CSE 307: Principles of Programming Languages

Runtime Environments

R. Sekar

1/36

Topics

Components of Runtime Environment (RTE)

Static area: allocated at load/startup time.

e Examples: global/static variables and load-time constants.

Stack area: for execution-time data that obeys a last-in first-out lifetime rule.

e Examples: nested declarations and temporaries.

Heap: a dynamically allocated area for “fully dynamic” data, i.e. data that does not obey
a LIFO rule.

e Examples: objects in Java, lists in OCaml.




Languages and Environments

e Languages differ on where activation records must go in the environment:

o (Old) Fortran is static: all data, including activation records, are statically allocated.

e Each function has only one activation record — no recursion!

e Functional languages (Scheme, ML) and some OO languages (Smalltalk) are
heap-oriented:

o almost all data, including AR, allocated dynamically.

@ Most languages are in between: data can go anywhere

e ARs go on the stack.

Procedures and the environment

@ An Activation Record (AR) is created for each invocation of a procedure

@ Structure of AR:

Actual parameters

Direction of stack
growth

Return value

Return address

Base Saved BP (control link)
Local variables

Pointer

Temporary variables

Access to Local Variables

@ Local variables are allocated at a fixed offset on the stack

o Accessed using this constant offset from BP
e Example: to load a local variable at offset 8 into the EBX register (x86 architecture)
mov 0x8(%ebp),%ebx

e Example:
{int x; int y;
{ int z; %}
{ int w; %}




Steps involved in a procedure call

o Caller

e Save registers
o Evaluate actual parameters, push on the stack
@ Push I-values for CBR, r-values in the case of CBV

o Allocate space for return value on stack (unless return is through a register)

o Call: Save return address, jump to the beginning of called function

o Callee
o Save BP (control link field in AR)
e Move SP to BP
o Allocate storage for locals and temporaries (Decrement SP)

o Local variables accessed as [BP-k], parameters using [BP+l]

Steps in return

o Callee

Copy return value into its location on AR

e Increment SP to deallocate locals/temporaries
e Restore BP from Control link

e Jump to return address on stack

o Caller
o Copy return values and parameters
e Pop parameters from stack

o Restore saved registers

Example (C):

int x;

void p(int y){
int i = x;
char c; ...

}

void q (int a){
int x;
p(1);

}

main(){
q(2);
return 0;




Non-local variable access

@ Requires that the environment be able to identify frames representing enclosing

scopes.

@ Using the control link results in dynamic scope (and also kills the fixed-offset
property).

e If procedures can’t be nested (C), the enclosing scope is always locatable:

e it is global/static (accessed directly)

e If procedures can be nested (Ada, Pascal), to maintain lexical scope a new link must
be added to each frame:

e access link, pointing to the activation of the defining environment of each procedure.

Access Link vs Control Link

@ Control Link is a reference to the AR of the caller
@ Access link is a reference to the AR of the surrounding scope

e Dynamic Scoping: When an identifier is not found in the AR of the current
function, use control link to get to the caller’s AR and look up the name there

o If not found, follow the caller’s control link, and then its caller’s control link and so on

e Static Scoping: When an identifier is not found in the AR of the current function,
use access link to get to AR for the surrounding scope and look up the name there

e If it is not found there, keep walking through the access links until the name is found.

e Note: Except for top-level functions, access links correspond to function scopes, so
they cannot be determined statically

lanll A I | « 1 - » 1] ;

Access Link Vs Control Link: Example

o If p used its caller’s BP to access x, then it can end up

int q(int x) { accessing the variable x defined within p
int p(int y) {
if (y==0) o This would be dynamic scoping.
return x+y; o To get static scoping, this access should use q's BP
else {
int x = 2+p(y-1); @ Access link: Have q pass a link to its BP explicitly.
return Xx; . .
) o Calls to self: pass access link without change.
3 o Calls to immediately nested functions: pass your BP

o Calls to outer functions: Follow your access link to find the
return p(3);

} right access link to pass

Other calls: these will be invalid (like goto to an inner block)




Supporting Closures

e Closures are needed for

e Call-by-name and lazy evaluation

e Returning dynamically constructed functions containing references to variables in

surrounding scope

@ Variables inside closures may be accessed long after the functions defining them
have returned

o Need to “copy” variable values into the closure, or
o Not free the AR of functions when they return,
o i.e, allocate ARs on heap and garbage collect them

Implementation of Exception Handling

e Exception handling can be implemented by adding “markers” to ARs to indicate the

points in program where exception handlers are available.
@ In C++, entering a try-block at runtime would cause such a marker to be put on the
stack

@ When exception arises, the RTE gets control and searches down from stack top for a

marker.

