
CSE 307: Principles of Programming Languages
Runtime Environments

R. Sekar

1 / 36

Topics

2 / 36

Components of Runtime Environment (RTE)

Static area: allocated at load/startup time.

Examples: global/static variables and load-time constants.

Stack area: for execution-time data that obeys a last-in first-out lifetime rule.

Examples: nested declarations and temporaries.

Heap: a dynamically allocated area for “fully dynamic” data, i.e. data that does not obey

a LIFO rule.

Examples: objects in Java, lists in OCaml.

3 / 36



Languages and Environments

Languages di�er on where activation records must go in the environment:
(Old) Fortran is static: all data, including activation records, are statically allocated.
Each function has only one activation record — no recursion!

Functional languages (Scheme, ML) and some OO languages (Smalltalk) are

heap-oriented:

almost all data, including AR, allocated dynamically.

Most languages are in between: data can go anywhere

ARs go on the stack.

4 / 36

Procedures and the environment

An Activation Record (AR) is created for each invocation of a procedure

Structure of AR:

Direction of stack 
growth

Return address

Actual parameters

Saved BP (control link)

Temporary variables

Base
Pointer

Return value

Local variables

5 / 36

Access to Local Variables

Local variables are allocated at a fixed o�set on the stack
Accessed using this constant o�set from BP
Example: to load a local variable at o�set 8 into the EBX register (x86 architecture)

mov 0x8(%ebp),%ebx

Example:

{int x; int y;

{ int z; }

{ int w; }

}

6 / 36



Steps involved in a procedure call

Caller

Save registers
Evaluate actual parameters, push on the stack
Push l-values for CBR, r-values in the case of CBV

Allocate space for return value on stack (unless return is through a register)

Call: Save return address, jump to the beginning of called function

Callee

Save BP (control link field in AR)

Move SP to BP

Allocate storage for locals and temporaries (Decrement SP)

Local variables accessed as [BP-k], parameters using [BP+l]

7 / 36

Steps in return

Callee

Copy return value into its location on AR

Increment SP to deallocate locals/temporaries

Restore BP from Control link

Jump to return address on stack

Caller

Copy return values and parameters

Pop parameters from stack

Restore saved registers

8 / 36

Example (C):

int x;

void p(int y){

int i = x;

char c; ...

}

void q (int a){

int x;

p(1);

}

main(){

q(2);

return 0;

}

9 / 36



Non-local variable access

Requires that the environment be able to identify frames representing enclosing

scopes.

Using the control link results in dynamic scope (and also kills the fixed-o�set

property).

If procedures can’t be nested (C), the enclosing scope is always locatable:

it is global/static (accessed directly)

If procedures can be nested (Ada, Pascal), to maintain lexical scope a new link must

be added to each frame:

access link, pointing to the activation of the defining environment of each procedure.

10 / 36

Access Link vs Control Link

Control Link is a reference to the AR of the caller

Access link is a reference to the AR of the surrounding scope

Dynamic Scoping: When an identifier is not found in the AR of the current

function, use control link to get to the caller’s AR and look up the name there

If not found, follow the caller’s control link, and then its caller’s control link and so on

Static Scoping: When an identifier is not found in the AR of the current function,

use access link to get to AR for the surrounding scope and look up the name there

If it is not found there, keep walking through the access links until the name is found.

Note: Except for top-level functions, access links correspond to function scopes, so

they cannot be determined statically

They need to be “passed in” like a parameter.
11 / 36

Access Link Vs Control Link: Example

int q(int x) {

int p(int y) {

if (y==0)

return x+y;

else {

int x = 2*p(y-1);

return x;

}

}

return p(3);

}

If p used its caller’s BP to access x, then it can end up

accessing the variable x defined within p

This would be dynamic scoping.

To get static scoping, this access should use q’s BP

Access link: Have q pass a link to its BP explicitly.

Calls to self: pass access link without change.

