Logic Programming

CSE 307: Principles of Programming Languages

Logic Programming

R. Sekar

Logic Programming

Section 1

2/40

Logic Programming

Topics

1. Logic Programming

Logic Programming

Logic and Programs

@ “All men are mortal; Socrates is a man; Hence Socrates is mortal”
VX. man(X) = mortal(X)

man(socrates)

e Predicate logic

Predicates (e.g. man, mortal) which define sets.

Atoms (e.g. socrates) which are data values
Variables (e.g. X) which range over data values

Rules (e.g. VX. man(X) = mortal(X)) which define relationships between predicates.

mortal(X) :- man(X). let isMortal(x) = isMan(x);;
man(socrates) . let isMan(x) = (x = socrates);;

Logic Programming

Logic Programs

?- mortal(socrates).
yes
mortal (X) :- man(X). 7_ mortal(X).

man(socrates) . Y=socrates .
b

no

Logic Programming

Relations and Logic Programs

@ Unary predicates (e.g. man, mortal) define sets.

Predicates with higher arity (binary, ternary etc) define relations. Example:

flight (jfk, dfw). flight(stl, jfk).
flight (dfw, lax). f1ipht (st1, dfw)
flight(lga, stl). g ’ :
e Facts: sets and relations whose definitions do not depend on anything else. (e.g.
man (socrates)).

“extensional data base” (EDB)

6/40

Logic Programming

Relations and Logic Programs (Contd.)

@ Rules define computed sets and relations (e.g. mortal).

“intensional data base” (IDB) relations

canFly(Source, Dest) :- flight(Source, Dest).
canFly(Source, Dest) :- flight(Source, Stopover),
canFly(Stopover, Dest).

Logic Programming

Programming with Logic

@ Data structures:

e Atomic data such as socrates, 1ga, etc.
e Data structures by constructing terms (tree structures):
o [1: nil list
e [X|Xs]: list with X as its head and Xs as its tail
e prog(P, D, S): a structure with prog as the root symbol, and P, D, and S as its children

e Example programs: append (Xs,Ys,Zs): Xs, Ys, and Zs are lists such that Zs is the

contactenation of Xs and Ys.

append([], Ys, Ys).
append([XIXs], Ys, [XIZs]) :-
append(Xs, Ys, Zs).

Logic Programming

From Functional to Relational Programming

let rec append(l, ys) = append([1, Ys, Z) :- Z=Ys.
match 1 with append ([X|Xs], Ys, Z) :-
[->ys append(Xs, Ys, Zs),
x::xs -> x::append(xs, ys) Z = [X|Zs].

append([], Ys, Ys).
append([X|Xs], Ys, [X|Zs]) :-
append(Xs, Ys, Zs).

let rec reverse 1 =

match 1 with reverse([l, Z) :- Z=[].
1 -> [1 reverse([XIXs], Z) :-
X::x8 -> reverse(Xs, T),

append ((reverse xs), [x]) append(T, [X], Z).

9/40

Logic Programming

SML and Prolog

fun revi(x::xs, ys) =
revi(xs, x::ys)

| revi(nil, ys) = ys
fun rev(xs) = revi(xs, [1)

datatype tree =
Node of int * tree * tree
| Leaf of int;
fun search(Node(i,1l,r), j) =
if (j<=i) then search(l,j)
else search(r,j)
| search(Leaf(i), j) =1i = j;

revli([X|Xs], Ys, Zs) :-
revli(Xs, [X|Ys], Zs)
revi([]l, Ys, Ys).

rev(Xs, Ys) :- revi(Xs,[],Ys)

search(node(I,L,R), J) :-

(J =< I -> search(L, J);
search(R, J)).
search(leaf (I),I).

