R. Sekar

1/26

1. Bindings

2/26

Bindings

Bindings: Names and Attributes

@ Names are a fundamental abstraction in languages to denote entities
@ Meanings associated with these entities is captured via attributes associated with the
names

e Attributes differ depending on the entity:
o location (for variables)
e value (for constants)

o formal parameter types (functions)

e Binding: Establishing an association between name and an attribute.

Names

Bindings

e Names or Identifiers denote various language entities:

Constants

o Variables

Procedures and Functions

e Types, ...

o Entities have attributes

Entity Example Attributes

Constants | type, value, ...

Variables | type, location, ...

Functions | signature, implementation, ...

Bindings

Attributes

@ Attributes are associated with names (to be more precise, with the entities they

denote).

o Attributes describe the meaning or semantics of names (and entities).

int x; There is a variable, named x, of type integer.

int y = 2; Variable named x, of type integer, with initial value 2.

Set s = new Set(); | Variable named s, of type Set that refers to

an object of class Set

@ An attribute may be
e static: can be determined at translation (compilation) time, or

e dynamic: can be determined only at execution time.

Bindings

Static and Dynamic Attributes

@ int x;
e The type of x can be statically determined;

o The value of x is dynamically determined;

o The location of x (the element in memory will be associated with x) can be statically

determined if x is a global variable.

@ Set s = new Set();

e The type of s can be statically determined.
o The value of s, i.e. the object that s refers to, is dynamically determined.

Static vs. Dynamic specifies the earliest time the attribute can be computed

. not when it is computed in any particular implementation.

Bindings

Binding

“Binding” is the process of associating attributes with names.
e Binding time of an attribute: whether an attribute can be computed at translation

time or only at execution time.

@ A more refined classification of binding times:
o Static:
e Language definition time (e.g. boolean, char, etc.)
e Language implementation time (e.g. maxint, float, etc.)
e Translation time (“compile time”) (e.g. value of n in const int n = 5;)
@ Link time (e.g. the definition of function f in extern int f();)
e Load time (e.g. the location of a global variable, i.e., where it will be stored in memory)
e Dynamic:
e Execution time

Bindings

Binding Time (Continued)

e Examples
e type is statically bound in most langs
o value of a variable is dynamically bound

e location may be dynamically or statically bound

@ Binding time also affects where bindings are stored

e Name — type: symbol table
e Name — location: environment

o Location —value: memory

Bindings

Declarations and Definitions

@ Declaration is a syntactic structure to establish bindings.

e int x;

e const int n = 5;
e extern int f£();
e struct foo;

@ Definition is a declaration that usually binds all static attributes.

e int £() { return x;}
e struct foo { char *name; int age;l};

@ Some bindings may be implicit, i.e., take effect without a declaration.

o FORTRAN: All variables beginning with [i-nl-N] are integers; others are real-valued.

e PROLOG: All identifiers beginning with [A-Z_] are variables.

@ Region of program over which a declaration is in effect

e i.e. bindings are maintained

@ Possible values

Global

Package or module
File

Class

Procedure
Block

10/26

Bindings

Visibility

@ Redefinitions in inner scopes supercede outer definitions
@ Qualifiers may be needed to make otherwise invisible names to be visible in a scope.

e Examples
o local variable superceding global variable
e names in other packages.

e private members in classes.

Bindings

Symbol Table

Maintains bindings of attributes with names:

SymbolTable : Names — Attributes

@ In a compiler, only static attributes can be computed; thus:
SymbolTable : Names — StaticAttributes
@ While execution, the names of entities no longer are necessary: only locations in
memory representing the variables are important.

Store : Locations —> Values
(Store is also called as Memory)

@ A compiler then needs to map variable names to locations.

Fnvironment - Names — |l ocations

Bindings

Blocks and Scope

@ Usually, a name refers to an entity within a given context.

class A {
int x;
double y;
int f(int x) { // Parameter "x" is different from field "x"
B b = new B();
y = b.f(); // method "f" of object "b"
this.x = x;

}
}

@ The context is specified by “Blocks”

o Delimited by “{” and “}” in C, C++ and Java
e Delimited by “begin” and “end” in Pascal, Algol and Ada.

Scope: Region of the program over which a binding is maintained.

int x;

void p(void) {

char y;

} £ .
void q(int y) {

double z; !

' y
} 4
n() { m

int w; w

14/26

Bindings

Lexical Scope

Lexical scope: the scope of a binding is limited to the block in which its declaration
appears.
@ The bindings of local variables in C, C++, Java follow lexical scope.
e Some names in a program may have a “meaning” outside its lexical scope.
e.g. field/method names in Java

e Names must be qualified if they cannot be resolved by lexical scope.
e.g. a.x denotes the field x of object referred by a.
a.x can be used even outside the lexical scope of x.
@ Visibility of names outside the lexical scope is declared by visibilty modifiers (e.g.

public, private, etc.)