Calls to immediately nested functions: pass your BP

Calls to outer functions: Follow your access link to find the

right access link to pass

Other calls: these will be invalid (like goto to an inner block)

12 / 36



Supporting Closures

Closures are needed for

Call-by-name and lazy evaluation

Returning dynamically constructed functions containing references to variables in

surrounding scope

Variables inside closures may be accessed long after the functions defining them

have returned

Need to “copy” variable values into the closure, or
Not free the AR of functions when they return,
i.e., allocate ARs on heap and garbage collect them

13 / 36

Implementation of Exception Handling

Exception handling can be implemented by adding “markers” to ARs to indicate the

points in program where exception handlers are available.

In C++, entering a try-block at runtime would cause such a marker to be put on the

stack

When exception arises, the RTE gets control and searches down from stack top for a

marker.

Exception then "handed" to the catch statement of this try-block that matches the

exception

If no matching catch statement is present, search for a marker is continued further

down the stack, and the whole process is repeated.
14 / 36

Heap management

Issues

No LIFO property, so management is di�cult

Fragmentation

Locality

Models

Explicit allocation and free (C, C++)

Explicit allocation, automatic free (Java)

Automatic allocation and free (OCAML)

15 / 36



Allocation

A variable is stored in memory at a location corresponding to the variable.

Constants do not need to be stored in memory.

Environment stores the binding between variable names and the corresponding

locations in memory.

The process of setting up this binding is known as storage allocation.

16 / 36

Static Allocation

static allocation

Allocation performed at compile time.

Compiler translates all names to corresponding location in the code generated by it.
Examples:
all variables in original FORTRAN

all global and static variables in C/C++/Java

17 / 36

Stack Allocation

Needed in any language that supports the notion of local variables for procedures.

Also called “automatic allocation”, but this is somewhat of a misnomer now.

Examples: all local variables in C/C++/Java procedures and blocks.

Implementation:

Compiler translates all names to relative o�sets from a location called the “base pointer” or

“frame pointer”.

The value of this pointer varies will, in general, be di�erent for di�erent procedure

invocations

18 / 36



Stack Allocation (Continued)

The pointer refers to the base of the “activation record” (AR) for an invocation of a

procedure.

The AR holds such information as parameter values, local variables, return address,

etc.

int fact(int n){

if n=0 then 1

else{

int rv = n*fact(n-1);

return rv;

}

}

main(){

fact(5);

}

19 / 36

Stack Allocation (Continued)

An activation record is created on the stack for each a call to function.

The start of activation record is pointed to by a register called BP.

On the first call to fact, BP is decremented to point to new activation record, n is

initialized to 5, rv is pushed but not initialized.

New activation record is created for the next recursive call and so on.

When n becomes 0, stack is unrolled where successive rv’s are assigned the value of

n at that stage and the rv of previous stage.

20 / 36

Heap Management

Issues

No LIFO property, so management is di�cult

Fragmentation

Locality

Models
explicit allocation, free
e.g., malloc/free in C, new/delete in C++

explicit allocation, automatic free
e.g., Java

automatic allocation, automatic free
e.g., Lisp, OCAML, Python, JavaScript

21 / 36



Fragmentation

Internal fragmentation: When asked for x bytes, allocator returns y > x bytes

y − x represents internal fragmentation

External fragmentation: When (small) free blocks of memory occur in between (i.e.,

external to) allocated blocks

the memory manager may have a total of M � N bytes of free memory available,

but no contiguous block larger enough to satisfy a request of size N .

22 / 36

Approaches for Reducing Fragmentation

Use blocks of single size (early LISP)

Limits data-structures to use less e�cient implementations.

Use bins of fixed sizes, e.g., 2n for n = 0, 1, 2, ...

When you run out of blocks of a certain size, break up a block of next available size

Eliminates external fragmentation, but increases internal fragmentation

Maintain bins as LIFO lists to increase locality

malloc implementations (Doug Lea)

For small blocks, use bins of size 8k bytes, 0 < k < 64

For larger blocks, use bins of sizes 2n for n > 9

23 / 36

Coalescing

What if a program allocates many 8 byte chunks, frees them all and then requests

lots of 16 byte chunks?