Logic Programming

Syntax of Prolog Programs

@ Names:
e Variable names start with uppercase letters
o Predicate names start with lowercase letters

enclosed in single quotes

¥QH§¥ﬂe&

o [1] (sameas [1 |
o [1,2] (same as [1 |
f(g(a))
f(gh(X)))

£(X, g(X)

(1ga, jfk)

1D

(210110

e Data constructors (called “function symbols” and “constants”) start with lowercase letters or

e Data structures: a term (a tree of symbols) built using function symbols and

11/40

Logic Programming

Syntax of Prolog Programs (Contd.)

@ Clauses: of the form lhs : —rhs.

Note the trailing period.
o Clause head: An atom

o Facts: clauses with empty bodies.
Written as /hs.
o Rules: clauses with non-empty bodies.

e Program: a sequence of clauses.

@ (Query: an atom.

@ Atom: a term built with function symbols, predicate symbols and variables.

Example: append ([X|Xs], Ys, [X|Zs])

o Clause body: a comma-separated sequence of atoms.

12/40

Logic Programming

Arithmetic in Prolog

@ Use of “=” simply constructs or inspects term structures.
o For example, X = 1 + 2 binds X to term 1+2,

@ Binary operator “is” should be used to evaluate arithmetic expressions.
e For example, X is 1 + 2 binds X to 3.
o Rhs of “is” must be ground when the operator is evaluated.

e Expressions mix real and integer arithmetic, lifting values to real whenever necessary.

@ Arithmetic comparison operators: =, ~, <, >, =<, >= (Note the syntax of
“less-than-or-equal-to” etc.)

e length([1, 0).
length([X[Xs], N) :- length(Xs, M), N is M+1.

Logic Programming

How Prolog Works

Prolog attempts to check if the given query g is true by

1. Is there a clause whose left hand side corresponds to g?
2. If not, g is false (we say that g fails)

3. If there is such a clause, say I : —n, 1, ..., 1,
o Now check if all of n, ry, ... are true.
o If so, g is true (we say that g succeeds)

e If not, repeat step (3) until there is no matching clause
e Clauses are tried in the order they appear in the program.

e If more than one clause applies, they are tried one after another until the goal

succeeds

14740

Logic Programming

How Prolog Works (Contd.)

append([1, Ys, Ys).
append([X|Xs], Ys, [X[Zs]) :-
append(Xs, Ys, Zs).

append([a,b], [cl, Z) Clause 2
append ([b], [cl, Z’), Z = [alZ’] Clause 2
append ([1, [cl, 2, Z’=[blZ2’], Z = [alZ’] Clause1
2’=[c], Z2°=[bl2’], Z = [alZ’] Simplify

Z=[a,b,c]

15/40

Logic Programming

How Prolog Works (Contd.)

append([], Ys, Vs).
append([X|Xs], Ys, [X[Zs]) :-
append(Xs, Ys, Zs).

append (U, V, [a,bl) Clause 1, Clause 2
(1) U=[1, V=[a,bl

(2) append(U’,V,[b]), U=[alU’] Clause 1, Clause 2
(2.1) U’=[1, v=[bl, U=[alU’] Simplify

U=[a], V=[bl

(2.2) append(U”,V,[1), U’=[b|U’], U=[alU’] Clause 1

ur=[1, v=01, u’=[blUu’], U=[a|U’] Simplify

U=[a,b], V=[]

Logic Programming

Unification

e Unification is the operation to make two data structures identical (i.e. “unify” them).

Predefined binary predicate = may be used to unify terms.

e a = a succeeds, a = b fails, X = a succeeds after binding X to a.
e £(X) = f(a) succeeds after binding X to a.

o g(a) = f(a), f(a) = £(b), f(a,b) = f(b,a) fail.

o 7- f(X) = f(a), X = b.

o 7- f(X,a) = £(b,YV).

o 7- f(X,a) = £(b,X).

@ A clause is applicable if the query (also called a goal or subgoal) unifies with the

left hand side of the clause.

Logic Programming

Unification (Contd.)

@ Substitution: a function that maps variables to values (terms).

