
Bindings

CSE 307: Principles of Programming Languages
Names, Scopes, and Bindings

R. Sekar

1 / 26



Bindings

Topics

1. Bindings

2 / 26



Bindings

Bindings: Names and Attributes

Names are a fundamental abstraction in languages to denote entities

Meanings associated with these entities is captured via attributes associated with the

names

Attributes di�er depending on the entity:

location (for variables)

value (for constants)

formal parameter types (functions)

Binding: Establishing an association between name and an attribute.

3 / 26



Bindings

Names

Names or Identifiers denote various language entities:

Constants

Variables

Procedures and Functions

Types, . . .

Entities have attributes

Entity Example Attributes

Constants type, value, . . .

Variables type, location, . . .

Functions signature, implementation, . . .

4 / 26



Bindings

Attributes

Attributes are associated with names (to be more precise, with the entities they

denote).

Attributes describe the meaning or semantics of names (and entities).

int x; There is a variable, named x, of type integer.

int y = 2; Variable named x, of type integer, with initial value 2.

Set s = new Set(); Variable named s, of type Set that refers to

an object of class Set

An attribute may be

static: can be determined at translation (compilation) time, or

dynamic: can be determined only at execution time.

5 / 26



Bindings

Static and Dynamic Attributes

int x;

The type of x can be statically determined;

The value of x is dynamically determined;

The location of x (the element in memory will be associated with x) can be statically

determined if x is a global variable.

Set s = new Set();

The type of s can be statically determined.

The value of s, i.e. the object that s refers to, is dynamically determined.

Static vs. Dynamic specifies the earliest time the attribute can be computed

. . . not when it is computed in any particular implementation.
6 / 26



Bindings

Binding

“Binding” is the process of associating attributes with names.

Binding time of an attribute: whether an attribute can be computed at translation

time or only at execution time.

A more refined classification of binding times:
Static:
Language definition time (e.g. boolean, char, etc.)

Language implementation time (e.g. maxint, float, etc.)

Translation time (“compile time”) (e.g. value of n in const int n = 5;)

Link time (e.g. the definition of function f in extern int f();)

Load time (e.g. the location of a global variable, i.e., where it will be stored in memory)

Dynamic:
Execution time

7 / 26



Bindings

Binding Time (Continued)

Examples

type is statically bound in most langs

value of a variable is dynamically bound

location may be dynamically or statically bound

Binding time also a�ects where bindings are stored

Name → type: symbol table

Name → location: environment

Location →value: memory

8 / 26



Bindings

Declarations and Definitions

Declaration is a syntactic structure to establish bindings.

int x;

const int n = 5;

extern int f();

struct foo;

Definition is a declaration that usually binds all static attributes.

int f() { return x;}

struct foo { char *name; int age;};

Some bindings may be implicit, i.e., take e�ect without a declaration.

FORTRAN: All variables beginning with [i-nI-N] are integers; others are real-valued.
PROLOG: All identifiers beginning with [A-Z_] are variables.

9 / 26



Bindings

Scopes

Region of program over which a declaration is in e�ect

i.e. bindings are maintained

Possible values

Global

Package or module

File

Class

Procedure

Block

10 / 26



Bindings

Visibility

Redefinitions in inner scopes supercede outer definitions

Qualifiers may be needed to make otherwise invisible names to be visible in a scope.

Examples

local variable superceding global variable

names in other packages.

private members in classes.

11 / 26



Bindings

Symbol Table

Maintains bindings of attributes with names:

SymbolTable : Names −→ Attributes

In a compiler, only static attributes can be computed; thus:

SymbolTable : Names −→ StaticAttributes

While execution, the names of entities no longer are necessary: only locations in

memory representing the variables are important.

Store : Locations −→ Values

(Store is also called as Memory)

A compiler then needs to map variable names to locations.

Environment : Names −→ Locations 12 / 26



Bindings

Blocks and Scope

Usually, a name refers to an entity within a given context.

class A {

int x;

double y;

int f(int x) { // Parameter "x" is different from field "x"

B b = new B();

y = b.f(); // method "f" of object "b"

this.x = x;

...

}

}

The context is specified by “Blocks”

Delimited by “{” and “}” in C, C++ and Java
Delimited by “begin” and “end” in Pascal, Algol and Ada.

13 / 26



Bindings

Scope

Scope: Region of the program over which a binding is maintained.
int x;

void p(void) {

char y;

...

}

void q(int y) {

double z;

...

}

m() {

int w;

...

}

x

p
y

q
y

z

m
w

14 / 26



Bindings

Lexical Scope

Lexical scope: the scope of a binding is limited to the block in which its declaration

appears.

The bindings of local variables in C, C++, Java follow lexical scope.