Need to coalesce 8-byte chunks into 16-byte chunks
Requires additional information to be maintained
for allocated blocks: where does the current block end, and whether the next block is free

24 / 36



Explicit Vs Automatic Management

Explicit memory management can be more e�cient, but takes a lot of programmer

e�ort

Programmers often ignore memory management early in coding, and try to add it

later on

But this is very hard, if not impossible

Result:
Majority of bugs in production code is due to memory management errors
Memory leaks

Null pointer or uninitalized pointer access

Access through dangling pointers

25 / 36

Managing Manual Deallocation

How to avoid errors due to manual deallocation of memory

Never free memory!!!
Use a convention of object ownership (owner responsible for freeing objects)âĂŔ
Tends to reduce errors, but still requires a careful design from the beginning. (Cannot ignore

memory deallocation concerns initially and add it later.)âĂŔ

Smart data structures, e.g., reference counting objects
Region-based allocation
When a collection of objects having equal life time are allocated

Example: Apache web server’s handling of memory allocations while serving a HTTP request

26 / 36

Garbage Collection

Garbage collection aims to avoid problems associated with manual deallocation

Identify and collect garbage automatically

What is garbage?

Unreachable memory

Automatic garbage collection techniques have been developed over a long time

Since the days of LISP (1960s)

27 / 36



Garbage Collection Techniques

Reference Counting

Works if there are no cyclic structures

Mark-and-sweep

Generational collectors

Issues

Overhead (memory and space)âĂŔ

Pause-time

Locality

28 / 36

Reference Counting

Each heap block maintains a count of the number of pointers referencing it.

Each pointer assignment increments/decrements this count

Deallocation of a pointer variable decrements this count

When reference count becomes zero, the block can be freed

29 / 36

Reference Counting (Continued)

Disadvantages:

Does not work with cyclic structures

May impact locality

Increases cost of each pointer update operation

Advantages:

Overhead is predictable, fixed

Garbage is collected immediately, so more e�cient use of space

30 / 36



Mark-and-Sweep

Mark every allocated heap block as “unreachable”

Start from registers, local and global variables

Do a depth-first search, following the pointers

Mark each heap block visited as “reachable”

At the end of the sweep phase, reclaim all heap blocks still marked as unreachable

31 / 36

Garbage Collection Issues

Memory fragmentation

Memory pages may become sparsely populated

Performance will be hit due to excessive virtual memory usage and page faults
Can be a problem with explicit memory management as well
But if a programmer is willing to put in the e�ort, the problem can be managed by freeing

memory as soon as possible

Solution:
Compacting GC
Copy live structures so that they are contiguous

Copying GC

32 / 36

Copying Garbage Collection

Instead of doing a sweep, simply copy over all reachable heap blocks into a new area

After the copying phase, all original blocks can be freed

Now, memory is compacted, so paging performance will be much better

Needs up to twice the memory of compacting collector, but can be much faster

Reachable memory is often a small fraction of total memory

33 / 36



Generational Garbage Collection

Take advantage of the fact that most objects are short-lived

Exploit this fact to perform GC faster

Idea:

Divide heap into generations

If all references go from younger to older generation (as most do), can collect youngest

generation without scanning regions occupied by other generations

Need to track references from older to younger generation to make this work in all cases

34 / 36

Garbage collection in Java

Generational GC for young objects

“Tenured” objects stored in a second region

Use mark-and-sweep with compacting

Makes use of multiple processors if available

References

http://java.sun.com/javase/technologies/hotspot/gc/gc_tuning_6.html

http://www.ibm.com/developerworks/java/library/j-jtp11253/

35 / 36

GC for C/C++: Conservative Garbage Collection

Cannot distinguish between pointers and nonpointers

Need “conservative garbage collection”

The idea: if something “looks” like a pointer, assume that it may be one!
Problem: works for finding reachable objects, but cannot modify a value without being sure
Copying and compaction are ruled out!

Reasonable GC implementations are available, but they do have some drawbacks

Unpredictable performance

Can break some programs that modify pointer values before storing them in memory

36 / 36

http://java.sun.com/javase/technologies/hotspot/gc/gc_tuning_6.html
http://www.ibm.com/developerworks/java/library/j-jtp11253/