@ An unifier of two terms ¢t and t, is a substitution over variables of 4 and t, that make
them identical.
o The substitution {X — b,Y — a} is an unifier of £(X,a) and £(b,Y).
o The substitution {X — b,Y — a,Z — ¢,W — ¢} is an unifier of £(X,a,Z) and £(b,Y,W).
o The substitution {X — b,Y — a,Z — d,W — d} is an unifier of £(X,a,Z) and £(b,Y,W).
o The substitution {X — b,Y — a,Z — W} is an unifier of £(X,a,Z) and £(b,Y,W).
Called the most general unifier

During query evaluation, clauses are selected by computing the most general unifier.

18/40

Logic Programming

A Simple Prolog Interpreter: Types

type nonvar = string

type var = int

type term = Var of var | Nvar of nonvar * term list
type clause = term list

type goal = term

type program = clause list

type subst = (var * term) list

type env = int (* base pointer x) * subst

type path = goal list * env

Logic Programming

A Simple Prolog Interpreter: unify

let rec unify: subst —> term —> term —> subst =
fun subst t1 t2 = match (t1, t2) with
| (Var(x), _) —> add_subst subst x t2
| (_, Var(y)) —> add subst y t1i
| (Nvar(c,tls), Nvar(d,t2s)) —>
if c=d then unify_list subst tls t2s

else raise Unif_fail
and unify_list subst 11 12 = fold_left2 unify subst 11 12

and add_subst: subst-—>var—>term—>subst = fun subst x t =
try let t’ = assoc x subst in unify subst’ t’ t
with Not_found —> if t<>Var(x) then (x,t)::subst else subst

20740

Logic Programming

More about unification ...

e Given two terms ¢t and t, containing variables X; and X,

ty and t, are unifiable if and only if the logical formula is satisfiable.

@ Unification procedure computes a solution to the formula, i.e., a valuation for Xx; and

X, that makes this formula true.

@ Every solution to the formula is an instance of the solution computed by unify —

the most general unifier property.

e Occurs-check: Note that VX X # f(X).
e So, in general, we need to check if X occurs in t before taking t as a substitution for X.
e Omitted in Prolog because it has severe impact on performance
o Interestingly, unify terminates even when it computes such cyclic substitutions!

21/ 40

Logic Programming

More about unification ... (Continued)

e Unification is a constraint-solving procedure for equality constraints over terms.

@ Many problems can be modeled in terms of such constraints

Type inference:
e For each identifier i, associate a variable T; that holds its type.
o Constraints on T;'s types are inferred from each use of i, whether it be as argument to a

function, in an equality or match operation, etc.

e Most general unifiers yield the most general types for each identifier.

Logic program evaluation:
e Each “call” introduces a constraint between actual and formal parameters.

e Most general unifiers correspond to the most general solutions to the query

Logic Programming

Type Inference Example

let h y =0 Ty: T, — int
T, :in(T))
let g x =
if (1 %) Ty Ty — out(Ty, Ty)
then (h x) T, »int — out(Tg, int), T, : int
1 1
else (g (x+1)) T; : « list
let rec f t = T Ty — B list
match t with Tr . Ty — out(T,,)list

| 11 — 1]

| z::2zs —> (g z)::(f zs) Ty« Ti — out(Ty, Ty)

Logic Programming

Query evaluation in Prolog

@ The query evaluation procedure in Prolog (called clause resolution) uses backtracking

search.
e Given a query (goal), a clause is applicable if its head (lhs) unifies with the query.

@ When more than one clause is applicable evaluation,
o the first clause is selected, and query evaluation continues with the body of the clause
o ... but we may come back to try the remaining clauses if further query evaluation using the

first clause fails.

e Clauses applicable but not yet tried at any point are remembered and are tried upon

backtracking.

