
 1

Implementation Aspects of OO-Languages

 Allocation of space for data members: The space for data
members is laid out the same way it is done for structures
in C or other languages. Specifically:
• The data members are allocated next to each other.

• Some padding may be required in between fields, if the underlying
machine architecture requires primitive types to be aligned at
certain addresses.

• At runtime, there is no need to look up the name of a field and
identify the corresponding offset into a structure; instead, we can
statically translate field names into relative addresses, with
respect to the beginning of the object.

• Data members for a derived class immediately follow the data
members of the base class

• Multiple inheritance requires more complicated handling, we will
not discuss it here

 2

Implementation Aspects of OO-Languages

class B {

 int i; double d;

 char c; float f; }

 0 // Integer requires 4 bytes

 4 // pad,

 8 // Double requires 8 bytes

 16 // char needs 1 byte, 3 are padded

 20 // float to be aligned on 4-byte

 // require 4-bytes of space

float f

char c|XXXXX

double d

XXXXXXXXXXX

int i

 3

Implementation Aspects of OO-Languages

class C { 0

 int k, l; B b;

} 4

 8

 12

 16

 24

 28
 float f

 char c|XXXXX

double d

 XXXXXXXXXXX

int i

 int l

int k

 4

Implementation Aspects of OO-Languages

class D: public C { 0

 double x;

} 4

 8

 12

 16

 24

 28

 32 double x

 float f

 char c|XXXXX

 double d

 XXXXXXXXXXX

 int i

 int l

 int k

 5

Implementation of Virtual Functions

Approach 1:

• Lookup type info at runtime, and then call the
function defined by that type.

• Problem: very expensive, require type info to
be maintained at runtime.

 6

Implementation of Virtual
Functions(Contd.)

 Approach 2:
• Treat function members like data members:

• Allocate storage for them within the object.

• Put a pointer to the function in this location, and translate calls
to the function to make an indirection through this field.

• Benefit:
• No need to maintain type info at runtime.

• Implementation of virtual methods is fast.

• Problem:
• Potentially lot of space is wasted for each object.

• Even though all objects of the same class have identical
values for the table.

 7

Implementation of Virtual
Functions(Contd.)

Approach 3:

• Introduce additional indirection into approach
2.

• Store a pointer to a table in the object, and this
table holds the actual pointers to virtual
functions.

• Now we use only one word of storage in each
object.

 8

Implementation of Virtual
Functions(Contd.)

class B {

 int i ;

 char c ;

 virtual void g();

 virtual void h();

 }

B b1, b2;

i

c

VMT ptr

i

c

VMT ptr

Ptr to B’s g

Ptr to B’s h

 9

Impact of subtype principle on

Implementation
 The subtype principle requires that any piece of code

that operates on an object of type B can work "as is"
when given an object belonging to a subclass of B.

 This implies that runtime representation used for
objects of a subtype A must be compatible with those
for objects of the base type B.

 Note that the way the fields of an object are accessed
at runtime is using an offset from the start address for
the object.
• For instance, b1.i will be accessed using an expression

of the form *(&b1+0), where 0 is the offset
corresponding to the field i.

• Similarly, the field b1.c will be accessed using the
expression *(&b1+1)

 10

Impact of subtype principle on
Implementation (Contd.)

 an invocation of the virtual member function
b1.h() will be implemented at runtime using
an instruction of the form:

 call *(*(&b1+2)+1)
• &b1+2 gives the location where the VMT ptr is

located

• *(&b1+2) gives the value of the VMT ptr, which
corresponds to the location of the VMT table

• *(&b1+2) + 1 yields the location within the VMT
table where the pointer to virtual function h is
stored.

 11

Impact of subtype principle on
Implementation (Contd.)

 The subtype principle imposes the following
constraint:
• Any field of an object of type B must be stored at

the same offset from the base of any object that
belongs to a subtype of B.

• The VMT ptr must be present at the same offset
from the base of any object of type B or one of
its subclasses.

• The location of virtual function pointers within the
VMT should remain the same for all virtual
functions of B across all subclasses of B.

 12

Impact of subtype principle on
Implementation (Contd.)

 We must use the following layout for an object of type A
defined as follows:

 class A: public B {
 float f;

 void h(); // reuses implementation of G from B;

 virtual void k();}

 A a;

 Float f

 VMT ptr

 c

 i

a’s layout

Ptr to A’s k

Ptr to A’s h

Ptr to B’s g

Virtual Method Table
(VMT)for class A

 13

Impact of subtype principle on
Implementation (Contd.)

 In order to satisfy the constraint that VMT ptr
appear at the same position in objects of type A
and B, it is necessary for the data field f in A to
appear after the VMT field.

 A couple of other points:
• a) non-virtual functions are statically dispatched, so

they do not appear in the VMT table

• b) when a virtual function f is NOT redefined in a
subclass, the VMT table for that class is initialized with
an entry to the function f defined its superclass.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