@ Exception then "handed" to the catch statement of this try-block that matches the

exception

e If no matching catch statement is present, search for a marker is continued further

down the stack, and the whole process is repeated.

Heap management

@ Issues
e No LIFO property, so management is difficult
e Fragmentation

e Locality
@ Models

e Explicit allocation and free (C, C++)
o Explicit allocation, automatic free (Java)
o Automatic allocation and free (OCAML)




Allocation

@ A variable is stored in memory at a location corresponding to the variable.
e Constants do not need to be stored in memory.

@ Environment stores the binding between variable names and the corresponding

locations in memory.

@ The process of setting up this binding is known as storage allocation.

Static Allocation

o static allocation

o Allocation performed at compile time.
o Compiler translates all names to corresponding location in the code generated by it.

e Examples:
o all variables in original FORTRAN
o all global and static variables in C/C++/Java

Stack Allocation

@ Needed in any language that supports the notion of local variables for procedures.
@ Also called “automatic allocation”, but this is somewhat of a misnomer now.
e Examples: all local variables in C/C++/Java procedures and blocks.

@ Implementation:
o Compiler translates all names to relative offsets from a location called the “base pointer” or

“frame pointer”.
o The value of this pointer varies will, in general, be different for different procedure

invocations




Stack Allocation (Continued)

@ The pointer refers to the base of the “activation record” (AR) for an invocation of a

procedure.

@ The AR holds such information as parameter values, local variables, return address,

etc.

int fact(int n){
if n=0 then 1
else{
int rv = nxfact(n-1);
return rv;
¥
}
main(){
fact(5);
}

Stack Allocation (Continued)

@ An activation record is created on the stack for each a call to function.

@ On the first call to fact, BP is decremented to point to new activation record, n is

initialized to 5, rv is pushed but not initialized.

@ New activation record is created for the next recursive call and so on.

n at that stage and the rv of previous stage.

The start of activation record is pointed to by a register called BP.

When n becomes 0, stack is unrolled where successive rv’s are assigned the value of

Heap Management

@ Issues
e No LIFO property, so management is difficult
e Fragmentation

o Locality
@ Models

o explicit allocation, free

e e.g.,, malloc/free in C, new/delete in C++
o explicit allocation, automatic free

e e.g., Java
e automatic allocation, automatic free

e e.g., Lisp, OCAML, Python, JavaScript




Fragmentation

Internal fragmentation: When asked for x bytes, allocator returns y > x bytes

@ y — x represents internal fragmentation

External fragmentation: When (small) free blocks of memory occur in between (i.e.,
external to) allocated blocks
e the memory manager may have a total of M > N bytes of free memory available,

but no contiguous block larger enough to satisfy a request of size N.

Approaches for Reducing Fragmentation

@ Use blocks of single size (early LISP)

o Limits data-structures to use less efficient implementations.

@ Use bins of fixed sizes, e.g., 2" for n =0,1,2, ...
o When you run out of blocks of a certain size, break up a block of next available size

o Eliminates external fragmentation, but increases internal fragmentation

@ Maintain bins as LIFO lists to increase locality

e malloc implementations (Doug Lea)
o For small blocks, use bins of size 8k bytes, 0 < k < 64

e For larger blocks, use bins of sizes 2" for n > 9

Coalescing

@ What if a program allocates many 8 byte chunks, frees them all and then requests
lots of 16 byte chunks?

o Need to coalesce 8-byte chunks into 16-byte chunks
e Requires additional information to be maintained

o for allocated blocks: where does the current block end, and whether the next block is free




