@ o)

Implementation Aspects of OO-Languages

® Allocation of space for data members: The space for data
members is laid out the same way it is done for structures
In C or other languages. Specifically:
The data members are allocated next to each other.

Some padding may be required in between fields, if the underlying
machine architecture requires primitive types to be aligned at
certain addresses.

At runtime, there is no need to look up the name of a field and
identify the corresponding offset into a structure; instead, we can
statically translate field names into relative addresses, with
respect to the beginning of the object.

Data members for a derived class immediately follow the data
members of the base class

Multiple inheritance requires more complicated handling, we will

\ not discuss it here /

¢

mplementation Aspects of OO-Languag

~

€S

class B {

16
20

int i; double d;
char c; float f; }

int i

XXXXXKXXXXKXX

double d

char c|[XXXXX

float f

/Il Integer requires 4 bytes
// pad,

// Double requires 8 bytes

I/ char needs 1 byte, 3 are padded

/[float to be aligned on 4-byte
Il require 4-bytes of space

/

¢

mplementation Aspects of OO-Languag

~

€S

class C {
intk, I; B b;

}

0

4

8

12

16

24

28

Int k

Int |

INt i

XXXXXKXXXXXX

double d

char ¢|XXXXX

float f

¢

mplementation Aspects of OO-Languag

~

€S

class D: public C {
double x;

}

0

4

8

12
16

24

28
32

Int k

Int |

INt |

XXXXXXXXXXX

double d

char ¢|XXXXX

float f

double x

/Implementation of Virtual Functions\

® Approach 1.

Lookup type info at runtime, and then call the
function defined by that type.

Problem: very expensive, require type info to
be maintained at runtime.

/ Implementation of Virtual \
Functions(Contd.)

® Approach 2:
Treat function members like data members:
® Allocate storage for them within the object.

® Put a pointer to the function in this location, and translate calls
to the function to make an indirection through this field.

Benefit:

® No need to maintain type info at runtime.

® Implementation of virtual methods is fast.
Problem:

e Potentially lot of space is wasted for each object.

® Even though all objects of the same class have identical
values for the table.

o %

/ Implementation of Virtual \
Functions(Contd.)

® Approach 3:

Introduce additional indirection into approach
2.

Store a pointer to a table in the object, and this
table holds the actual pointers to virtual
functions.

Now we use only one word of storage in each
object.

o %

e

Implementation of Virtual ™\

o

B bli, b2;

Functions(Contd.)
class B {
int i ; 1
char c ;

virtual void g();
virtual void h(); VMT ptr

| PtrtoB’s g

}

VMT ptr

Ptrto B’s h

/

/ Impact of subtype principle on \
Implementation

® The subtype principle requires that any piece of code
that operates on an object of type B can work "as is"
when given an object belonging to a subclass of B.

® This implies that runtime representation used for
objects of a subtype A must be compatible with those
for objects of the base type B.

® Note that the way the fields of an object are accessed
at runtime Is using an offset from the start address for
the object.

For instance, bl.i will be accessed using an expression
of the form *(&b1+0), where 0 is the offset
corresponding to the field 1I.

\ Similarly, the field bl.c will be accessed using the /

expression *(&b1l+1)

/ Impact of subtype principle on \
Implementation (Contd.)

® an invocation of the virtual member function
b1.h() will be implemented at runtime using
an instruction of the form:

call *(*(&b1+2)+1)
&b1+2 gives the location where the VMT ptr is
located

*(&b1+2) gives the value of the VMT ptr, which
corresponds to the location of the VMT table

*(&b1+2) + 1 yields the location within the VMT
table where the pointer to virtual function h is

\ stored. /

10

e

Impact of subtype principle on \
Implementation (Contd.)

® The subtype principle imposes the following

constraint:

Any field of an object of type B must be stored at
the same offset from the base of any object that
belongs to a subtype of B.

The VMT ptr must be present at the same offset
from the base of any object of type B or one of
Its subclasses.

The location of virtual function pointers within the
VMT should remain the same for all virtual
functions of B across all subclasses of B. /

11

/ Impact of subtype principle on
Implementation (Contd.)

~

® \We must use the following layout for an object of type A
defined as follows:

class A: public B {
float f;

virtual void k();}

A a,
a’s layout Virtual Method Table

(VMT)for class A

i
C / Ptrto B's g
VMT ptr - Ptrto A's h
\ Float f Ptr to A's kK

void h(); // reuses implementation of G from B;

/

12

/ Impact of subtype principle on \
Implementation (Contd.)

® |n order to satisfy the constraint that VMT ptr
appear at the same position in objects of type A
and B, It iIs necessary for the data field fin Ato
appear after the VMT field.

® A couple of other points:

a) non-virtual functions are statically dispatched, so
they do not appear in the VMT table

b) when a virtual function f is NOT redefined in a
subclass, the VMT table for that class is initialized with
an entry to the function f defined its superclass.

o /

13

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