e Alternative strategy: Eagerly compute all solutions

o Let us write a simple interpreter for this strategy

24140

Logic Programming

A simple Prolog interpreter to compute all solutions

let rec call: (prog: clause list) (env:env) (goal:goal): env list =
let paths = (map (find_path goal env) prog) in
let viable_paths = filter (fun (_, (bp, _-)) —> bp > 0) paths
in exec_paths prog viable_paths

and exec_paths prog paths = match paths with

|0 =1
| pl::ps —> (append (exec_path prog pl) (exec_paths prog ps))

and exec_path: program —> path —> env list =
fun prog (glist, env) = match glist with
| 11 —> [env]
| goal :: goals —>
let envs = call prog env goal in
let newpaths = map (fun e —> (goals, e)) envs
in (flatten (map (exec_path prog) newpaths))

Logic Programming

A Prolog interpreter to compute all solutions (Continued)

let find_path: goal —> env —> clause —> path =
fun goal (bp, subst) clause =
let (hd::body) = alloc_locals bp clause in
try let subst’ = assign_to_formals hd goal subst
in (body, (bp+(numvars hd)+(numvarslist body), subst’))
with Unif_fail —> ([], (=1, subst))

let assign_to_formals hd goal subst: subst = unify subst hd goal

let rec alloc_locals: int —> term list —> term list =
fun bp ts = let alloc_local t = match t with
| Vvar(i) —> Var(bp+i)
| Nvar(c, ts) —> Nvar(c, alloc_locals bp ts)

in map alloc_local ts

261740

Logic Programming

Implementing Backtracking

o Simply replace eager evaluation used in the interpreter with /azy
evaluation!

o But OCaml does not support lazy evaluation

e Use a language like Haskell that supports lazy evaluation
e Employ a simple trick to achieve lazy evaluation in OCaml
@ The same trick can also be used in any language that supports lambda abstractions!

o That includes C++, JavaScript, Python, ...

o Write a top-level print function that consumes the set of solutions
one-at-a-time
e prints the first solution
o based on user input, either terminates or continues in the print/user-input loop.

Logic Programming

Lazy Evaluation in OCaml

o Lazy evaluation: suspend actual parameter evaluation until needed

o The expression is stored as a closure that encapsulates the binding of local variables
o Lambda definitions already require this ability

o The body of the function is an expression that needs to be represented as a closure

o /dea: Use lambda definition f, to represent e needing lazy evaluation
fun fo() -> e

e Note: f, takes an empty argument (technically, a zero-tuple, aka unit in OCaml)

o Evaluation of e is suspended, until it is applied to a unit argument

Logic Programming

Some types and functions for Lazy Evaluation in OCaml

@ A type to represent lazily evaluated expressions

type 'a thunk = Thunk of (unit —>’a) | Val of 'a

@ A function to force evaluation of thunks:

let force v = match v with Thunk x —> x() | Val x —> x
@ A variant of list type that is evaluated lazily
type ’a 1zlist = Nil | Cons of 'a * ('a 1zlist thunk)

e To operate on such lazy lists, we need to redefine familiar list operations such as
append, mabp, filter, flatten, etc.

e But almost no other changes needed to the interpreter!

Logic Programming

Example: Redefining map for 1zlist

type ’'a thunk = Thunk of (unit —> ’a) | Val of ’a

let rec lzmap (f: 'a —> ’'b) (l: ’a lzlist): ’'b lzlist =
match 1 with
| Ni1 — Wil
| Cons (11, 1s) —>
Cons ((f 11), Thunk(fun () —> map f (force 1ls)))

30/40

Logic Programming

A Backtracking Prolog interpreter

let rec call: (prog: clause list) (env:env) (goal:goal): env lzlist =
let paths = (map (find_path goal env) prog) in

let viable_paths = filter (fun (_, (bp, _)) —> bp > 0) paths

in exec_paths prog viable_paths

and exec_paths prog paths = match paths with
| 11 — Nil
| p::ps—> (lzappend (exec_path prog p) (Thunk(fun () -> (exec_paths prog ps)))

and exec_path: program —> path —> lzenv list =
fun prog (glist, env) = match glist with
| [1 —> Cons(env, Val(Nil))
| goal :: goals —>
let envs = call prog env goal in
let newpaths = Izmap (fun e —> (goals, e)) envs
in (lzflatten (Izmap (exec_path prog) newpaths))

Logic Programming

Controlling Search

o If-then-else: Written as (c -> t ; e) where ¢, t, e are conjunction of atoms.