Explicit Vs Automatic Management

@ Explicit memory management can be more efficient, but takes a lot of programmer
effort

@ Programmers often ignore memory management early in coding, and try to add it
later on

e But this is very hard, if not impossible

@ Result:
e Majority of bugs in production code is due to memory management errors
@ Memory leaks
@ Null pointer or uninitalized pointer access

@ Access through dangling pointers

Managing Manual Deallocation

e How to avoid errors due to manual deallocation of memory

Never free memory!!!
e Use a convention of object ownership (owner responsible for freeing objects)aAR
e Tends to reduce errors, but still requires a careful design from the beginning. (Cannot ignore

memory deallocation concerns initially and add it later.)4AR

Smart data structures, e.g., reference counting objects
Region-based allocation
@ When a collection of objects having equal life time are allocated

e Example: Apache web server’s handling of memory allocations while serving a HTTP request

26/36

Garbage Collection

e Garbage collection aims to avoid problems associated with manual deallocation
o Identify and collect garbage automatically

@ What is garbage?
e Unreachable memory

@ Automatic garbage collection techniques have been developed over a long time
e Since the days of LISP (1960s)




Garbage Collection Techniques

@ Reference Counting

o Works if there are no cyclic structures
@ Mark-and-sweep
e Generational collectors

@ Issues
e Overhead (memory and space)éAf{
e Pause-time

o Locality

Reference Counting

@ Each heap block maintains a count of the number of pointers referencing it.

e Each pointer assignment increments/decrements this count
@ Deallocation of a pointer variable decrements this count

@ When reference count becomes zero, the block can be freed

Reference Counting (Continued)

Disadvantages:
@ Does not work with cyclic structures
@ May impact locality

@ Increases cost of each pointer update operation

Advantages:
@ Overhead is predictable, fixed
e Garbage is collected immediately, so more efficient use of space




Mark-and-Sweep

@ Mark every allocated heap block as “unreachable”
e Start from registers, local and global variables

@ Do a depth-first search, following the pointers

e Mark each heap block visited as “reachable”

@ At the end of the sweep phase, reclaim all heap blocks still marked as unreachable

31/36

Garbage Collection Issues

@ Memory fragmentation

e Memory pages may become sparsely populated

e Performance will be hit due to excessive virtual memory usage and page faults
o Can be a problem with explicit memory management as well
e But if a programmer is willing to put in the effort, the problem can be managed by freeing

memory as soon as possible

@ Solution:
e Compacting GC

e Copy live structures so that they are contiguous

e Copying GC

Copying Garbage Collection

e Instead of doing a sweep, simply copy over all reachable heap blocks into a new area
e After the copying phase, all original blocks can be freed
e Now, memory is compacted, so paging performance will be much better

@ Needs up to twice the memory of compacting collector, but can be much faster

e Reachable memory is often a small fraction of total memory




Generational Garbage Collection

o Take advantage of the fact that most objects are short-lived
e Exploit this fact to perform GC faster

o Idea:
e Divide heap into generations
o If all references go from younger to older generation (as most do), can collect youngest
generation without scanning regions occupied by other generations

o Need to track references from older to younger generation to make this work in all cases

34/36

Garbage collection in Java

@ Generational GC for young objects

@ “Tenured” objects stored in a second region
e Use mark-and-sweep with compacting

@ Makes use of multiple processors if available

@ References
http://java.sun.com/javase/technologies/hotspot/gc/gc_tuning_6.html

http://www.ibm.com/developerworks/java/library/j-jtp11253/

GC for C/C++: Conservative Garbage Collection

e Cannot distinguish between pointers and nonpointers
o Need “conservative garbage collection”
@ The idea: if something “looks” like a pointer, assume that it may be one!
e Problem: works for finding reachable objects, but cannot modify a value without being sure
e Copying and compaction are ruled out!
@ Reasonable GC implementations are available, but they do have some drawbacks

e Unpredictable performance

e Can break some programs that modify pointer values before storing them in memory



http://java.sun.com/javase/technologies/hotspot/gc/gc_tuning_6.html
http://www.ibm.com/developerworks/java/library/j-jtp11253/