Some names in a program may have a “meaning” outside its lexical scope.

e.g. field/method names in Java

Names must be qualified if they cannot be resolved by lexical scope.

e.g. a.x denotes the field x of object referred by a.

a.x can be used even outside the lexical scope of x.

Visibility of names outside the lexical scope is declared by visibilty modifiers (e.g.

public, private, etc.)

15 / 26



Bindings

Namespaces

Namespaces are a way to specify “contexts” for names.
www.google.com:
The trailing com refers to a set of machines

google is subset of machines in the set com

google is interpreted here in the context of com

www is a subset of machines in the set google

www is interpreted here in the context of google.com

Other common use of name spaces: directory/folder structure.

Names should be fully qualified if they are used outside their context.

e.g. Stack::top() in C++, List.hd in OCAML.

Usually there are ways to declare the context a priori so that names can be specified

without qualifying them.

e.g. import in Java, ns in XML, PATH in shell, . . .
16 / 26



Bindings

Lifetimes

The lifetime of a binding is the interval during which it is e�ective.

int fact(int n) {
int x;
if (n == 0)

return 1;
else {

x = fact(n-1);
return x * n;

}
}

fact: n = 2

fact: n = 2 → fact: n = 1

fact: n = 2 → fact: n = 1 → fact: n = 0

fact: n = 2 → fact: n = 1, x = 1

fact: n = 2, x = 1

2

Each invocation of fact defines new variables n and x.

The lifetime of a binding may exceed the scope of the binding.

e.g., consider the binding n=2 in the first invocation of fact.
Call to fact(1) creates a new local variable n.
But the first binding is still e�ective.

17 / 26



Bindings

Symbol Table

Uses data structures that allow e�cient name lookup operations in the

presence of scope changes.

We can use
hash tables to lookup attributes for each name
a scope stack that keeps track of the current scope and its surrounding scopes
the top most element in the scope stack corresponds to the current scope

the bottommost element will correspond to the outermost scope.

18 / 26



Bindings

Support for Scopes

Lexical scopes can be supported using a scope stack as follows:

Symbols in a program reside in multiple hash tables

In particular, symbols within each scope are contained in a single hash table for that scope

At anytime, the scope stack keeps track of all the scopes surrounding that program

point.

The elements of the stack contain pointers to the corresponding hash table.

19 / 26



Bindings

Support for Scopes (Continued)

To lookup a name

Symbols in a program reside in multiple hash tables

Start from the hash table pointed to by the top element of the stack.

If the symbol is not found, try hash table pointed by the next lower entry in the stack.

This process is repeated until we find the name, or we reach the bottom of the stack.

Scope entry and exit operations modify the scope stack appropriately.

When a new scope is entered, a corresponding hash table is created. A pointer to this hash

table is pushed onto the scope stack.

When we exit a scope, the top of the stack is popped o�.

20 / 26



Bindings

Example

1: float y = 1.0
2: void f(int x){
3: for(int x=0;...){
4: float x1 = x + y;
5: }
6: {
7: float x = 1.0;
8: }
9: }
10:main() {
11: float y = 10.0;
12: f(1);
13:}

21 / 26



Bindings

illustration

At (1)

We have a single hash table, which is the global hash table.

The scope stack contains exactly one entry, which points to this global hash table.

When the compiler moves from (1) to (2)

The name y is added to the hash table for the current scope.

Since the top of scope stack points to the global table, “y” is being added to the global

table.

When the compiler moves from (2) to (3)

The name “f” is added to the global table, a new hash table for f’s scope is created.

A pointer to f’s table is pushed on the scope stack.

Then “x” is added to hash table for the current scope.
22 / 26



Bindings

Static vs Dynamic Scoping

Static or lexical scoping:

associations are determined at compile time

using a sequential processing of program

Dynamic scoping:

associations are determined at runtime

processing of program statements follows the execution order of di�erent statements

23 / 26



Bindings

Example

if we added a new function "g" to the above program as follows:

void g() {

int y;

f();

}

Consider references to the name “y” at (4).

With static scoping, it always refers to the global variable “y” defined at (1).
With dynamic scoping
if “f” is called from main, “y” will refer to the float variable declared in main.

If “f” is invoked from within “g”, the same name will refer to the integer variable “y” defined in “g”.

24 / 26



Bindings

Example (Continued)

Since the type associated with “y” at (4) can di�er depending upon the point of call,

we cannot statically determine the type of “y” .

Dynamic scoping does not fit well with static typing.

Since static typing has now been accepted to be the right approach, almost all

current languages (C/C++/Java/OCAML/LISP) use static scoping.

25 / 26



Bindings

Scopes in OCAML:

Most names are at the “top-level,” which corresponds to global scope.

Formal parameters of functions are within the scope of the function.

“Let” statement introduces new bindings whose scope extends from the point of

binding to the end of the let-block.

Example

let v =

let x = 2

and y = 3

in x*y;;

26 / 26


	Bindings