Example:

gen(N, L) :-
(N =0
-> L =[]
; M is N-1, gen(M, K), L = [NIR]).

Logic Programming

Controlling Search (Contd.)

“I”

@ Pruning: Proof search can be pruned using “!” (cut).

e Cut throws away other choices when more than one clause is applicable.
e Use with care: Prolog’s proof process may be hard to understand, and cuts may make the

program difficult to comprehend!

member(X, [X|_]). Finds elements of a list.
member(X, [Y|Ys]) :- Given X and L, member (X, L) determines
member(X, Ys). whether X is in L or not.

Given L alone, member (X, L) binds X to el-
ements of L (one by one, when backtracking).

member(X, [X|_]) :- . Finds whether or not an element is in a list.
member(X, [Y|Ys]) :- Given X and L, member (X, L) determines
member(X, Ys). whether X is in L or not.

Given L alone, member (X, L) binds X to the
first element of L.

33/40

Logic Programming

Change for a dollar

change([H,Q,D,N,P]) :-
member (H, [0,1,2]), /*Half-dollarsx*/
member (Q, [0,1,2,3,4]), /*quarters*/
member (D, [0,1,2,3,4,5,6,7,8,9,10]), /* dimes */
member (N, [0,1,2,3,4,5,6,7,8,9,10,
11,12,13,14,15,16,17,18,19,20]), /*nickels*/

S is bO0xH+25*(Q+10*D+5%N,
5=<100,
P is 100-S.

Logic Programming

Permutation

takeout (X, [X|R],R).
takeout (X, [FIR],[FIS]) :- takeout(X,R,S).

perm([1,[1).
perm([X|Y],Z) :-perm(Y,W), takeout(X,Z,W).

Logic Programming

Tree Isomorphism

isomorphic(void, void).
isomorphic(tree(Node, Leftl, Rightl),
tree(Node, Left2, Right2)) :-
isomorphic(Leftl, Left2),
isomorphic(Right1, Right?2).
isomorphic(tree(Node, Leftl, Rightl),
tree(Node, Left2, Right2)) :-
isomorphic(Leftl, Right2),
isomorphic(Rightl, Left2).

36 /40

Logic Programming

Checking/Generating Subtrees

subtree(Treel, Tree2) :-
isomorphic(Treel, Tree2).

subtree(Treel, tree(Node, Left, Right)) :-
subtree(Treel, Left); subtree(Treel, Right).

Logic Programming

N-Queens

solve(P) :-
perm([1,2,3,4,5,6,7,8],P),
combine([1,2,3,4,5,6,7,8],P,S,D),
all_diff(S), all_diff(D).

combine ([X1[X],[Y1|Y],[S1l|S],[D1ID]) :-
S1 is X1+Y1, D1 is X1-Y1,
combine(X,Y,S,D).

combine([],[],[],[]1).

all_diff ([XIY]) :- \+member(X,Y), all_diff(Y).

all diff ([X]). 38/40
Merge Sort

merge_sort ([], []).

merge_sort ([X], [X]).

merge_sort (List, SortedList) :—
split(List, First, Second),
merge_sort (First, SortedFirst),
merge_sort(Second, SortedSecond),
merge (SortedFirst, SortedSecond, SortedList).

split ([, (1, [1).
split ([X], [X], []).
split ([X1,X2|Xs], [X1]|Ys], [X2]|Zs]) :— split(Xs, Ys, Zs).

39/40

Logic Programming

Merge Sort (Contd.)

merge([], X, X).
merge (X, [1, X).
merge ([X1Xs], [YIYs], [XIZs]) :-
X=<Y,
merge (Xs, [YIYs], Zs).
merge ([X|Xs], [YIYs], [YIZs]) :-
X >,
merge ([X1Xs], Ys, Zs).

	Logic Programming