Bindings

Namespaces

e Namespaces are a way to specify “contexts” for names.
e www.google.com:
o The trailing com refers to a set of machines
@ google is subset of machines in the set com
google is interpreted here in the context of com
e www is a subset of machines in the set google

www is interpreted here in the context of google. com

o Other common use of name spaces: directory/folder structure.

@ Names should be fully qualified if they are used outside their context.

e.g. Stack: :top() in C++, List.hd in OCAML.

@ Usually there are ways to declare the context a priori so that names can be specified

without qualifying them.

16/26

Bindings

Lifetimes

The lifetime of a binding is the interval during which it is effective.

int fact(int n) { fact: n =2
int x; o o
it (n == 0) fact: n =2 — fact: n =1
return 1; fact n=2 - fact: n=1— fact: n =0
else {
x = fact(n-1); fac: n=2 — factt n=1,x=1
} return x * n; fact: n=2,x =1
¥ 2

@ Each invocation of fact defines new variables n and x.

@ The lifetime of a binding may exceed the scope of the binding.
e e.g., consider the binding n=2 in the first invocation of fact.
e Call to fact(1) creates a new local variable n.
o But the first binding is still effective.

Bindings

Symbol Table

o Uses data structures that allow efficient name lookup operations in the
presence of scope changes.

e We can use

o hash tables to lookup attributes for each name
e a scope stack that keeps track of the current scope and its surrounding scopes
o the top most element in the scope stack corresponds to the current scope

o the bottommost element will correspond to the outermost scope.

Bindings

Support for Scopes

@ Lexical scopes can be supported using a scope stack as follows:

@ Symbols in a program reside in multiple hash tables

o In particular, symbols within each scope are contained in a single hash table for that scope

@ At anytime, the scope stack keeps track of all the scopes surrounding that program

point.

@ The elements of the stack contain pointers to the corresponding hash table.

Bindings

Support for Scopes (Continued)

@ To lookup a name

@ Symbols in a program reside in multiple hash tables
o Start from the hash table pointed to by the top element of the stack.
o If the symbol is not found, try hash table pointed by the next lower entry in the stack.

e This process is repeated until we find the name, or we reach the bottom of the stack.

@ Scope entry and exit operations modify the scope stack appropriately.
e When a new scope is entered, a corresponding hash table is created. A pointer to this hash
table is pushed onto the scope stack.
o When we exit a scope, the top of the stack is popped off.

Example

Bindings

1: float y = 1.0

2: void f(int x){

3: for(int x=0;...){
4: float x1 = x + y;
5: }

6: {

g: float x = 1.0;
9: }

10:main() {

11: float y = 10.0;
12: £(1);

—_
w
[}

Bindings

illustration

o At (1)
o We have a single hash table, which is the global hash table.

o The scope stack contains exactly one entry, which points to this global hash table.

@ When the compiler moves from (1) to (2)
e The name vy is added to the hash table for the current scope.
e Since the top of scope stack points to the global table, “y” is being added to the global
table.

@ When the compiler moves from (2) to (3)
o The name “f” is added to the global table, a new hash table for f’s scope is created.
o A pointer to f’s table is pushed on the scope stack.

o Then “x” is added to hash table for the current scope.

Bindings

Static vs Dynamic Scoping

@ Static or lexical scoping:
e associations are determined at compile time

e using a sequential processing of program
@ Dynamic scoping:

e associations are determined at runtime
e processing of program statements follows the execution order of different statements

Bindings

Example

e if we added a new function "g" to the above program as follows:
void g {
int y;
£0;
+
e Consider references to the name “y” at (4).
o With static scoping, it always refers to the global variable “y” defined at (1).
o With dynamic scoping
o if “f” is called from main, “y” will refer to the float variable declared in main.

o If “f” is invoked from within “g”, the same name will refer to the integer variable

“w.o»n

y” defined in “g".

Bindings

Example (Continued)

@ Since the type associated with “y” at (4) can differ depending upon the point of call,

we cannot statically determine the type of “y” .
@ Dynamic scoping does not fit well with static typing.

@ Since static typing has now been accepted to be the right approach, almost all

current languages (C/C++/Java/OCAML/LISP) use static scoping.

Bindings

Scopes in OCAML:

@ Most names are at the “top-level,” which corresponds to global scope.
e Formal parameters of functions are within the scope of the function.

@ “Let” statement introduces new bindings whose scope extends from the point of
binding to the end of the let-block.

e Example
let v =
let x

1]
w

and y

in x*y;;

	Bindings

