collectors

Generational garbage collection

Conservative garbage collection

45 / 57

ADT

Type is characterized by a set of operations

Encapsulation: Only way to access the data is through these operations

access to internal representation of ADT is restricted

Information hiding:

Semantics of operations don’t depend on implementation

implementation can be changed without a�ecting “client code”, i.e., code that uses this ADT

Supports following design goals

modifiability/maintainability, reusability, security

46 / 57

Modules and Name spaces

Module

A way group “semantically related” code that may or may not operate on a single type

Export datatypes, variables, constants, functions
Ideal to support
separate compilation

library facilities

namespace separation (to avoid name clashes)

Examples: OCAML Modules, Java packages

Namespaces: more narrowly focused on the namespace pollution problem.

Example: C++ namespaces, Java packages

47 / 57

Object-Oriented Languages: Goals

Reuse

can we reuse implementation of a class even if we do not have access to its source code?

polymorphism

Maintainability

minimize unnecessary dependencies by separating implementations of di�erent system

components, and making them as independent of each other as possible.

48 / 57

OO-Languages: Key Concepts

Object = data + methods

Encapsulation, information hiding, protection

Subtype principle:

an object of a subtype may be used anywhere its supertype is legal

with dynamic dispatching of methods

Refinment and reuse via implementation inheritance

49 / 57

OO-Languages: Terminology

Class

class (aka static) variables

class (aka static) functions

Object (instance of a class)
Members
data (aka instance variables)

functions (aka methods or messages)

Visibility

public, private, protected, ...

50 / 57

OO-Languages: Terminology (Continued)

Subtype, subclass, derived class

Supertype, super class, base class

Subtype principle

Virtual Vs Deferred methods

51 / 57

Inheritance
Interface Inheritance (aka subtyping)

A is a subtype of B if A supports all of the interfaces supported by B, i.e., it supports all
operations supported by B
Enables reuse of client code
if a function takes a parameter of type B, then this same function would work on all objects of
type A. Thus, the function need not be reused for all subclasses of B.

Implementation Inheritance

If C2 is a subclass of C1, C2 can potentially reuse all of the implementations of the methods
in C1.
C2 need not support the same interface as C1, and hence may not be a subtype
Conversely, it is possible for C2 to be a subtype of C1, yet not reuse any of the
implementations provided by C1
Here, reuse is enabled in a derived class of C1, rather than in a client of C2
This is a less critical feature of an OO language as opposed to interface inheritance.

52 / 57

Multiple Inheritance

A class is a subclass of more than one class (or reuses implementaion of multiple

clsses)

Introduces ambiguities in the presence of âĂIJdiamond hierarchyâĂİ

Many of these problems are solved if only the interface is inherited, but not

necessarily the implementation

53 / 57

Dynamic Binding

A function f may take parameters of class C1

The actual parameter passed into the function may be of class C2 that is a subclass

of C1

Methods invoked on this parameter within f will be the member function supported

by C2, rather than C1

To do this, we have to identify the appropriate member function at runtime, based

on the actual type C2 of the parameter, and not the (statically) determined type C1

54 / 57

Implementation of OO-Languages

Data
nonstatic data (aka instance variables) are allocated within the object
the data fields are laid out one after the other within the object

alignment requirements may result in âĂIJgapsâĂİ within the object that are unused

each field name is translated at compile time into a number that corresponds to the o�set within

the object where the field is stored

static data (aka class variables) are allocated in a static area, and are shared across all
instances of a class.
Each class variable name is converted into an absolute address that corresponds to the location

within the static area where the variable is stored.

55 / 57

Implementation of Dynamic Binding

All virtual functions corresponding to a class C are put into a virtual method table

(VMT) for class C

Each object contains a pointer to the VMT corresponding to the class of the object

This field is initialized at object construction time

Each virtual function is mapped into an index into the VMT. Method invocation is

done by

access the VMT table by following the VMT pointer in the object

look up the pointer for the function within this VMT using the index for the member

function

56 / 57

Implementation of Inheritance

Key requirement to support subtype principle:

a function f may expect parameter of type C1, but the actual parameter may be of type C2

that is a subclass of C1
the function f must be able to deal with an object of class C2 as if it is an object of class C1
this means that all of the fields of C2 that are inherited from C1, including the VMT pointer, must

be laid out in the exact same way they are laid out in C1

all functions in the interface of C1 that are in C2 must be housed in the same locations within the

VMT for C2 as they are located in the VMT for C1

57 / 57

